Esa Standard Document
Total Page:16
File Type:pdf, Size:1020Kb
VENUS ENTRY PROBE TUDY OVERVIEW OF THE ENUS NTRY ROBE An ESA Technology Reference Study Planetary Exploration Studies Section (SCI-AP) Science Payload and Advanced Concepts Office (SCI-A) prepared by/préparé par Marcel van den Berg and Peter Falkner reference/réference SCI-AP/2006/173/VEP/MvdB issue/édition 2 revision/révision 3 Date of issue/date d’édition 27/02/2007 status/état Released Document type/type de document public report a ESTEC VEP_Study_Overview_2_3_2007.doc Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands Tel. (31) 71 5656565 - Fax (31) 71 5656040 Study overview of the Venus Entry Probe issue 2 revision 3 - 27/02/2007 SCI-A/2006/173/VEP/MvdB page 2 of 64 Venus Entry Probe Technology Reference Study – Study Team ESA Marcel van den Berg VEP TRS study manager Peter Falkner Technical officer VEP TRS activities Andre Schiele Technical officer microprobe project Arnaud Boutonnet Mission analysis validation EADS Astrium Ltd. Steve Kemble Mission analysis Surrey Satellite Andy Phipps Study manager Technology Ltd. Adrian Woodroffe OBDH Dave Gibbon Propulsion Peter Alcindor Power Craig Clark Power Nadeem Ghafoor Payloads/Science Alex Cropp ACS Carlos Lovett Lineares Communications John Buckley Projects Yoshi Hashida Trajectories Tanya Vladimirova Advanced Technologies Adam Baker Structure/Micro-power technologies Jackie Brooks Project Assistant Alex da Silva Curiel Research and Development Jim Clemmet Structure/Configuration Andrew Cawthorne Thermal Syed Husnain Thermal Phil Whittaker Navigation Vorticity Ltd. Steve Lingard Systems Engineering John Underwood Systems Engineering (entry vehicle and aerobot) Nick Bown Space inflatables Fluid Gravity Arthur Smith Thermal Protection System analysis validation Engineering Gavin Parnaby Thermal Protection System analysis validation Cosine Research B.V. Stefan Kraft Project manager Joe Moorhouse Payload assessment and definition Swiss Space Technology Julian Harris Payload electronics assessment and design QinetiQ Ltd. Nigel Wells Project manager (Microprobe design) Andrew Ballard Microprobe communications John Doherty Microprobe aerodynamics Andrew Eldridge Microprobe aerodynamics Study overview of the Venus Entry Probe issue 2 revision 3 - 27/02/2007 SCI-A/2006/173/VEP/MvdB page 3 of 64 Venus Entry Probe Technology Reference Study – Mission Summary Key scientific objectives • Detailed study of the Venus atmosphere: o Origin and evolution of the atmosphere o Composition of the lower atmosphere o Atmospheric dynamics and thermal balance o Aerosol analysis Strawman reference payloads • Venus Polar Orbiter (VPO): Sub-mm wave sounder, visible-NIR imaging spectrometer, assumed for this study UV spectrometer, IR Fourier transform spectrometer, UV-visible-NIR camera • Aerobot: Gas chromatograph mass spectrometer (with aerosol inlet), nephelometer, solar and IR flux radiometers, meteorological and inertial packages, radar altimeter • Microprobes: Thermometer, pressure sensors, solar flux sensors, (wind velocity) Launch and transfer • Launch of 1509 kg into direct Venus escape by Soyuz-Fregat 2-1B (Kourou)(2-11-2013) • Type II transfer (160 days) and Venus capture by chemical propulsion • VPO and VEO (Venus Elliptical Orbiter) interplanetary cruise as separate modules • System level mass margin 20% Entry and descent • Entry probe released from VEO (90 to 180 days after Venus arrival) • Thermal protection system based on a high density ablator (entry angle ~ 40˚) • Parachute deployment at 1.5 Mach Aerobot • Hydrogen filled superpressure balloon • During flight, the balloon will drop atmospheric microprobes VPO science acquisition • Remote sensing science acquisition concurrent with aerobot operational phase • Almost continuous monitoring of the Venus atmosphere (duty cycle 99.9%) S/C Modules VPO VEO Aerobot 15 microprobes Stabilization 3-axis 3-axis - - Orbit/Altitude 2,000 km × 6,000 km 400 km × 215,000 km 55 km 55 – 10 km Initial inclination 90˚ 64˚ Deployment: 20±2˚ N S/C ΔV requirements 3.5 km/s 1.7 km/s Operational lifetime > 2 years > 2 years 15 – 22 days < 1 hr Platform dry mass (excl. P/L) 222 kg 183 kg 15 kg (gondola) 115 g (each) P/L mass 25 kg 91 kg 4 kg (P/L) + 4 kg < 10 g (entry vehicle) (microprobes) Total wet mass 905 kg 558 kg 32 kg 4 kg (incl. 20% system margin) (incl. entry vehicle) (aerobot) (incl. comms) Power (peak) 155 W 112 W 26 W 2.3 W Power (average) 25 / 5 W (day/night) 0.1 W Telemetry band X/Ka X/Ka X S Continuous compressed science 50 kbps - 2.5 kbps 100 bps bit rate Key mission drivers • ΔV requirements for VPO • Aerobot power (primary batteries and solar cells) • Highly integrated P/L suite for aerobot Key critical technologies • Heat shield for entry vehicle • Balloon envelope for Venus environment • Triple-junction amorphous silicon solar cells for Venus environment • Fully miniaturized low resource in situ atmospheric instruments package • Atmospheric microprobe system (including localization)1 1 Breadboard currently under development under a TRP contract (17946/03/NL/PA) Study overview of the Venus Entry Probe issue 2 revision 3 - 27/02/2007 SCI-A/2006/173/VEP/MvdB page 4 of 64 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................................6 2 VENUS......................................................................................................................................6 2.1 Venus properties................................................................................................................................6 2.2 Missions to Venus..............................................................................................................................9 2.2.1 Past, current and planned missions ............................................................................................9 2.2.2 Mission concept studies...........................................................................................................10 3 MISSION SCENARIO .............................................................................................................13 3.1 Mission objectives............................................................................................................................13 3.2 Derived mission requirements .........................................................................................................14 3.3 Mission concept...............................................................................................................................14 4 MISSION ENVIRONMENT......................................................................................................16 5 MISSION ANALYSIS ..............................................................................................................18 5.1 Launch window analysis..................................................................................................................18 5.2 Launch vehicle.................................................................................................................................19 5.3 Operational orbits.............................................................................................................................20 5.4 ΔV summary ....................................................................................................................................21 6 SPACECRAFT DESIGN .........................................................................................................22 6.1 Margins ............................................................................................................................................22 6.2 System overview..............................................................................................................................23 6.3 Orbiters.............................................................................................................................................25 6.3.1 Remote sensing reference payload suite ..................................................................................25 6.3.2 Spacecraft.................................................................................................................................27 6.3.2.1 Mechanical configuration and structure...............................................................................27 6.3.2.2 Thermal Design....................................................................................................................28 6.3.2.3 Propulsion system................................................................................................................28 6.3.2.4 Power ...................................................................................................................................29 6.3.2.5 Attitude Control System.......................................................................................................29 6.3.2.6 On-Board Data Handling System ........................................................................................30 6.3.2.7 Communication....................................................................................................................30 6.4 Venus Entry Vehicle ........................................................................................................................33 6.4.1 Design requirements and key trades ........................................................................................33 6.4.1.1 Atmospheric entry................................................................................................................33