The Jnks Differentially Regulate RNA Polymerase III Transcription by Coordinately Modulating the Expression of All TFIIIB Subunits

Total Page:16

File Type:pdf, Size:1020Kb

The Jnks Differentially Regulate RNA Polymerase III Transcription by Coordinately Modulating the Expression of All TFIIIB Subunits The JNKs differentially regulate RNA polymerase III transcription by coordinately modulating the expression of all TFIIIB subunits Shuping Zhong and Deborah L. Johnson1 Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, and the Norris Comprehensive Cancer Center, 2011 Zonal Avenue, Los Angeles, CA 90033 Edited by Robert G. Roeder, The Rockefeller University, New York, NY, and approved June 12, 2009 (received for review May 4, 2009) RNA polymerase (pol) III-dependent transcription is subject to strin- III transcription has been extensively observed in transformed and gent regulation by tumor suppressors and oncogenic proteins and tumor cells supporting the idea that it plays a crucial role in enhanced RNA pol III transcription is essential for cellular transfor- tumorigenesis (11). Recent studies have demonstrated that en- mation and tumorigenesis. Since the c-Jun N-terminal kinases (JNKs) hanced RNA pol III transcription is required for promoting onco- display both oncogenic and tumor suppressor properties, the roles of genic transformation (12, 13). Thus, understanding the molecular these proteins in regulating RNA pol III transcription were examined. pathways by which this transcription process is controlled may In both mouse and human cells, loss or reduction in JNK1 expression provide useful therapeutic approaches for cancer. represses RNA pol III transcription. In contrast, loss or reduction in The TATA binding protein (TBP) associates with specific JNK2 expression induces transcription. The JNKs coordinately regu- proteins, TBP-associated factors (TAFs), to form at least 3 late expression of all 3 TFIIIB subunits. While JNK1 positively regulates distinct complexes, SL1, TFIID, and TFIIIB, which specify the TBP expression, the RNA pol III-specific factors, Brf1 and Bdp1, JNK2 role of TBP in the expression of genes directed by RNA pol I, negatively regulates their expression. Brf1 is coregulated with TBP II, and III, respectively. TFIIIB and the multiprotein complex, through the JNK target, Elk-1. Reducing Elk-1 expression decreases TFIIIC, are required to form specific transcription initiation Brf1 expression. Decreasing JNK1 expression reduces Elk-1 occupancy complexes on RNA pol III-dependent promoters. TFIIIB, com- at the Brf1 promoter, while decreasing JNK2 expression enhances posed of TBP and the RNA pol III-specific factors, Brf1 and recruitment of Elk-1 to the Brf1 promoter. In contrast, regulation of Bdp1, is often the target of regulatory responses that give rise to Bdp1 occurs through JNK-mediated alterations in TBP expression. altered RNA pol III transcription activity. Phosphorylation of Altered TBP expression mimics the effect of reduced JNK1 or JNK2 Brf1 and Bdp1 has been shown to regulate the assembly or levels on Bdp1 expression. Decreasing JNK1 expression reduces the function of the TFIIIB complex (7, 14–16). TBP expression is occupancy of TBP at the Bdp1 promoter, while decreasing JNK2 up-regulated by oncogenic Ras signaling and required to medi- expression enhances recruitment of TBP to the Bdp1 promoter. ate Ras transforming function (17). Together, these results provide a molecular mechanism for regulating TBP expression is induced through the activation of the epider- RNA pol III transcription through the coordinate control of TFIIIB mal growth factor receptor (EGFR1), requiring the activation of subunit expression and elucidate opposing functions for the JNKs in Ras and all 3 classes of MAPKs (18). JNK1 induces TBP expression, regulating a large class of genes that dictate the biosynthetic capacity while JNK2 represses TBP expression (19). This is accomplished of cells. through the opposing functions of the JNKs to modulate the phosphorylation state of Elk-1 and its recruitment to the TBP c-jun N-terminal kinases ͉ Elk-1 ͉ TATA-binding protein promoter. The ability of