The SMAD2/3 Interactome Reveals That Tgfβ Controls M A

Total Page:16

File Type:pdf, Size:1020Kb

The SMAD2/3 Interactome Reveals That Tgfβ Controls M A 6 1 The SMAD2/3 interactome reveals that TGFβ controls m A 2 mRNA methylation in pluripotency 3 4 Alessandro Bertero1,*,†, Stephanie Brown1,*, Pedro Madrigal1,2, Anna Osnato1, Daniel 5 Ortmann1, Loukia Yiangou1, Juned Kadiwala1, Nina C. Hubner3, Igor Ruiz de los Mozos4, 6 Christoph Sadee4, An-Sofie Lenaerts1, Shota Nakanoh1, Rodrigo Grandy1, Edward Farnell5, 7 Jernej Ule4, Hendrik G. Stunnenberg3, Sasha Mendjan1,‡, and Ludovic Vallier1,2,#. 8 9 1 Wellcome Trust - MRC Cambridge Stem Cell Institute Anne McLaren Laboratory and 10 Department of Surgery, University of Cambridge, UK. 11 2 Wellcome Trust Sanger Institute, Hinxton UK. 12 3 Department of Molecular Biology, Radboud University Nijmegen, The Netherlands. 13 4 Francis Crick Institute and Department of Molecular Neuroscience, University College 14 London, UK. 15 5 Department of Pathology, University of Cambridge, UK. 16 17 * These authors contributed equally to this work. 18 † Current address: Department of Pathology, University of Washington, Seattle, WA, USA. 19 ‡ Current address: Institute of Molecular Biotechnology, Vienna, Austria. 20 # Corresponding author ([email protected]). 1 21 The TGFβ pathway plays an essential role in embryonic development, organ 22 homeostasis, tissue repair, and disease1,2. This diversity of tasks is achieved through the 23 intracellular effector SMAD2/3, whose canonical function is to control activity of target 24 genes by interacting with transcriptional regulators3. Nevertheless, a complete 25 description of the factors interacting with SMAD2/3 in any given cell type is still lacking. 26 Here we address this limitation by describing the interactome of SMAD2/3 in human 27 pluripotent stem cells (hPSCs). This analysis reveals that SMAD2/3 is involved in 28 multiple molecular processes in addition to its role in transcription. In particular, we 29 identify a functional interaction with the METTL3-METTL14-WTAP complex, which 30 deposits N6-methyladenosine (m6A)4. We uncover that SMAD2/3 promotes binding of 31 the m6A methyltransferase complex onto a subset of transcripts involved in early cell 32 fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, 33 including the pluripotency factor NANOG, thereby poising them for rapid 34 downregulation upon differentiation to enable timely exit from pluripotency. 35 Collectively, these findings reveal the mechanism by which extracellular signalling can 36 induce rapid cellular responses through regulations of the epitranscriptome. These novel 37 aspects of TGFβ signalling could have far-reaching implications in many other cell types 38 and in diseases such as cancer5. 2 39 Main 40 41 Activin and Nodal, two members of the TGFβ superfamily, play essential roles in cell fate 42 decision in hPSCs6–8. Activin/Nodal signalling is necessary to maintain pluripotency, and its 43 inhibition drives differentiation toward the neuroectoderm lineage6,9,10. Activin/Nodal also 44 cooperates with BMP and WNT to drive mesendoderm specification11–14. Thus, we used hPSC 45 differentiation into definitive endoderm as a model system to interrogate the SMAD2/3 46 interactome during a dynamic cellular process. For that we developed an optimized SMAD2/3 47 co-immunoprecipitation (co-IP) protocol compatible with mass-spectrometry analyses 48 (Extended Data Fig. 1a-b and Supplementary Discussion). This method allowed a 49 comprehensive and unbiased examination of the proteins interacting with SMAD2/3 for the 50 first time in any given cell type. By examining human embryonic stem cells (hESCs) and 51 hESCs induced to differentiate towards endoderm (Fig. 1a), we identified 89 SMAD2/3 52 partners (Fig. 1b, Extended Data Fig. 1c-d, and Supplementary Table 1). Of these, only 11 53 factors were not shared between hESCs and endoderm differentiating cells (Extended Data 54 Fig. 1e), suggesting that the SMAD2/3 interactome is largely conserved across these two 55 lineages (Supplementary Discussion). Importantly, this list included known SMAD2/3 56 transcriptional and epigenetic cofactors (including FOXH1, SMAD4, SNON, SKI, EP300, 57 SETDB1, and CREBBP3), which validated our method. Furthermore, we performed functional 58 experiments on FOXH1, EP300, CREBBP, and SETDB1, which uncovered the essential 59 function of these SMAD2/3 transcriptional and epigenetic cofactors in hPSC fate decisions 60 (Extended Data Fig. 2 and 3, and Supplementary Discussion). 