Esa Standard Document

Total Page:16

File Type:pdf, Size:1020Kb

Esa Standard Document VENUS ENTRY PROBE TUDY OVERVIEW OF THE ENUS NTRY ROBE An ESA Technology Reference Study Planetary Exploration Studies Section (SCI-AP) Science Payload and Advanced Concepts Office (SCI-A) prepared by/préparé par Marcel van den Berg and Peter Falkner reference/réference SCI-AP/2006/173/VEP/MvdB issue/édition 2 revision/révision 3 Date of issue/date d’édition 27/02/2007 status/état Released Document type/type de document public report a ESTEC VEP_Study_Overview_2_3_2007.doc Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands Tel. (31) 71 5656565 - Fax (31) 71 5656040 Study overview of the Venus Entry Probe issue 2 revision 3 - 27/02/2007 SCI-A/2006/173/VEP/MvdB page 2 of 64 Venus Entry Probe Technology Reference Study – Study Team ESA Marcel van den Berg VEP TRS study manager Peter Falkner Technical officer VEP TRS activities Andre Schiele Technical officer microprobe project Arnaud Boutonnet Mission analysis validation EADS Astrium Ltd. Steve Kemble Mission analysis Surrey Satellite Andy Phipps Study manager Technology Ltd. Adrian Woodroffe OBDH Dave Gibbon Propulsion Peter Alcindor Power Craig Clark Power Nadeem Ghafoor Payloads/Science Alex Cropp ACS Carlos Lovett Lineares Communications John Buckley Projects Yoshi Hashida Trajectories Tanya Vladimirova Advanced Technologies Adam Baker Structure/Micro-power technologies Jackie Brooks Project Assistant Alex da Silva Curiel Research and Development Jim Clemmet Structure/Configuration Andrew Cawthorne Thermal Syed Husnain Thermal Phil Whittaker Navigation Vorticity Ltd. Steve Lingard Systems Engineering John Underwood Systems Engineering (entry vehicle and aerobot) Nick Bown Space inflatables Fluid Gravity Arthur Smith Thermal Protection System analysis validation Engineering Gavin Parnaby Thermal Protection System analysis validation Cosine Research B.V. Stefan Kraft Project manager Joe Moorhouse Payload assessment and definition Swiss Space Technology Julian Harris Payload electronics assessment and design QinetiQ Ltd. Nigel Wells Project manager (Microprobe design) Andrew Ballard Microprobe communications John Doherty Microprobe aerodynamics Andrew Eldridge Microprobe aerodynamics Study overview of the Venus Entry Probe issue 2 revision 3 - 27/02/2007 SCI-A/2006/173/VEP/MvdB page 3 of 64 Venus Entry Probe Technology Reference Study – Mission Summary Key scientific objectives • Detailed study of the Venus atmosphere: o Origin and evolution of the atmosphere o Composition of the lower atmosphere o Atmospheric dynamics and thermal balance o Aerosol analysis Strawman reference payloads • Venus Polar Orbiter (VPO): Sub-mm wave sounder, visible-NIR imaging spectrometer, assumed for this study UV spectrometer, IR Fourier transform spectrometer, UV-visible-NIR camera • Aerobot: Gas chromatograph mass spectrometer (with aerosol inlet), nephelometer, solar and IR flux radiometers, meteorological and inertial packages, radar altimeter • Microprobes: Thermometer, pressure sensors, solar flux sensors, (wind velocity) Launch and transfer • Launch of 1509 kg into direct Venus escape by Soyuz-Fregat 2-1B (Kourou)(2-11-2013) • Type II transfer (160 days) and Venus capture by chemical propulsion • VPO and VEO (Venus Elliptical Orbiter) interplanetary cruise as separate modules • System level mass margin 20% Entry and descent • Entry probe released from VEO (90 to 180 days after Venus arrival) • Thermal protection system based on a high density ablator (entry angle ~ 40˚) • Parachute deployment at 1.5 Mach Aerobot • Hydrogen filled superpressure balloon • During flight, the balloon will drop atmospheric microprobes VPO science acquisition • Remote sensing science acquisition concurrent with aerobot operational phase • Almost continuous monitoring of the Venus atmosphere (duty cycle 99.9%) S/C Modules VPO VEO Aerobot 15 microprobes Stabilization 3-axis 3-axis - - Orbit/Altitude 2,000 km × 6,000 km 400 km × 215,000 km 55 km 55 – 10 km Initial inclination 90˚ 64˚ Deployment: 20±2˚ N S/C ΔV requirements 3.5 km/s 1.7 km/s Operational lifetime > 2 years > 2 years 15 – 22 days < 1 hr Platform dry mass (excl. P/L) 222 kg 183 kg 15 kg (gondola) 115 g (each) P/L mass 25 kg 91 kg 4 kg (P/L) + 4 kg < 10 g (entry vehicle) (microprobes) Total wet mass 905 kg 558 kg 32 kg 4 kg (incl. 20% system margin) (incl. entry vehicle) (aerobot) (incl. comms) Power (peak) 155 W 112 W 26 W 2.3 W Power (average) 25 / 5 W (day/night) 0.1 W Telemetry band X/Ka X/Ka X S Continuous compressed science 50 kbps - 2.5 kbps 100 bps bit rate Key mission drivers • ΔV requirements for VPO • Aerobot power (primary batteries and solar cells) • Highly integrated P/L suite for aerobot Key critical technologies • Heat shield for entry vehicle • Balloon envelope for Venus environment • Triple-junction amorphous silicon solar cells for Venus environment • Fully miniaturized low resource in situ atmospheric instruments package • Atmospheric microprobe system (including localization)1 1 Breadboard currently under development under a TRP contract (17946/03/NL/PA) Study overview of the Venus Entry Probe issue 2 revision 3 - 27/02/2007 SCI-A/2006/173/VEP/MvdB page 4 of 64 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................................6 2 VENUS......................................................................................................................................6 2.1 Venus properties................................................................................................................................6 2.2 Missions to Venus..............................................................................................................................9 2.2.1 Past, current