the JNKs to regulate TBP expression determines the proliferation rates of mouse embryo fibroblasts he c-jun N-terminal kinases (JNKs) are members of the mito- (MEFs). TBP-mediated changes in MEF proliferation are due, at Tgen-activated protein kinase (MAPK) family. JNKs are acti- least in part, to its ability to regulate c-jun transcription. TBP vated in response to stress, proinflammatory stimuli, and mitogenic expression can also be induced through AP-1 via the recruitment factors (1, 2). Three distinct genes encode the JNKs. JNK1 and of c-jun/c-fos to the TBP promoter (20). How alterations in cellular JNK2 are ubiquitously expressed, while JNK3 is more selectively TBP concentrations might affect the expression of other genes expressed in brain, heart, and testis (3). In addition, alternative involved in growth and proliferation remains to be determined. splicing gives rise to at least 10 JNK isoforms. JNK1 and JNK2 have As TBP is a component required for the transcription of RNA been shown to phosphorylate transcription factors such as c-Jun, pol III-dependent genes, we explored the possibility that the JNKs ATF-2, c-Fos, p53, Elk-1, and c-Myc. While initial studies indicated might modulate the activity of this class of genes. Our studies reveal that JNK1 and JNK2 possess redundant functions, subsequent that the JNKs differentially regulate RNA pol III transcription. studies support the idea that these proteins also have distinct JNK1 induces, while JNK2 represses, RNA pol III transcription. functions. The JNKs can induce both apoptotic and proliferative Notably, the expression of all 3 TFIIIB components, TBP, Bdp1, responses, depending on the physiological context and the time and Brf1, are coordinately regulated by these JNKs. Regulation of course of activation (4). The roles of these JNKs in tumorigenesis Bdp1 expression is modulated through JNK-mediated changes in are controversial (3). Depending on the cell type and stimulus, the TBP expression and by altered recruitment of TBP to the Bdp1 JNKs have been shown to stimulate oncogenic transformation or promoter. In contrast, Brf1 expression is regulated via JNK- act as tumor suppressors. Identifying the downstream molecular events selectively modulated by JNK1 and JNK2 will importantly clarify their roles in determining the oncogenic state of cells. Author contributions: S.Z. and D.L.J. designed research; S.Z. performed research; S.Z. and RNA polymerase (pol) III-dependent transcription and the D.L.J. analyzed data; and S.Z. and D.L.J. wrote the paper. production of its major products, 5S rRNAs and tRNAs, is tightly The authors declare no conflict of interest. regulated, controlling the translational and growth capacity of cells. This article is a PNAS Direct Submission. RNA pol III transcription is induced by oncogenic proteins, such as 1To whom correspondence should be addressed. E-mail: [email protected]. Ras (5), c-myc (6), and PI3 kinase (7), and repressed by tumor This article contains supporting information online at www.pnas.org/cgi/content/full/ suppressors Rb (8, 9), p53 (10), and PTEN (7). Enhanced RNA pol 0904843106/DCSupplemental. 12682–12687 ͉ PNAS ͉ August 4, 2009 ͉ vol. 106 ͉ no. 31 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0904843106 Downloaded by guest on September 25, 2021 e mediated recruitment of Elk-1 to the Brf1 promoter. Together, p - - y / / Jnk2 -/- A t 1- 2- B Jnk1 -/- d k k il n n these results support the idea that JNK1 acts to promote RNA pol J J W -- III transcription, while JNK2 negatively regulate this process, JNK1 ++ JNK2 -- ++ thereby differentially controlling the biosynthetic capacity of cells. 