61 62 Interestingly, our proteomic experiments also revealed that SMAD2/3 interacts with 63 complexes involved in functions that have never been associated with TGFβ signalling (Fig. 3 64 1b and Extended Data Fig. 1f), such as ERCC1-XPF (DNA repair) and DAPK3-PAWR 65 (apoptosis). Most notably, we identified several factors involved in mRNA processing, 66 modification, and degradation (Fig. 1b), such as the METTL3-METTL14-WTAP complex 67 (deposition of N6-methyladenosine, or m6A), the PABP-dependent poly(A) nuclease complex 68 hPAN (mRNA decay), the cleavage factor complex CFIm (pre-mRNA 3’ end processing), and 69 the NONO-SFPQ-PSPC1 factors (RNA splicing and nuclear retention of defective RNAs). 70 Overall, these results suggest that SMAD2/3 could be involved in a large number of biological 71 processes in hPSCs, which include not only transcriptional and epigenetic regulations, but also 72 novel “non-canonical” molecular functions. 73 74 To further explore this hypothesis, we investigated the interplays between Activin/Nodal and 75 m6A deposition. m6A is the most common RNA modification, regulating multiple aspects of 76 mRNA biology including decay and translation4,15–19. However, whether this is a dynamic 77 event that can be modulated by extracellular cues remains to be established. Furthermore, 78 while m6A is known to regulate hematopoietic stem cells20,21 and the transition between the 79 naïve and primed pluripotency states22,23, its function in hPSCs and during germ layer 80 specification is unclear. We first validated the interaction of SMAD2/3 with METTL3- 81 METTL14-WTAP using co-IP followed by Western Blot in both hESCs and human induced 82 pluripotent stem cells (hiPSCs; Fig. 2a and Extended Data Fig. 4a-b). Interestingly, inhibition 83 of SMAD2/3 phosphorylation blocked this interaction (Fig. 2b and Extended Data Fig. 4c). 84 Proximity ligation assays (PLA) also demonstrated that the interaction occurs at the nuclear 85 level (Fig. 2c-d). These observations suggest that SMAD2/3 and the m6A methyltransferase 86 complex interact in an Activin/Nodal signalling-dependent fashion. 87 4 88 To investigate the functional relevance of this interaction, we assessed the transcriptome-wide 89 effects of Activin/Nodal inhibition on the deposition of m6A by performing nuclear-enriched 90 m6A methylated RNA immunoprecipitation followed by deep sequencing (NeMeRIP-seq; 91 Extended Data Fig. 5a-d, and Supplementary Discussion). In agreement with previous 92 reports17,19,24, deposition of m6A onto exons was enriched around stop codons and 93 transcription start sites, and occurred at a motif corresponding to the m6A consensus sequence 94 (Extended Data Fig. 5e-g). Assessment of differential m6A deposition revealed that 95 Activin/Nodal inhibition predominantly resulted in reduced m6A levels in selected transcripts 96 (Supplementary Table 2; average absolute log2 fold-change of 0.56 and 0.35 for m6A decrease 97 and increase, respectively). Decrease in m6A deposition was predominantly observed on 98 peaks located near to stop codons (Extended Data Fig. 5h), a location which has been reported 99 to decrease the stability of mRNAs16,24,25. Interestingly, transcripts showing reduced m6A 100 levels after Activin/Nodal inhibition largely and significantly overlapped with genes bound by 101 SMAD2/3 (Extended Data Fig. 5i), including well-known transcriptional targets such as 102 NANOG, NODAL, LEFTY1, and SMAD7 (Fig. 2e and Extended Data Fig. 5j). Accordingly, 103 Activin/Nodal-sensitive m6A deposition was largely associated with transcripts rapidly 104 decreasing during the exit from pluripotency triggered by Activin/Nodal inhibition (Extended 105 Data Fig. 6a). Transcripts behaving in this fashion were enriched in pluripotency regulators 106 and in factors involved in the Activin/Nodal signalling pathway (Supplementary Table 3). On 107 the other hand, the expression of a large number of developmental regulators associated to 108 Activin/Nodal-sensitive m6A deposition remained unchanged following Activin/Nodal 109 inhibition (Extended Data Fig. 6a-c and Supplementary Table 3). Considered together, these 110 findings establish that Activin/Nodal signalling can regulate m6A deposition on a number of 111 specific transcripts. 