and planned missions ............................................................................................9 2.2.2 Mission concept studies...........................................................................................................10 3 MISSION SCENARIO .............................................................................................................13 3.1 Mission objectives............................................................................................................................13 3.2 Derived mission requirements .........................................................................................................14 3.3 Mission concept...............................................................................................................................14 4 MISSION ENVIRONMENT......................................................................................................16 5 MISSION ANALYSIS ..............................................................................................................18 5.1 Launch window analysis..................................................................................................................18 5.2 Launch vehicle.................................................................................................................................19 5.3 Operational orbits.............................................................................................................................20 5.4 ΔV summary ....................................................................................................................................21 6 SPACECRAFT DESIGN .........................................................................................................22 6.1 Margins ............................................................................................................................................22 6.2 System overview..............................................................................................................................23 6.3 Orbiters.............................................................................................................................................25 6.3.1 Remote sensing reference payload suite ..................................................................................25 6.3.2 Spacecraft.................................................................................................................................27 6.3.2.1 Mechanical configuration and structure...............................................................................27 6.3.2.2 Thermal Design....................................................................................................................28 6.3.2.3 Propulsion system................................................................................................................28 6.3.2.4 Power ...................................................................................................................................29 6.3.2.5 Attitude Control System.......................................................................................................29 6.3.2.6 On-Board Data Handling System ........................................................................................30 6.3.2.7 Communication....................................................................................................................30 6.4 Venus Entry Vehicle ........................................................................................................................33 6.4.1 Design requirements and key trades ........................................................................................33 6.4.1.1 Atmospheric entry................................................................................................................33
Recommended publications
  • The Space Impact of the Euro Crisis 50 Years After Mariner 2: Exploration at a Crossroads
    0827_SPN_DOM_00_019_00 (READ ONLY) 8/24/2012 11:39 AM Page 19 www.spacenews.com SPACENEWS 19 August27, 2012 TheSpaceImpact of the Euro Crisis < ROBBIN LAIRD and HARALD MALMGREN > he European sovereign debt crisis Europe will now be challenged in the ing to hide the reality of European bank of the savings of millions of European is not simply abump in historical form of rollbacks of the many inter- weaknesses. The main reason is that eu- citizens. Tprogress; it is the end of aperiod twined strands of integration, fraying rozone economies are far more bank- European leaders are also attempt- of historyand acritical point in Euro- what has been an intricate but incom- dependent than economies like those in ing to initiate amore comprehensive fis- pean and global transition in the 21st plete tapestry. It is questionable whether the United States or United Kingdom, cal union, with new decision-making century. Europe will be able to prevent stalling of where substantial nonbank financing al- mechanisms that transfer sovereignty in The confluence of several trend lines the integration process in the face of ternatives exist for the corporate sector. parallel with the new banking union. We — the unification of Germany,the end widening gaps among the interests of In the eurozone, banks are the fi- do not believe that any of the eurozone of the Soviet Union, the collapse of the each nation and even within each nation. nancial markets; in the U.S., banks are governments are ready for such apoliti- Berlin Wall, the expansion of NATO, Since the birth of the euro, the but one segment of amultifaceted fi- cal transition in which citizens in each the expansion of the European Union French and Germans were in the lead in nancial market.