5.0 6 1.5 Results 4 1.0 JNK1 and JNK2 Have Opposing Roles in Regulating RNA pol III 2.5 2 0.5 gene transcription gene transcription Transcription. The potential for JNK1 and JNK2 to regulate RNA gene transcription Fold change in tRNA in change Fold Fold changein tRNA polymerase (pol) III-dependent transcription was first assessed tRNA in change Fold 0.0 0 0.0 Jnk1-/- Jnk2 -/- WT JNK1 -+ JNK2 - + using MEFs that were deficient for either Jnk1 or Jnk2. A tRNA Jnk1-/- Jnk2-/- Ϫ/Ϫ gene reporter was transiently expressed in wild-type, Jnk1 , and JNK1 +- JNK2 +- Ϫ Ϫ Jnk2 / cells, and the amount of transcription was measured by a HA-JNK1 HA-JNK2 ribonuclease protection assay (Fig. 1A). The RNA produced con- β-actin β-actin tains a 12-bp insert that does not permit processing of the precursor C wild type Jnk1 -/- Jnk2 -/- transcript and allows it to be distinguished from endogenous Anisomycin - + - + - + transcripts (10). Compared with tRNA gene transcription activity in the wild-type cells, cells lacking Jnk1 displayed a decrease in RNA 3 3 3 pol III transcription, whereas transcription was enhanced in cells lacking Jnk2. To determine whether this difference in transcription 2 2 2 was a result of JNK status, expression plasmids for JNK1 or JNK2 1 1 1 were used to re-express these proteins. Expression of JNK1 in the transcriptiongene Ϫ/Ϫ Fold change in tRNA Jnk1 cells enhanced RNA pol III transcription, whereas expres- 0 0 0 Ϫ/Ϫ sion of JNK2 in the Jnk2 cells decreased transcription (Fig. 1B). Anisomycin - + -+ -+ MEFs were treated with anisomycin, a potent inducer of the JNKs, e p /- /- D ty 1- 2- to determine the role of activated JNKs on tRNA gene transcription ld K K i N N W J J (Fig. 1C). Anisomycin induced transcription in both the wild-type Nuclear exract and Jnk2Ϫ/Ϫ cells, but no effect on transcription was observed in the Ϫ/Ϫ 3 wild type Jnk1 cells. This suggests that while anisomycin induces tran- Jnk1-/- scription through JNK1, JNK2 acts to repress transcription in the Jnk2-/- absence of anisomycin-induced stimulation. To examine whether 2 JNK-mediated effects on transcription could be reproduced in 1 vitro, nuclear extracts were prepared, and transcription reactions gene transcription were performed. Extracts prepared from Jnk1Ϫ/Ϫ cells displayed a tRNA in change Fold decreased capacity for transcription, whereas extracts from the 0 Ϫ/Ϫ Jnk2 cells exhibited an increased capacity for transcription, 5 5.0 wild type E Jnk1-/- compared to extracts prepared from the wild-type cells (Fig.
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • Trna GENES AFFECT MULTIPLE ASPECTS of LOCAL CHROMOSOME BEHAVIOR
    tRNA GENES AFFECT MULTIPLE ASPECTS OF LOCAL CHROMOSOME BEHAVIOR by Matthew J Pratt-Hyatt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor David R. Engelke, Chair Professor Robert S. Fuller Associate Professor Mats E. Ljungman Associate Professor Thomas E. Wilson Assistant Professor Daniel A. Bochar © Matthew J. Pratt-Hyatt All rights reserved 2008 . To my loving family Who’ve helped me so much ii Acknowledgements I would first like to thank my mentor, David Engelke. His help has been imperative to the development of my scientific reasoning, writing, and public speaking. He has been incredibly supportive at each phase of my graduate career here at the University of Michigan. Second, I would like to thank the past and present members of the Engelke lab. I would especially like to thank Paul Good, May Tsoi, Glenn Wozniak, Kevin Kapadia, and Becky Haeusler for all of their help. For this dissertation I would like to thank the following people for their assistance. For Chapter II, I would like to thank Kevin Kapadia and Paul Good for technical assistance. I would also like to thank David Engelke and Tom Wilson for help with critical thinking and writing. For Chapter III, I would like to thank David Engelke and Rebecca Haeusler for their major writing contribution. I would also like to acknowledge that Rebecca Haeusler did the majority of the work that led to figures 1-3 in that chapter. For Chapter IV, I would like to thank Anita Hopper, David Engelke and Rebecca Haeusler for their writing contributions.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Mechanisms of U6 small nuclear RNA gene expression in Drosophila melanogaster Permalink https://escholarship.org/uc/item/89r1v4c0 Author Verma, Neha Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO SAN DIEGO STATE UNIVERSITY Mechanisms of U6 small nuclear RNA gene expression in Drosophila melanogaster A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Neha Verma Committee in Charge: University of California, San Diego Professor Randolph Y. Hampton Professor Katherine A. Jones San Diego State University Professor William E. Stumph, Chair Professor Sanford I. Bernstein Professor Terrence Frey 2017 The Dissertation of Neha Verma is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ _________________________________________________________________ Chair University of California, San Diego San Diego State University 2017 iii DEDICATION This dissertation is dedicated to my parents, my husband, my in-laws, the rest of my family and my loving friends for their
