LIVING and CAPTIVE MANED SLOTHS (BRADYPUS TORQUATUS; XENARTHA, BRADYPODIDAE) Author(S): Lilian S

Total Page:16

File Type:pdf, Size:1020Kb

LIVING and CAPTIVE MANED SLOTHS (BRADYPUS TORQUATUS; XENARTHA, BRADYPODIDAE) Author(S): Lilian S FIRST RECORD OF HEMATOLOGIC VALUES IN FREE- LIVING AND CAPTIVE MANED SLOTHS (BRADYPUS TORQUATUS; XENARTHA, BRADYPODIDAE) Author(s): Lilian S. Catenacci, D.V.M., Aisla Nascimento, D.V.M., Elza S. Muniz-Neta, D.V.M., Camila R. Cassano, Ph.D., Sharon L. Deem, D.V.M., Ph.D., Dipl. A.C.Z.M., Elizabeth S. Travassos da Rosa, Ph.D., Patricia Parker, Ph.D., and Alexandre D. Munhoz, D.V.M., Ph.D. Source: Journal of Zoo and Wildlife Medicine, 48(2):312-318. Published By: American Association of Zoo Veterinarians https://doi.org/10.1638/2016-0025R1.1 URL: http://www.bioone.org/doi/full/10.1638/2016-0025R1.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Zoo and Wildlife Medicine 48(2): 312–318, 2017 Copyright 2017 by American Association of Zoo Veterinarians FIRST RECORD OF HEMATOLOGIC VALUES IN FREE-LIVING AND CAPTIVE MANED SLOTHS (BRADYPUS TORQUATUS; XENARTHA, BRADYPODIDAE) Lilian S. Catenacci, D.V.M., Aisla Nascimento, D.V.M., Elza S. Muniz-Neta, D.V.M., Camila R. Cassano, Ph.D., Sharon L. Deem, D.V.M., Ph.D., Dipl. A.C.Z.M., Elizabeth S. Travassos da Rosa, Ph.D., Patricia Parker, Ph.D., and Alexandre D. Munhoz, D.V.M., Ph.D. Abstract: Bradypus torquatus is a rare and endemic sloth species from the Atlantic Forest, Brazil. Due to a lack of medical information including hematologic reference parameters for the species, hematologic baseline values were determined using samples from 14 clinically healthy B. torquatus, under captive (n ¼ 7) and free-living (n ¼ 7) conditions in Bahia State, Brazil. Additionally, the morphology of the blood cells is presented, with a demonstration that the Barr body chromosome may assist with sex determination of the species. The Barr body chromosome was present in all seven females and absent in all males. Many erythrocytes were approximately the size of small lymphocytes, with red blood cells exhibiting anisocystosis, normochromia, and apparent macrocytosis, compared with domestic animals. This study provides the first published hematologic values and cell morphology for B. torquatus. However, further studies are suggested using an automated hematology analyzer with larger sample sizes so that reference intervals may be established and hematologic values better understood for sex, habitat type, and age cohorts. Key words: Baseline data, Bradypus torquatus, Clinical pathology, Hematology, Sloth. INTRODUCTION a large number of plant species.5 Research on the health status and diseases of this genus are only Hematologic values are commonly used in both available for Bradypus variegatus,2,23,27,33 whereas human and veterinary medicine. Although refer- hematologic values have been published for ence intervals should not be calculated with small Choelopus spp. and B. variegatus.23,25,27,31,33 sample sizes (e.g., ,20 individuals), baseline The maned sloth (Bradypus torquatus) is one of blood values are instrumental for monitoring the six extant species of sloths and one of four species health of populations, allowing comparisons of within the genus Bradypus. It is endemic to the captive and free-living individuals, and determin- Brazilian Atlantic Forest and listed as ‘‘Vulnera- ing changes in population health over time.6,11,21,30,31 ble’’ by the International Union for Conservation An increasing number of studies have reported of Nature.15 Primarily due to habitat loss and its unique trends in the ecology, anatomy, physiology, small geographic range, it is the second most and behavior of sloths.5,8,12,13,31 Three-toed sloths threatened sloth species in the world.15 Maned (Bradypus spp.) are heterothermic14,20 and are sloths are found in old growth forests and may be considered one of the most lethargic mammals,9 found in disturbed environments if tall trees, with activity dependent on ambient temperature.13 necessary in the sloth’s diet, are still present and Species within this group have a specialized include shaded cacao agroforest and small forest gastrointestinal tract to fit their strictly folivorous fragments or those that maintain a high percent- diet20; however, unlike most folivores, they feed on age of vegetation cover.4,28 To date, the species has not been found in any highly modified environ- Federal University of Piaui State, Rod municipal Bom ments, whereas its congeneric B. variegatus is Jesus Viana, BR135, km 1, Bom Jesus, PI, 64900-000, found in urban areas and simplified agroforestry Brazil; Virology Graduate Program, Evandro Chagas systems such as living fences and pasture with Institute, Rod