    [Show full text]
  • GAS DIVISION NEWSLETTER Official Publication of the BFA Gas Division
    GAS DIVISION NEWSLETTER Official Publication of the BFA Gas Division Volume 4, Issue 2 Copyright Peter Cuneo & Barbara Fricke, 2003 August 2003 On Saturday morning, we were greeted with a hotel RACE TO KITTY HAWK message saying the morning launch had been cancelled by Ray Bair but a briefing would take place at 7:00 a.m. The entire day was scrubbed due to substantial thunderstorms just west of Dayton in Indiana. As it turned out, the storms dissipated, and the day was pleasant for visiting the As part of the centennial celebration of powered various museums and city historic sites. That evening, flight, RE/MAX sponsored a Balloon Celebration we were treated to a reception at the Air Force Museum which included both hot air and gas flights for the and a briefing that made a Sunday morning launch seem weekend of the Fourth of July. At least that was the possible. Again the threat of severe weather prevented a plan. While about half the field of hot air balloons Saturday night launch. Later that night I found myself finally flew on Sunday morning, the gas flight was clustered in the main briefing room as the hotel staff totally scrubbed. gathered everyone for a tornado “drill”. The intended gas competition was an accuracy flight Sunday morning we were back on the field and once to the monument marking the first flight of the again prepared the equipment for launch. Another Wright brothers in Kitty Hawk, N.C. This is about couple of hours Sunday morning was only slightly better 500 miles from the launch site at Wright Patterson as the local weather allowed launch of some of the hot AFB in Dayton, Ohio.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • THE LANDSCAPE of COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE for PHYSICS
    KFKI 1939-35/C E. MERÉNYI L. FÖLDY K. SZEGŐ I. TÓTH A. KONDOR THE LANDSCAPE OF COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE FOR PHYSICS BUDAPEST KFKI-1989-35/C PREPRINT THE LANDSCAPE OF COMET HALLEY E. MERÉNYI, L. FÖLDY, K. SZEGŐ. I. TÓTH', A. KONDOR Central Research Institute for Physics H-1626 Budapest 114, P.O.B. 49 'Konkoly Thege Observatory H-1625 Budapest, P.O.B. 67 Comets in Post Hal ley area Bamberg (FRG). 24 28 April 1989 HU ISSN 0368 6330 E. Merényi, L. Földy. К. Szegő, I. Tóth. A. Kondor: The landscape of cornel Halley KFKM989 35/C ABSTRACT In this paper the three dimensional model of P/Halley's nucleus is constructed based on the results of the imaging experiments It has the following major characteristics: the overai' sizes are 7 2 km, 722 km, 15.3 km, its volume is 365 km3, the ratios of the inertfal momenta are 34:33:1, the longest Inorttal axis is siiyhlly inclined to the geometrical axis of the body. 3 3° in latitude and 1.1° In longitude if the geometrical axis is at zero latitude and longitude The shape is very irregular, it is not close to any regular body e g to a tri axial ellipsoid Several features on the images are interpreted as local slope variations of the nucleus. Э. Мерени; Л. Фёлди, К. Сегё, И. Тот, Л. Кондор: Форма и поверхность ядра кометы Галлея. КГКТ-198<?-35/С АННОТАЦИЯ Описывается трехмерная модель ядра кометы Галлея, основывающаяся на резуль­ татах телевизионного эксперимента КА "Вега".