    [Show full text]
  • Cellular Senescence Bypass Screen Identifies New Putative Tumor
    Oncogene (2008) 27, 1961–1970 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ORIGINAL ARTICLE Cellular senescence bypass screen identifies new putative tumor suppressor genes JFM Leal1, J Fominaya1, A Casco´ n2, MV Guijarro1, C Blanco-Aparicio1, M Lleonart3, ME Castro1, SRamon y Cajal 3, M Robledo2, DH Beach4 and A Carnero1 1Experimental Therapeutics Programme, Centro Nacional de Investigaciones Oncolo´gicas (CNIO), Madrid, Spain; 2Molecular Pathology Programme, Centro Nacional de Investigaciones Oncolo´gicas (CNIO), Madrid, Spain; 3Departamento de Patologı´a, Hospital Vall d’Hebron, Barcelona, Spain and 4Institute for Cell and Molecular Sciences, Center for Cutaneous Biology, London, UK Senescence is a mechanism that limits cellular lifespan and Introduction constitutes a barrier against cellular immortalization. To identify new senescence regulatory genes that might play a Replicative senescence is characterized by a progressive role in tumorigenesis, we have designed and performed a loss of proliferative potential with the increase of popu- large-scale antisense-based genetic screen in primary lation doublings, resulting in a permanent and irrever- mouse embryo fibroblasts (MEFs). Out of this screen, sible cell-cycle arrest. Although the process of senescence we have identified five different genes through which loss occurs both in vitro and in vivo (Dimri et al., 1995; of function partially bypasses senescence. These genes Schmitt et al., 2002; Shay and Roninson, 2004; Braig belong to very different biochemical families: csn2 et al., 2005; Collado et al., 2005; Michaloglou et al., (component of the Cop9 signalosome), aldose reductase 2005), the transition to the senescent phenotype is (a metabolic enzyme) and brf1 (subunit of the RNA commonly studied in culture where a cell population polymerase II complex), S-adenosyl homocysteine hydro- can be grown and monitored.
    [Show full text]
  • BRF1 Mutations Alter RNA Polymerase III–Dependent Transcription and Cause Neurodevelopmental Anomalies
    Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Research BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies Guntram Borck,1,20 Friederike Hog,€ 2,20 Maria Lisa Dentici,3,20 Perciliz L. Tan,4,20 Nadine Sowada,1 Ana Medeira,5 Lucie Gueneau,6 Holger Thiele,7 Maria Kousi,4 Francesca Lepri,3 Larissa Wenzeck,2 Ian Blumenthal,8 Antonio Radicioni,9 Tito Livio Schwarzenberg,10 Barbara Mandriani,11,12 Rita Fischetto,13 Deborah J. Morris-Rosendahl,14 Janine Altmuller,€ 7,15 Alexandre Reymond,6 Peter Nurnberg,€ 7,16,17 Giuseppe Merla,11 Bruno Dallapiccola,3,21 Nicholas Katsanis,4,21 Patrick Cramer,18,21 and Christian Kubisch1,19,21 1Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany; 2Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universitat€ Munchen,€ 81377 Munich, Germany; 3Bambino GesuChildren’s Hospital, IRCCS, 00165 Rome, Italy; 4Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA; 5Servic¸o de Genetica, Departamento de Pediatria, Hospital S. Maria, CHLN, 1649-035 Lisboa, Portugal; 6Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; 7Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; 8Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 9Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; 10Department of Neonatology, Sapienza University, 00161 Rome, Italy; 11IRCCS Casa Sollievo Della Sofferenza, Medical Genetics Unit, 71013 San Giovanni Rotondo, Italy; 12PhD Program, Molecular Genetics applied to Medical Sciences, University of Brescia, 25121 Brescia, Italy; 13U.O.