112 5 113 We then examined the underlying molecular mechanisms. RNA immunoprecipitation 114 experiments on nuclear RNAs showed that inhibition of Activin/Nodal signalling impaired 115 binding of WTAP to multiple m6A-marked transcripts including NANOG and LEFTY1 (Fig. 116 2f and Extended Data Fig. 4d-e), while SMAD2/3 itself interacted with such transcripts in the 117 presence of Activin/Nodal signalling (Fig. 2g and Extended Data Fig. 4e). Thus, SMAD2/3 118 appears to promote the recruitment of the m6A methyltransferase complex onto nuclear 119 RNAs. Interestingly, recent reports have established that m6A deposition occurs co- 120 transcriptionally and involves nascent pre-RNAs16,26,20. Considering the broad overlap 121 between SMAD2/3 transcriptional targets and transcripts showing Activin/Nodal-sensitive 122 m6A deposition (Extended Data Fig 5i),
Recommended publications
  • METTL3-Mediated M6a Modification Is Required for Cerebellar Development
    RESEARCH ARTICLE METTL3-mediated m6A modification is required for cerebellar development Chen-Xin Wang1,2☯, Guan-Shen Cui3,4☯, Xiuying Liu5☯, Kai Xu1,2☯, Meng Wang5☯, Xin- Xin Zhang1, Li-Yuan Jiang1, Ang Li2,3, Ying Yang3, Wei-Yi Lai2,6, Bao-Fa Sun2,3,7, Gui- Bin Jiang6, Hai-Lin Wang6, Wei-Min Tong8, Wei Li1,2,7, Xiu-Jie Wang2,5,7*, Yun- Gui Yang2,3,7*, Qi Zhou1,2,7* 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing a1111111111 Institute of Genomics, Chinese Academy of Sciences, Beijing, China, 4 Sino-Danish College, University of a1111111111 Chinese Academy of Sciences, Beijing, China, 5 Key Laboratory of Genetic Network Biology, Institute of a1111111111 Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 6 State Key Laboratory a1111111111 of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese a1111111111 Academy of Sciences, Beijing, China, 7 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China, 8 Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] (XJW); [email protected] (YGY); [email protected] (QZ) Citation: Wang C-X, Cui G-S, Liu X, Xu K, Wang M, Zhang X-X, et al.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • N6-Methyladenosine Role in Acute Myeloid Leukaemia
    International Journal of Molecular Sciences Review N6-Methyladenosine Role in Acute Myeloid Leukaemia Zaira Ianniello and Alessandro Fatica * ID Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-4991-2341 Received: 30 July 2018; Accepted: 8 August 2018; Published: 9 August 2018 Abstract: We are currently assisting in the explosion of epitranscriptomics, which studies the functional role of chemical modifications into RNA molecules. Among more than 100 RNA modifications, the N6-methyladenosine (m6A), in particular, has attracted the interest of researchers all around the world. m6A is the most abundant internal chemical modification in mRNA, and it can control any aspect of mRNA post-transcriptional regulation. m6A is installed by “writers”, removed by “erasers”, and recognized by “readers”; thus, it can be compared to the reversible and dynamic epigenetic modifications in histones and DNA. Given its fundamental role in determining the way mRNAs are expressed, it comes as no surprise that alterations to m6A modifications have a deep impact in cell differentiation, normal development and human diseases. Here, we review the proteins involved in m6A modification in mammals, m6A role in gene expression and its contribution to cancer development. In particular, we will focus on acute myeloid leukaemia (AML), which provides an initial indication of how alteration in m6A modification can disrupt normal cellular differentiation and lead to cancer. Keywords: m6A; RNA; AML; leukaemia; epitranscriptomics 1. Introduction Leukaemogenesis is caused by gene mutations and chromosomal aberrations resulting in changes of gene expression and, eventually, alteration of cell growth/differentiation programs [1].