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • (50000) Quaoar, See Quaoar (90377) Sedna, See Sedna 1992 QB1 267
    Index (50000) Quaoar, see Quaoar Apollo Mission Science Reports 114 (90377) Sedna, see Sedna Apollo samples 114, 115, 122, 1992 QB1 267, 268 ap-value, 3-hour, conversion from Kp 10 1996 TL66 268 arcade, post-eruptive 24–26 1998 WW31 274 Archimedian spiral 11 2000 CR105 269 Arecibo observatory 63 2000 OO67 277 Ariel, carbon dioxide ice 256–257 2003 EL61 270, 271, 273, 274, 275, 286, astrometric detection, of extrasolar planets – mass 273 190 – satellites 273 Atlas 230, 242, 244 – water ice 273 Bartels, Julius 4, 8 2003 UB313 269, 270, 271–272, 274, 286 – methane 271–272 Becquerel, Antoine Henry 3 – orbital parameters 271 Biermann, Ludwig 5 – satellite 272 biomass, from chemolithoautotrophs, on Earth 169 – spectroscopic studies 271 –, – on Mars 169 2005 FY 269, 270, 272–273, 286 9 bombardment, late heavy 68, 70, 71, 77, 78 – atmosphere 273 Borealis basin 68, 71, 72 – methane 272–273 ‘Brown Dwarf Desert’ 181, 188 – orbital parameters 272 brown dwarfs, deuterium-burning limit 181 51 Pegasi b 179, 185 – formation 181 Alfvén, Hannes 11 Callisto 197, 198, 199, 200, 204, 205, 206, ALH84001 (martian meteorite) 160 207, 211, 213 Amalthea 198, 199, 200, 204–205, 206, 207 – accretion 206, 207 – bright crater 199 – compared with Ganymede 204, 207 – density 205 – composition 204 – discovery by Barnard 205 – geology 213 – discovery of icy nature 200 – ice thickness 204 – evidence for icy composition 205 – internal structure 197, 198, 204 – internal structure 198 – multi-ringed impact basins 205, 211 – orbit 205 – partial differentiation 200, 204, 206,
    [Show full text]
  • Technologies for Future Venus Exploration
    September 9, 2009 WHITE PAPER TO THE NRC DECADAL SURVEY INNER PLANETS SUB–PANEL ON TECHNOLOGIES FOR FUTURE VENUS EXPLORATION by Tibor Balint1 & James Cutts1 (818) 354-1105 & (818) 354-4120 [email protected] & [email protected] and Mark Bullock2, James Garvin3, Stephen Gorevan4, Jeffery Hall1, Peter Hughes3, Gary Hunter4, Satish Khanna1, Elizabeth Kolawa1, Viktor Kerzhanovich1, Ethiraj Venkatapathy5 1Jet Propulsion Laboratory, California Institute of Technology; 2Southwest Research Institute; 3NASA–Goddard Space Flight Center; 3Honeybee Robotics; 4NASA–Glenn Research Center; 5NASA–Ames Research Center ABSTRACT The purpose of this white paper is to provide an overview to the NRC Decadal Survey Inner Planets Sub–Panel on key technologies required for future Venus exploration missions. It covers both heritage technologies and identifies new technologies to enable future missions in all three mission classes. The technologies will focus on mission enabling and enhancing capabilities for in situ missions, because most orbiter related sub–systems are considered heritage technologies. This white paper draws heavily on the recently completed Venus Flagship Mission study that identified key technologies required to implement its Design Reference Mission and other important mission options. The highest priority technologies and capabilities for the Venus Flagship Design Reference mission consist of: surface sample acquisition and handling; mechanical implementation of a rotating pressure vessel; a rugged–terrain landing system; and a large scale environmental test chamber to test these technologies under relevant Venus–like conditions. Other longer–term Venus Flagship Mission options will require additional new capabilities, namely a Venus–specific Radioisotope Power System; active refrigeration, high temperature electronics and advanced thermal insulation.
    [Show full text]
  • Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ
    Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ Meeting the Communications and Navigation Needs of Space missions since 1957 “Keeping the Universe Connected” Public University of Navarra, 2010 [email protected] 1 Operations and Communications Customers 2 Space Operations 101 Relation Between Space Segment, Ground System, and Data Users* Ground System Command Commands Requests Spacecraft and Payload Support • Mission Planning Telemetry • Flight Operations • Flight Dynamics • Perf. Assess., Trending & Archiving Space Data Users • Anomaly Support Segment Data Relay and Level (S/C) Mission Zero Data Processing Mission Data Data • Space-to-ground Comm. • Data Capture • Data Processing • Network Management • Data Distribution • Quick Look * Based on Wertz and Wiley; Space Mission Analysis and Design 3 Communications Theory- Basic Concepts Transmitter and Receiver must use the same language Noise causes interference a) Figures it – no errors (Identify and quantify) b) Figures it – corrects Must be loud enough ENERGY! c) Figures it – incorrectly (message in error) d) Cannot figure- recognizes E L an error T M E XP AIN L E e) Cannot figure- ? TRANSMITTER Distance weakens the sound RECEIVER (calculate the loss) CHANNEL Has to correctly interpret the message - the most difficult job The fundamental problem of communications is that of reproducing at one point either exactly or approximately a message selected at another point. 4 Functional - End to End Process
    [Show full text]
  • Life on Venus, and How to Explore Venus with High-Temperature Electronics Carl-Mikael Zetterling [email protected]