    [Show full text]
  • BRF1 Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap14801c
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 BRF1 Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14801c Specification BRF1 Antibody (Center) - Product Information Application WB,E Primary Accession Q92994 Other Accession NP_663718.1, NP_001510.2 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 73840 Antigen Region 314-342 BRF1 Antibody (Center) - Additional Information BRF1 Antibody (Center) (Cat. #AP14801c) Gene ID 2972 western blot analysis in Hela cell line lysates (35ug/lane).This demonstrates the BRF1 Other Names antibody detected the BRF1 protein (arrow). Transcription factor IIIB 90 kDa subunit, TFIIIB90, hTFIIIB90, B-related factor 1, BRF-1, hBRF, TAF3B2, TATA box-binding BRF1 Antibody (Center) - Background protein-associated factor, RNA polymerase III, subunit 2, BRF1, BRF, GTF3B, TAF3B2, This gene encodes one of the three subunits TAF3C of the RNA polymerase III transcription factor complex. Target/Specificity This BRF1 antibody is generated from This complex plays a rabbits immunized with a KLH conjugated central role in transcription initiation by RNA synthetic peptide between 314-342 amino polymerase III on acids from the Central region of human genes encoding tRNA, 5S rRNA, and other BRF1. small structural RNAs. The gene product belongs to the TF2B family. Two Dilution alternatively spliced WB~~1:1000 variants encoding different isoforms, that function at different Format promoters transcribed by RNA polymerase III, Purified polyclonal antibody supplied in PBS have been identified. with 0.09% (W/V) sodium azide. This Other transcript variants are possible, but their antibody is purified through a protein A full-length column, followed by peptide affinity natures have not been completely purification.
    [Show full text]
  • Structural Basis of Ty3 Retrotransposon Integration at RNA Polymerase III-Transcribed Genes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453949; this version posted July 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes Guillermo Abascal-Palacios1*, Laura Jochem1, Carlos Pla-Prats2, Fabienne Beuron1 and Alessandro Vannini1,3* Affiliations: 1Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom. 2Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. 3Fondazione Human Technopole, Structural Biology Research Centre, 20157 Milan, Italy *Corresponding authors ABSTRACT Retrotransposons are endogenous elements that have the ability to mobilise their DNA and integrate at different locations in the host genome. In budding yeast, the Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase III-transcribed genes, such as the genes of transfer RNAs, representing a paradigm for specific targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å-resolution of an active Ty3 strand-transfer complex (Ty3 intasome) caught in the act of integrating onto a specific tRNA gene bound to the RNA Polymerase III general transcription factor TFIIIB, which is required for Ty3 specific targeting. The structure unravels the molecular mechanisms underlying Ty3 integration specificity at RNA Polymerase III-transcribed genes and sheds light into the architecture of a retrotransposon integration machinery during the process of strand transfer at a genomic locus. The Ty3 intasome establishes contacts with a region of the TATA-binding protein (TBP), a subunit of TFIIIB, which is blocked by the ubiquitous transcription regulator negative cofactor 2 (NC2) in RNA Pol II-transcribed genes.