    [Show full text]
  • Pathogenesis of ETV6/RUNX1-Positive Childhood Acute Lymphoblastic Leukemia and Mechanisms Underlying Its Relapse
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 21), pp: 35445-35459 Review Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse Congcong Sun1, Lixian Chang1 and Xiaofan Zhu1 1 Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Tianjin, P.R. China Correspondence to: Xiaofan Zhu, email: [email protected] Keywords: ETV6/RUNX1, childhood acute lymphoblastic leukemia, mechanisms, initiation, relapse Received: November 21, 2016 Accepted: February 23, 2017 Published: March 18, 2017 Copyright: Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL). Multiple lines of evidence imply a “two-hit” model for the molecular pathogenesis of E/R-positive ALL, whereby E/R rearrangement is followed by a series of secondary mutations that trigger overt leukemia. The cellular framework in which E/R arises and the maintenance of a pre-leukemic condition by E/R are fundamental to the mechanism that underlies leukemogenesis. Accordingly, a variety of studies have focused on the relationship between the clones giving rise to the primary and recurrent E/R-positive ALL. We review here the most recent insights into the pathogenic mechanisms underlying E/R-positive ALL, as well as the molecular abnormalities prevailing at relapse.
    [Show full text]
  • Integrative Differential Expression and Gene Set Enrichment Analysis Using Summary Statistics for Scrna-Seq Studies
    ARTICLE https://doi.org/10.1038/s41467-020-15298-6 OPEN Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies ✉ Ying Ma 1,7, Shiquan Sun 1,7, Xuequn Shang2, Evan T. Keller 3, Mengjie Chen 4,5 & Xiang Zhou 1,6 Differential expression (DE) analysis and gene set enrichment (GSE) analysis are commonly applied in single cell RNA sequencing (scRNA-seq) studies. Here, we develop an integrative 1234567890():,; and scalable computational method, iDEA, to perform joint DE and GSE analysis through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can improve the power and consistency of DE analysis and the accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, enabling effective data modeling through com- plementing and pairing with various existing DE methods. We illustrate the benefits of iDEA with extensive simulations. We also apply iDEA to analyze three scRNA-seq data sets, where iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% power gain over existing DE methods. The power gain brought by iDEA allows us to identify many pathways that would not be identified by existing approaches in these data. 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA. 2 School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China. 3 Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. 4 Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 5 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
    [Show full text]
  • Regulation of NUB1 Activity Through Non-Proteolytic Mdm2-Mediated Ubiquitination
    RESEARCH ARTICLE Regulation of NUB1 Activity through Non- Proteolytic Mdm2-Mediated Ubiquitination Thomas Bonacci, SteÂphane Audebert, Luc Camoin, Emilie Baudelet, Juan-Lucio Iovanna, Philippe Soubeyran* Centre de Recherche en CanceÂrologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix- Marseille Universite and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 NUB1 (Nedd8 ultimate buster 1) is an adaptor protein which negatively regulates the ubiqui- tin-like protein Nedd8 as well as neddylated proteins levels through proteasomal degrada- tion. However, molecular mechanisms underlying this function are not completely understood. Here, we report that the oncogenic E3 ubiquitin ligase Mdm2 is a new NUB1 OPEN ACCESS interacting protein which induces its ubiquitination. Interestingly, we found that Mdm2-medi- Citation: Bonacci T, Audebert S, Camoin L, ated ubiquitination of NUB1 is not a proteolytic signal. Instead of promoting the conjugation Baudelet E, Iovanna J-L, Soubeyran P (2017) of polyubiquitin chains and the subsequent proteasomal degradation of NUB1, Mdm2 rather Regulation of NUB1 Activity through Non- Proteolytic Mdm2-Mediated Ubiquitination. PLoS induces its di-ubiquitination on lysine 159. Importantly, mutation of lysine 159 into arginine ONE 12(1): e0169988. doi:10.1371/journal. inhibits NUB1 activity by impairing its negative regulation of Nedd8 and of neddylated pro- pone.0169988 teins. We conclude that Mdm2 acts as a positive regulator of NUB1 function, by modulating Editor: Chunhong Yan, Augusta University, NUB1 ubiquitination on lysine 159. UNITED STATES Received: August 2, 2016 Accepted: December 27, 2016 Published: January 18, 2017 Introduction Copyright: © 2017 Bonacci et al.
