Venus L2/L3 White Paper Colin Wilson 23 May 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
EDL – Lessons Learned and Recommendations
."#!(*"# 0 1(%"##" !)"#!(*"#* 0 1"!#"("#"#(-$" ."!##("""*#!#$*#( "" !#!#0 1%"#"! /!##"*!###"#" #"#!$#!##!("""-"!"##&!%%!%&# $!!# %"##"*!%#'##(#!"##"#!$$# /25-!&""$!)# %"##!""*&""#!$#$! !$# $##"##%#(# ! "#"-! *#"!,021 ""# !"$!+031 !" )!%+041 #!( !"!# #$!"+051 # #$! !%#-" $##"!#""#$#$! %"##"#!#(- IPPW Enabled International Collaborations in EDL – Lessons Learned and Recommendations: Ethiraj Venkatapathy1, Chief Technologist, Entry Systems and Technology Division, NASA ARC, 2 Ali Gülhan , Department Head, Supersonic and Hypersonic Technologies Department, DLR, Cologne, and Michelle Munk3, Principal Technologist, EDL, Space Technology Mission Directorate, NASA. 1 NASA Ames Research Center, Moffett Field, CA [email protected]. 2 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), German Aerospace Center, [email protected] 3 NASA Langley Research Center, Hampron, VA. [email protected] Abstract of the Proposed Talk: One of the goals of IPPW has been to bring about international collaboration. Establishing collaboration, especially in the area of EDL, can present numerous frustrating challenges. IPPW presents opportunities to present advances in various technology areas. It allows for opportunity for general discussion. Evaluating collaboration potential requires open dialogue as to the needs of the parties and what critical capabilities each party possesses. Understanding opportunities for collaboration as well as the rules and regulations that govern collaboration are essential. The authors of this proposed talk have explored and established collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, our common goals, and the unique capabilities of each party. The first example involves earth entry of a large asteroid and break-up. NASA Ames is leading an effort for the agency to assess and estimate the threat posed by large asteroids under the Asteroid Threat Assessment Project (ATAP). -
THE LANDSCAPE of COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE for PHYSICS
KFKI 1939-35/C E. MERÉNYI L. FÖLDY K. SZEGŐ I. TÓTH A. KONDOR THE LANDSCAPE OF COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE FOR PHYSICS BUDAPEST KFKI-1989-35/C PREPRINT THE LANDSCAPE OF COMET HALLEY E. MERÉNYI, L. FÖLDY, K. SZEGŐ. I. TÓTH', A. KONDOR Central Research Institute for Physics H-1626 Budapest 114, P.O.B. 49 'Konkoly Thege Observatory H-1625 Budapest, P.O.B. 67 Comets in Post Hal ley area Bamberg (FRG). 24 28 April 1989 HU ISSN 0368 6330 E. Merényi, L. Földy. К. Szegő, I. Tóth. A. Kondor: The landscape of cornel Halley KFKM989 35/C ABSTRACT In this paper the three dimensional model of P/Halley's nucleus is constructed based on the results of the imaging experiments It has the following major characteristics: the overai' sizes are 7 2 km, 722 km, 15.3 km, its volume is 365 km3, the ratios of the inertfal momenta are 34:33:1, the longest Inorttal axis is siiyhlly inclined to the geometrical axis of the body. 3 3° in latitude and 1.1° In longitude if the geometrical axis is at zero latitude and longitude The shape is very irregular, it is not close to any regular body e g to a tri axial ellipsoid Several features on the images are interpreted as local slope variations of the nucleus. Э. Мерени; Л. Фёлди, К. Сегё, И. Тот, Л. Кондор: Форма и поверхность ядра кометы Галлея. КГКТ-198<?-35/С АННОТАЦИЯ Описывается трехмерная модель ядра кометы Галлея, основывающаяся на резуль татах телевизионного эксперимента КА "Вега". -
Sanjay Limaye US Lead-Investigator Ludmila Zasova Russian Lead-Investigator Steering Committee K