    [Show full text]
  • BRF1/2 Antibody A
    C 0 2 - t BRF1/2 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 1 Web: [email protected] 1 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Mk Endogenous 40 to 50, 62 Rabbit P47974, Q07352 678, 677 Product Usage Information 7. Nair, A.P. et al. (1994) Nature 369, 239-242. 8. Carballo, E. et al. (1998) Science 281, 1001-1005. Application Dilution 9. Schmidlin, M. et al. (2004) EMBO J. 23, 4760-4769. Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity This antibody detects endogenous levels of total BRF1 and BRF2 proteins. Species Reactivity: Human, Mouse, Rat, Monkey Species predicted to react based on 100% sequence homology: Chicken, Bovine Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the carboxy terminus of human BRF1 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background Butyrate response factor 1 (BRF1; also known as EGF response factor 1 [ERF1], TIS11B, ZFP36L1) and butyrate response factor 2 (BRF2; also known as EGF response factor 2 [ERF2], TIS11D, ZFP36L2) both belong to the TIS11 family of CCCH zinc-finger proteins (1). This family of proteins, which also includes tristetraprolin (TTP), bind to AU- rich elements (ARE) found in the 3'-untranslated regions of mRNAs and promote de- adenylation and rapid degradation by the exosome (2,3).
    [Show full text]
  • RNA Polymerase III Subunit Architecture and Implications for Open Promoter Complex Formation
    RNA polymerase III subunit architecture and implications for open promoter complex formation Chih-Chien Wua,b, Franz Herzogc, Stefan Jennebachd, Yu-Chun Lina, Chih-Yu Paia, Ruedi Aebersoldc,e, Patrick Cramerd, and Hung-Ta Chena,1 aInstitute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China; bDepartment of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China; cDepartment of Biology, Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule Zurich, CH-8093 Zurich, Switzerland; dGene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; and eFaculty of Science, University of Zurich, CH-8006 Zurich, Switzerland Edited by E. Peter Geiduschek, University of California at San Diego, La Jolla, CA, and approved October 3, 2012 (received for review July 11, 2012) Transcription initiation by eukaryotic RNA polymerase (Pol) III relies subcomplexes and their contacts with the 12-subunit polymerase on the TFIIE-related subcomplex C82/34/31. Here we combine cross- core. The C37/53 dimerization module was positioned into the linking and hydroxyl radical probing to position the C82/34/31 electron density adjacent to the lobe domain of the C128 subunit subcomplex around the Pol III active center cleft. The extended on one side of the polymerase cleft, similar to the localization of winged helix (WH) domains 1 and 4 of C82 localize to the polymerase the TFIIF dimerization module and the A49/34.5 dimerization domains clamp head and clamp core, respectively, and the two WH module on Pol II and Pol I, respectively (23–25).
    [Show full text]
  • Fusions of Yeast TATA-Binding Protein with Brf1, and the Function of Transcription Factor IIIB
    Reconfiguring the connectivity of a multiprotein complex: Fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB George A. Kassavetis*, Elisabetta Soragni, Robert Driscoll†, and E. Peter Geiduschek Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634 Contributed by E. Peter Geiduschek, September 1, 2005 Transcription factor (TF) IIIB, the central transcription initiation transcription initiation factors bound to a proximal promoter factor of RNA polymerase III (pol III), is composed of three subunits, element and distal enhancer-like site (reviewed in ref. 4). Bdp1, Brf1 and TATA-binding protein (TBP), all essential for normal Brf1 is a hybrid protein: Its N-terminal half is related to TFIIB, function in vivo and in vitro. Brf1 is a modular protein: Its N- whereas the C-terminal half has no counterpart in the pol II or proximal half is related to TFIIB and binds similarly to the C- pol I transcription apparatus. A conserved segment in the terminal stirrup of TBP; its C-proximal one-third provides most of C-terminal one-third of Brf1 contributes most of its affinity for the affinity for TBP by binding along the entire length of the TBP. An additional, weaker site is located in the TFIIB-related convex surface and N-terminal lateral face of TBP. A structure- N-terminal half (5–8). The C-proximal one-third of Brf1 also informed triple fusion protein, with TBP core placed between the provides the primary binding site for Bdp1, but an additional N- and C-proximal domains of Brf1, has been constructed.
    [Show full text]