    [Show full text]
  • Genetic Analysis of Over One Million People Identifies 535 New Loci Associated with Blood 2 Pressure Traits
    1 Genetic analysis of over one million people identifies 535 new loci associated with blood 2 pressure traits. 3 4 Table of Contents 5 SUPPLEMENTARY TABLES LEGENDS……………………………………………………………………………….…….3 6 SUPPLEMENTARY FIGURES LEGENDS ........................................................................................ 6 7 SUPPLEMENTARY METHODS ................................................................................................... 10 8 1. UK Biobank data .................................................................................................................................... 10 9 2. UKB Quality Control ............................................................................................................................... 10 10 3. Phenotypic data ..................................................................................................................................... 11 11 4. UKB analysis ........................................................................................................................................... 11 12 5. Genomic inflation and confounding ....................................................................................................... 12 13 6. International Consortium for Blood Pressure (ICBP) GWAS .................................................................... 12 14 7. Meta-analyses of discovery datasets ..................................................................................................... 13 15 8. Linkage Disequilibrium calculations ......................................................................................................
    [Show full text]
  • Identifying the Role of Wilms Tumor 1 Associated Protein in Cancer Prediction Using Integrative Genomic Analyses
    MOLECULAR MEDICINE REPORTS 14: 2823-2831, 2016 Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses LI‑SHENG WU1*, JIA-YI QIAN2*, MINGHAI WANG3* and HAIWEI YANG4 1Department of General Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001; 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029; 3Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002; 4Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received August 31, 2015; Accepted June 2, 2016 DOI: 10.3892/mmr.2016.5528 Abstract. The Wilms tumor suppressor, WT1 was first iden- regulatory factor 1, glucocorticoid receptor and peroxisome tified due to its essential role in the normal development of proliferator‑activated receptor γ transcription factor binding the human genitourinary system. Wilms tumor 1 associated sites were identified in the upstream (promoter) region of the protein (WTAP) was subsequently revealed to interact with human WTAP gene, suggesting that these transcription factors WT1 using yeast two‑hybrid screening. The present study may be involved in WTAP functions in tumor formation. identified 44 complete WTAP genes in the genomes of verte- brates, including fish, amphibians, birds and mammals. The Introduction vertebrate WTAP proteins clustered into the primate, rodent and teleost lineages using phylogenetic tree analysis. From The Wilms tumor suppressor gene WT1 was first identified 1,347 available SNPs in the human WTAP gene, 19 were due to its essential role in the normal development of the identified to cause missense mutations.
    [Show full text]
  • 'Next- Generation' Sequencing Data Analysis
    Novel Algorithm Development for ‘Next- Generation’ Sequencing Data Analysis Agne Antanaviciute Submitted in accordance with the requirements for the degree of Doctor of Philosophy University of Leeds School of Medicine Leeds Institute of Biomedical and Clinical Sciences 12/2017 ii The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly given within the thesis where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement ©2017 The University of Leeds and Agne Antanaviciute The right of Agne Antanaviciute to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. Acknowledgements I would like to thank all the people who have contributed to this work. First and foremost, my supervisors Dr Ian Carr, Professor David Bonthron and Dr Christopher Watson, who have provided guidance, support and motivation. I could not have asked for a better supervisory team. I would also like to thank my collaborators Dr Belinda Baquero and Professor Adrian Whitehouse for opening new, interesting research avenues. A special thanks to Dr Belinda Baquero for all the hard wet lab work without which at least half of this thesis would not exist. Thanks to everyone at the NGS Facility – Carolina Lascelles, Catherine Daley, Sally Harrison, Ummey Hany and Laura Crinnion – for the generation of NGS data used in this work and creating a supportive and stimulating work environment.
    [Show full text]
  • WTAP Mouse Monoclonal Antibody [Clone ID: OTI12G7] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA808317 WTAP Mouse Monoclonal Antibody [Clone ID: OTI12G7] Product data: Product Type: Primary Antibodies Clone Name: OTI12G7 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 2-106 of human WTAP(NP_004897) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 44.1 kDa Gene Name: Wilms tumor 1 associated protein Database Link: NP_004897 Entrez Gene 60532 MouseEntrez Gene 499020 RatEntrez Gene 9589 Human Q15007 Background: The Wilms tumor suppressor gene WT1 appears to play a role in both transcriptional and posttranscriptional regulation of certain cellular genes. This gene encodes a WT1-associating protein, which is a ubiquitously expressed nuclear protein. Like WT1 protein, this protein is localized throughout the nucleoplasm as well as in speckles and partially colocalizes with splicing factors. Alternative splicing of this gene results in several transcript variants encoding three different isoforms. [provided by RefSeq, Jul 2012] This product is to be used for laboratory only. Not for diagnostic or therapeutic use.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]