Answer to the Call for a Medium-size mission opportunity in ESA’s Science Programme for a launch in 2022 (Cosmic Vision 2015-2025) EuropEan VEnus ExplorEr An in-situ mission to Venus Eric chassEfièrE EVE Principal Investigator IDES, Univ. Paris-Sud Orsay & CNRS Universite Paris-Sud, Orsay colin Wilson Co-Principal Investigator Dept Atm. Ocean. Planet. Phys. Oxford University, Oxford Takeshi imamura Japanese Lead-Investigator sanjay Limaye US Lead-Investigator LudmiLa Zasova Russian Lead-Investigator Steering Committee K. Aplin (UK) S. Lebonnois (France) K. Baines (USA) J. Leitner (Austria) T. Balint (USA) S. Limaye (USA) J. Blamont (France) J. Lopez-Moreno (Spain) E. Chassefière(F rance) B. Marty (France) C. Cochrane (UK) M. Moreira (France) Cs. Ferencz (Hungary) S. Pogrebenko (The Neth.) F. Ferri (Italy) A. Rodin (Russia) M. Gerasimov (Russia) J. Whiteway (Canada) T. Imamura (Japan) C. Wilson (UK) O. Korablev (Russia) L. Zasova (Russia) Sanjay Limaye Ludmilla Zasova Eric Chassefière Takeshi Imamura Colin Wilson University of IKI IDES ISAS/JAXA University of Oxford Wisconsin-Madison Laboratory of Planetary Space Science and Spectroscopy Univ. Paris-Sud Orsay & Engineering Center Space Research Institute CNRS 3-1-1, Yoshinodai, 1225 West Dayton Street Russian Academy of Sciences Universite Paris-Sud, Bat. 504. Sagamihara Dept of Physics Madison, Wisconsin, Profsoyusnaya 84/32 91405 ORSAY Cedex Kanagawa 229-8510 Parks Road 53706, USA Moscow 117997, Russia FRANCE Japan Oxford OX1 3PU Tel +1 608 262 9541 Tel +7-495-333-3466 Tel 33 1 69 15 67 48 Tel +81-42-759-8179 Tel 44 (0)1-865-272-086 Fax +1 608 235 4302 Fax +7-495-333-4455 Fax 33 1 69 15 49 11 Fax +81-42-759-8575 Fax 44 (0)1-865-272-923 [email protected] [email protected] [email protected] [email protected] [email protected] European Venus Explorer – Cosmic Vision 2015 – 2025 List of EVE Co-Investigators NAME AFFILIATION NAME AFFILIATION NAME AFFILIATION AUSTRIA Migliorini, A. -
Technologies for Future Venus Exploration
September 9, 2009 WHITE PAPER TO THE NRC DECADAL SURVEY INNER PLANETS SUB–PANEL ON TECHNOLOGIES FOR FUTURE VENUS EXPLORATION by Tibor Balint1 & James Cutts1 (818) 354-1105 & (818) 354-4120 [email protected] & [email protected] and Mark Bullock2, James Garvin3, Stephen Gorevan4, Jeffery Hall1, Peter Hughes3, Gary Hunter4, Satish Khanna1, Elizabeth Kolawa1, Viktor Kerzhanovich1, Ethiraj Venkatapathy5 1Jet Propulsion Laboratory, California Institute of Technology; 2Southwest Research Institute; 3NASA–Goddard Space Flight Center; 3Honeybee Robotics; 4NASA–Glenn Research Center; 5NASA–Ames Research Center ABSTRACT The purpose of this white paper is to provide an overview to the NRC Decadal Survey Inner Planets Sub–Panel on key technologies required for future Venus exploration missions. It covers both heritage technologies and identifies new technologies to enable future missions in all three mission classes. The technologies will focus on mission enabling and enhancing capabilities for in situ missions, because most orbiter related sub–systems are considered heritage technologies. This white paper draws heavily on the recently completed Venus Flagship Mission study that identified key technologies required to implement its Design Reference Mission and other important mission options. The highest priority technologies and capabilities for the Venus Flagship Design Reference mission consist of: surface sample acquisition and handling; mechanical implementation of a rotating pressure vessel; a rugged–terrain landing system; and a large scale environmental test chamber to test these technologies under relevant Venus–like conditions. Other longer–term Venus Flagship Mission options will require additional new capabilities, namely a Venus–specific Radioisotope Power System; active refrigeration, high temperature electronics and advanced thermal insulation. -
Life on Venus, and How to Explore Venus with High-Temperature Electronics Carl-Mikael Zetterling [email protected]