BR-316 km 7 S/N, Ananindeua, PA, isolated trees.25 Furthermore, the only captive 67030-000, Brazil; State University of Santa Cruz, Rod center known to have kept the species and Jorge Amado, km 16, Salobrinho, Ilhe` us, BA, 45662-900, conducted research, the ‘‘Reserva Zoobotanicaˆ Brazil; Saint Louis Zoo Institute for Conservation da Comiss˜ao Executiva da Lavoura Cacaueira– Medicine. One Government Dr, St. Louis, MO 63110, EUA; and University of Missouri-St Louis, St. Louis, CEPLAC’’, no longer houses any individuals of 10,22 One University Blvd, St. Louis, MO 63121, EUA. the species. Correspondence should be directed to Dr. Catenacci The primary objective of this study was to ([email protected]). describe baseline hematologic values of maned 312 CATENACCI ET AL.—HEMATOLOGIC VALUES IN BRADYPUS TORQUATUS 313 Figure 1. Study sites of (A) the Zoobotanical Reserve Rehabilitation Center (circle) and (B) free-living sloths capture sites in the surrounding of Una Biological Reserve. sloths. The paucity of data on the health status of placed radio-collars (model TW-3, Biotrack Ltd.; B. torquatus justifies the need for such informa- Telonics TR-4 receiver and a three-element Yagi tion. antenna, Wildlife Material, Wareham, BH20 4P, England).13 Each sloth was hand caught in the tree MATERIALS AND METHODS canopy by a trained climber, placed in a burlap sack, and lowered to the forest floor using a long Study area rope. No anesthesia was administered to any of Free-living maned sloths were captured from the sloths. Adults were sexed based on genitalia 2006 to 2008 in forest remnants and a cacao shade and pelage, and all sloths were aged based on plantation near the Una Biological Reserve body mass following previous studies.18 Sloths (158109S, 398039W) and the Private Reserve Eco- were weighed using a scale (Pesola AG, CH-8834 parque de Una (158119S, 39829W) in the lowlands Schindellegi, Switzerland), and morphometrics of southern Bahia, Brazil (Fig. 1). The presence of were collected (head-body length). We recorded large forest remnants within and outside Una heart rate (beats per minute), respiratory rate Biological Reserve makes this region of special (respirations per minute), and temperature (8C) conservation value. Shaded cacao and rubber tree every 5 min to ensure animals tolerated handling. plantations account for 60% of the cultivated land Animals were handled immediately and re- and represent the main crops in the Una Biolog- leased after 15–30 min at the base of the tree ical Reserve buffer zone.1 where captured. For those sloths that were The captive animals were located at the Zoobo- captured two or more times, intervals between tanical Reserve Rehabilitation Center, Comiss˜ao captures were 6 mo. Official permission to carry Executiva do Plano da Lavoura Cacaueira-CE- out captures and procedures was issued by the PLAC, in Ilhe´us, Bahia, Brazil (1484691S, 398139W) Brazilian environmental agency, Sistema de (Fig. 1). Five of the animals were captured in 2007, Autorizacao˜ e Informacao˜ em Biodiversidade whereas two animals were captured in 2013. SISBIO, under the authorization of the Instituto Brasileiro do Meio Ambiente e dos Recursos Study animals Naturais Renova´veis, number 02001.007588/ 2002 (L. S. Catenacci), and approved by The A total of 24 blood samples were collected from Animal Welfare Committee of Universidade Es- 14 animals (Table 1). Seven free-living sloths were tadual de Santa Cruz, under number 004/2008. examined (five females and two males); of these, The seven captive individuals (five males and five individuals were sampled multiple times (one two females) were housed in a single enclosure male and four females). These animals were (approximately 20 3 50 feet) with B. variegatus manually captured after location using previously individuals at the Zoobotanical Reserve Rehabil- 314 JOURNAL OF ZOO AND WILDLIFE MEDICINE Table 1. Habitat, age, body mass, sex and number of times captured for free-living and captive Bradypus torquatus in the Southern Bahia, Brazil. Identification Habitat Agea Body massa (kg) Sex Number of captures BT033 Free-living Adult 5.8 Female 1 BT123 Free-living Adult 4.5 Male 1 BT464 Free-living Adult 5.7 Female 3 BT142 Free-living Adult 4.5 Female 2 BT040 Free-living Immature-Adult 2.2–4.8 Male 4 (2 Im;2 Ad)b BT162 Free-living Immature 1.5–2.6 Female 2 BT065 Free-living Immature 1.6–2.1 Female 4 BT 212 Captive Immature 3.5 Male 1 BT 200 Captive Adult 4.8 Male 1 BT 224 Captive Adult 4.9 Male 1 BT 228 Captive Adult 4.8 Male 1 BT 232 Captive Immature 1.2 Female 1 BT 240 Captive Immature 3.5 Female 1 BT 136 Captive Adult 4.1 Male 1 a Values indicated for BT040, BT065, and BT162 correspond to age and weight range during the study.