    Life on Venus, and How to Explore Venus with High-Temperature Electronics Carl-Mikael Zetterling [email protected] www.WorkingonVenus.se Outline Life on Venus (phosphine in the clouds) Previous missions to Venus Life on Venus (photos from the ground) High temperature electronics Future missions to Venus, including Working on Venus (KTH Project 2014 - 2018) www.WorkingonVenus.se 3 Phosphine gas in the cloud decks of Venus Trace amounts of phosphine (20 ppb, PH3) seen by the ALMA and JCMT telescopes, with millimetre wave spectral detection 4 Phosphine gas in the cloud decks of Venus 5 Phosphine gas in the cloud decks of Venus https://www.nature.com/articles/s41550-020-1174-4 https://arxiv.org/pdf/2009.06499.pdf https://www.nytimes.com/2020/09/14/science/venus-life- clouds.html?smtyp=cur&smid=fb-nytimesfindings https://www.scientificamerican.com/article/is-there-life-on- venus-these-missions-could-find-it/ 6 Did NASA detect phosphine 1978? Pioneer 13 Large Probe Neutral Mass Spectrometer (LNMS) https://www.livescience.com/life-on-venus-pioneer-13.html 7 Why Venus? From Wikimedia Commons, the free media repository Our closest planet, but least known Similar to earth in size and core, has an atmosphere Volcanoes Interesting for climate modeling Venus Long-life Surface Package (ultimate limit of global warming) C. Wilson, C.-M. Zetterling, W. T. Pike IAC-17-A3.5.5, Paper 41353 arXiv:1611.03365v1 www.WorkingonVenus.se 8 Venus Atmosphere 96% CO2 (Also sulphuric acids) Pressure of 92 bar (equivalent to 1000 m water) Temperature 460 °C From Wikimedia Commons, the free media repository Difficult to explore Life is not likely www.WorkingonVenus.se 9 Previous Missions Venera 1 – 16 (1961 – 1983) USSR Mariner 2 (1962) NASA, USA Pioneer (1978 – 1992) NASA, USA Magellan (1989) NASA, USA Venus Express (2005 - ) ESA, Europa From Wikimedia Commons, the free media repository Akatsuki (2010) JAXA, Japan www.WorkingonVenus.se 10 Steps to lunar and planetary exploration: 1.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Chemistry of Small Components of Upper Shells of Venus
    Lunar and Planetary Science XXIX 1003.pdf CHEMISTRY OF SMALL COMPONENTS OF UPPER SHELLS OF VENUS. B.M. Andreichikov, Space Research Institute, Russian Academy of Sciences, 117810, Profsojuznaja st. 84/32,Moscow, Russia. Received by means of the VEGA 1, VEGA 2, a water mass (~ 4,5 ´ 1022 g, in the manner of GALILEO spacecrafts, information on Venus [1– hydro-xylgroups). 9] has vastly increased our knowledge about this (5) The possibility of presence in atmosphere of planet, but has introduced new questions connected planet of oxidizes of phosphorus is shown. (6) It with the chemistry of the atmosphere, the surface, had been revealed that they form of the atmos- and interaction processes. Additionally last publi- pheric components mixing ratio vertical profiles cations of the data of the optical spectroscopy [9– participating actively in reactions of the oxidation- 13] have revealed else greater divergence of them reduction. (7) The possibility of formation at a rate with results of the gas chromatography [14–17], of of 11–12 km of traces of aerosol of the layered the mass- spectrometers [18] and of the others of polymers (P2O5)n is shown. (8) It was revealed, that the contact measurements methods [6]. It had been seeming discord of results of direct measurements reported in works [7,8] about finding in the Ve- in the atmosphere of Venus is connected with the nusian night clouds of aerosol which contain a difference of chemical processes daytime and in the phosphor. The nephelometeric measurements [19] night, stipulated by the influence (of deeper at a have shown also that lower, the most dense clouds day time) of photochemical reactions products in layer an (47,5–50,5 km) is formed in the night and the upper troposphere.
    [Show full text]
  • Paper Takes Flight Teacher Materials
    Paper Takes Flight Teacher Materials Contents: LESSON PLAN .............................................................................................................................. 1 Summary: .................................................................................................................................... 1 Objectives:................................................................................................................................... 1 Materials:..................................................................................................................................... 1 Safety Instructions:...................................................................................................................... 1 Background: ................................................................................................................................ 1 Procedure:.................................................................................................................................... 2 Discussion ................................................................................................................................... 2 Assessment/Evaluation:............................................................................................................... 3 Extensions: .................................................................................................................................. 3 Math Integration.........................................................................................................................
    [Show full text]