Life on Venus, and How to Explore Venus with High-Temperature Electronics Carl-Mikael Zetterling [email protected] www.WorkingonVenus.se Outline Life on Venus (phosphine in the clouds) Previous missions to Venus Life on Venus (photos from the ground) High temperature electronics Future missions to Venus, including Working on Venus (KTH Project 2014 - 2018) www.WorkingonVenus.se 3 Phosphine gas in the cloud decks of Venus Trace amounts of phosphine (20 ppb, PH3) seen by the ALMA and JCMT telescopes, with millimetre wave spectral detection 4 Phosphine gas in the cloud decks of Venus 5 Phosphine gas in the cloud decks of Venus https://www.nature.com/articles/s41550-020-1174-4 https://arxiv.org/pdf/2009.06499.pdf https://www.nytimes.com/2020/09/14/science/venus-life- clouds.html?smtyp=cur&smid=fb-nytimesfindings https://www.scientificamerican.com/article/is-there-life-on- venus-these-missions-could-find-it/ 6 Did NASA detect phosphine 1978? Pioneer 13 Large Probe Neutral Mass Spectrometer (LNMS) https://www.livescience.com/life-on-venus-pioneer-13.html 7 Why Venus? From Wikimedia Commons, the free media repository Our closest planet, but least known Similar to earth in size and core, has an atmosphere Volcanoes Interesting for climate modeling Venus Long-life Surface Package (ultimate limit of global warming) C. Wilson, C.-M. Zetterling, W. T. Pike IAC-17-A3.5.5, Paper 41353 arXiv:1611.03365v1 www.WorkingonVenus.se 8 Venus Atmosphere 96% CO2 (Also sulphuric acids) Pressure of 92 bar (equivalent to 1000 m water) Temperature 460 °C From Wikimedia Commons, the free media repository Difficult to explore Life is not likely www.WorkingonVenus.se 9 Previous Missions Venera 1 – 16 (1961 – 1983) USSR Mariner 2 (1962) NASA, USA Pioneer (1978 – 1992) NASA, USA Magellan (1989) NASA, USA Venus Express (2005 - ) ESA, Europa From Wikimedia Commons, the free media repository Akatsuki (2010) JAXA, Japan www.WorkingonVenus.se 10 Steps to lunar and planetary exploration: 1. -
Chemistry of Small Components of Upper Shells of Venus
Lunar and Planetary Science XXIX 1003.pdf CHEMISTRY OF SMALL COMPONENTS OF UPPER SHELLS OF VENUS. B.M. Andreichikov, Space Research Institute, Russian Academy of Sciences, 117810, Profsojuznaja st. 84/32,Moscow, Russia. Received by means of the VEGA 1, VEGA 2, a water mass (~ 4,5 ´ 1022 g, in the manner of GALILEO spacecrafts, information on Venus [1– hydro-xylgroups). 9] has vastly increased our knowledge about this (5) The possibility of presence in atmosphere of planet, but has introduced new questions connected planet of oxidizes of phosphorus is shown. (6) It with the chemistry of the atmosphere, the surface, had been revealed that they form of the atmos- and interaction processes. Additionally last publi- pheric components mixing ratio vertical profiles cations of the data of the optical spectroscopy [9– participating actively in reactions of the oxidation- 13] have revealed else greater divergence of them reduction. (7) The possibility of formation at a rate with results of the gas chromatography [14–17], of of 11–12 km of traces of aerosol of the layered the mass- spectrometers [18] and of the others of polymers (P2O5)n is shown. (8) It was revealed, that the contact measurements methods [6]. It had been seeming discord of results of direct measurements reported in works [7,8] about finding in the Ve- in the atmosphere of Venus is connected with the nusian night clouds of aerosol which contain a difference of chemical processes daytime and in the phosphor. The nephelometeric measurements [19] night, stipulated by the influence (of deeper at a have shown also that lower, the most dense clouds day time) of photochemical reactions products in layer an (47,5–50,5 km) is formed in the night and the upper troposphere. -
Vexag/ Completed
Planetary Science Sub-committee Meeting 8 April 2010 http://www.lpi.usra.edu/vexag/ Completed: Upcoming: 8 April 2010 PSS Meeting: VEXAG Status Limaye - 2 • Venus Express is operating normally. ESA has approved extension through end of 2012. Orbit change from 24 hour period to 12 hour being planned which will enable spacecraft operations through ~ 2015. • JAXA’s Akatsuki (Venus Climate Orbiter) spacecraft is now at the launch site. Launch window opens May 18, 2010. Expected to arrive at Venus in December 2010 and observe Venus from a 172 degree eccentric, 30 hour orbit. 8 April 2010 PSS Meeting: VEXAG Status Limaye - 3 Future International Venus Exploration Efforts • European Venus Explorer, a balloon mission undergoing preliminary studies in Europe for a proposal to be developed for the next round of Cosmic Vision Program in ~ 2011. • Venera D is mission concept (Balloons, landers, orbiter) being studied in Russia for potential launch after 2016. Informal overtures being made to ISRO to promote potential interest in missions to Venus. A mission to Mars in 2013-2015 is under consideration by ISRO. ISRO appears interested in considering Venus as a future target 8 April 2010 PSS Meeting: VEXAG Status Limaye - 4 Status No missions to Venus have been selected so far for implementation in NASA’s Discovery, despite proposals deemed selectable The rich science questions about Venus, spanning from surface, interior, atmosphere, and ionosphere, will require many missions for answers. No large, multi-element mission to Venus is likely before 2020. Technology development, including precursor missions, is needed to enable many key missions for Venus. -
COSMIC VISION 2015-2025 TECHNOLOGY PLAN Programme
COSMIC VISION 2015-2025 TECHNOLOGY PLAN Programme of Work 2008-2011 and related Procurement Plan SUMMARY The present document presents the currently proposed activities in the Basic Technology Programme (TRP), the Science Core Technology Programme (CTP), the General Support Technology Programme (GSTP) and suggested national initiatives supporting the implementation of the first slice of ESA’s Cosmic Vision 2015-2025 Plan. Page 2 Page 2 - Intentionally left blank Page 3 1. Background and Scope This document provides an update to the Cosmic Vision 1525 (CV1525) ESA Science Programme future missions technology preparation plan, first issued last year as ESA/IPC(2008)33, add1. This plan is submitted to the June 2009 SPC. The evolution of the CV1525 programme is taken into account, – essentially SPC recent decision to include Solar Orbiter as Medium (M) class mission and the outer planet Large (L) mission down-selection - the findings of the associated system study activities and the progress with the international coordination. The plan covers the period 2008-2011 for both the L/M missions under assessment and the future science mission themes. 2. Cosmic Vision Plan 2015-2025 2.1 Cosmic Vision 2015-2025 plan Evolution The Cosmic Vision 2015-2025 plan consists of a number of “Science Questions” to be addressed in the course of the 2015-2025 decade. The future space missions to be implemented to this purpose would result from competitive Announcements of Opportunity (AO hereafter) and following down selection processes. Three AOs were foreseen, defining the three “slices” of the plan. The down selection review and decision process is described in ESA/SPC(2009)3, rev.1. -
Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop Report
1 Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop Report IKI Moscow, Russia October 2-5, 2019 Space Science Research Institute (IKI), Russian Academy of Science, Roscosmos, and NASA http://venera-d.cosmos.ru/index.php?id=workshop2019&L=2 https://www.hou.usra.edu/meetings/venera-d2019/ 2 Table of Contents Introduction ...................................................................................................................................................... 6 Final Agenda .................................................................................................................................................. 10 Astrobiology Special Collection of papers from the workshop .................................................... 14 Technical Report: Venera-D Landing Site and Cloud Habitability Workshop ......................... 15 1.0 Missions to Venus .......................................................................................................................... 15 1.1 Past and Present ................................................................................................................................. 15 1.1.1 Available Instruments and Lessons Learned Surface Geology ........................................................... 15 1.1.2 Available Instruments and Lessons Learned for Cloud Habitability ............................................... 16 1.2 Future Missions .................................................................................................................................. -
Atmospheric Planetary Probes And
SPECIAL ISSUE PAPER 1 Atmospheric planetary probes and balloons in the solar system A Coustenis1∗, D Atkinson2, T Balint3, P Beauchamp3, S Atreya4, J-P Lebreton5, J Lunine6, D Matson3,CErd5,KReh3, T R Spilker3, J Elliott3, J Hall3, and N Strange3 1LESIA, Observatoire de Paris-Meudon, Meudon Cedex, France 2Department Electrical & Computer Engineering, University of Idaho, Moscow, ID, USA 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 4University of Michigan, Ann Arbor, MI, USA 5ESA/ESTEC, AG Noordwijk, The Netherlands 6Dipartment di Fisica, University degli Studi di Roma, Rome, Italy The manuscript was received on 28 January 2010 and was accepted after revision for publication on 5 November 2010. DOI: 10.1177/09544100JAERO802 Abstract: A primary motivation for in situ probe and balloon missions in the solar system is to progressively constrain models of its origin and evolution. Specifically, understanding the origin and evolution of multiple planetary atmospheres within our solar system would provide a basis for comparative studies that lead to a better understanding of the origin and evolution of our Q1 own solar system as well as extra-solar planetary systems. Hereafter, the authors discuss in situ exploration science drivers, mission architectures, and technologies associated with probes at Venus, the giant planets and Titan. Q2 Keywords: 1 INTRODUCTION provide significant design challenge, thus translating to high mission complexity, risk, and cost. Since the beginning of the space age in 1957, the This article focuses on the exploration of planetary United States, European countries, and the Soviet bodies with sizable atmospheres, using entry probes Union have sent dozens of spacecraft, including and aerial mobility systems, namely balloons. -
Ground-Based VLBI Observations of Orbiters and Landers
EPSC Abstracts Vol. 10, EPSC2015-212, 2015 European Planetary Science Congress 2015 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2015 Ground-based VLBI observations of orbiters and landers G. Cimò (1), D.A. Duev (1), G. Molera Calvés (1,2), S. V. Pogrebenko (1), T. Bocanegra Bahamon (1,3,4) and L. I. Gurvits (1,3) (1) Joint Institute for VLBI European Research Infrastructure Consortium, The Netherlands ([email protected] / Fax: − +31-521-596539), (2) Metsähovi Radio Observatory, Finland, (3) Delft University of Technology, The Netherlands, (4) Shanghai Astronomical Observatory, China Abstract Phase referencing near-field VLBI observations and radial Doppler measurements of spacecraft provide ultra-precise estimates of spacecraft state vectors. These measurements can be used for a variety of scientific applications, both fundamental and ap- plied, including planetary science, improvement of ephemerides, ultra-precise celestial mechanics of planetary systems, gravimetry, spacecraft orbit deter- mination, and fundamental physics. Precise determination of the lateral position of spacecraft on the celestial sphere is the main de- liverable of the Planetary Radio Interferometry and Figure 1: Geometry of a PRIDE experiment. Doppler Experiment (PRIDE). This technique is com- plementary to radio science experiments and addresses The use of the Very Long Baseline Interferometry for those areas of spacecraft mission science objectives supporting of planetary missions was developed more that require accurate estimation of spacecraft state vec- than thirty years ago and has been used in missions tor. requiring ultimate accuracy of a posteriori trajectory determination [8]. In the recent years, Jones [9] has observed the Cassini spacecraft using the Very Long Applications of Near field VLBI Baseline Array (VLBA) to improve Saturn ephemeris.