Recommended publications
  • Hematological and Biochemical Profile of Captive Brown-Throated Sloths Bradypus Variegatus, Schinz 1825, Feeding on Ambay Pumpwood Cecropia Pachystachya Trécul 1847
    Arq. Bras. Med. Vet. Zootec., v.73, n.4, p.877-884, 2021 Hematological and biochemical profile of captive brown-throated sloths Bradypus variegatus, Schinz 1825, feeding on ambay pumpwood Cecropia pachystachya Trécul 1847 [Perfil hematológico e bioquímico da preguiça-de-garganta-marrom Bradypus variegatus, Schinz 1825, em cativeiro alimentando-se de embaúba Cecropia pachystachya Trécul 1847] M.C. Tschá1, G.P. Andrade2, P.V. Albuquerque2, A.R. Tschá3, G.S. Dimech3, C.J.F.L. Silva1, E.T.N. Farias3, M.J.A.A.L. Amorim2 1Aluno de pós-graduação – Universidade Federal Rural de Pernambuco ˗ Recife, PE 2Universidade Federal Rural de Pernambuco ˗ Recife, PE 3Centro Universitário - Facol ˗UNIFACOL Vitória de Santo Antão, PE ABSTRACT The aim of this study was to establish reference parameters for the hematological and biochemical levels of five healthy captive sloths of the species Bradypus variegatus (brown-throated sloth) feeding on Cecropia pachystachya (Ambay pumpwood), alternating with a period of free diet in the Dois Irmãos State Park (DISP) Recife, Pernambuco – Brazil. Keywords: tests, hematology, biochemistry, ambay pumpwood, sloths RESUMO O objetivo da presente pesquisa foi estabelecer parâmetros de referência para níveis hematológicos e bioquímicos, de cinco preguiças sadias, da espécie Bradypus variegatus (preguiça-de-garganta-marrom), em cativeiro, alimentando-se de Cecropia pachystachya (embaúba) em períodos alternados com dieta livre, no Parque Estadual de Dois Irmãos (PEDI) Recife, Pernambuco-Brasil. Palavras-chave: exames, hematologia, bioquímica, embaúba, bicho-preguiça INTRODUCTION (International Union for Conservation of Nature) as being of low concern (LC). This species has Sloths, like anteaters, belong to the order Pilosa an ample distribution in the Neotropical region, (Rezende et al., 2013).
    [Show full text]
  • Sloth Biology: an Update on Their Physiological Ecology, Behavior and Role As Vectors of Arthropods and Arboviruses
    Brazilian Journal of Medical and Biological Research (2001) 34: 9-25 Biology of the sloth 9 ISSN 0100-879X Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses D.P. Gilmore2, 1Departamento de Fisiologia e Farmacologia, C.P. Da Costa1 and Universidade Federal de Pernambuco, Recife, PE, Brasil D.P.F. Duarte1 2Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK Abstract Correspondence This is a review of the research undertaken since 1971 on the behavior Key words C.P. Da Costa and physiological ecology of sloths. The animals exhibit numerous · Sloths Departamento de Fisiologia e fascinating features. Sloth hair is extremely specialized for a wet · Ecology Farmacologia, UFPE · tropical environment and contains symbiotic algae. Activity shows Behavior 50670-901 Recife, PE · Parasites circadian and seasonal variation. Nutrients derived from the food, Brasil · Bradypus Fax: +55-81-271-8350 particularly in Bradypus, only barely match the requirements for · Choloepus E-mail: [email protected] energy expenditure. Sloths are hosts to a fascinating array of commen- sal and parasitic arthropods and are carriers of various arthropod- Research supported by CNPq and borne viruses. Sloths are known reservoirs of the flagellate protozoan FACEPE. D.P. Gilmore is the which causes leishmaniasis in humans, and may also carry trypano- recipient of a Royal Society and somes and the protozoan Pneumocystis carinii. Brazilian Academy of Sciences International Exchange fellowship. Introduction ela, French Guiana, Ecuador, Peru, Brazil Received April 12, 2000 and Bolivia. The species is still common, but Accepted August 7, 2000 We have recently reviewed the literature its numbers are fewer in areas where it coex- in terms of the physiological studies carried ists with the three-toed sloth.
    [Show full text]
  • Layout Sloth-3.P65
    FAKE PAPER (SCQ) Hyperactive sloths leads to isolation of a new compound Laura Schlobies§, Rachel Pan*, Chia-Chi Huang‡ , Katherine Fenton†§ & Harpreet Gill* *Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK †MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK ‡ Department of Biology, University of California, Riverside, California 92521,USA §Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK §Abteilung Meereszoologie, Institut fu¨r Meereskunde, Du¨sternbrooker Weg 20,D-24105 Kiel, Germany The observation of hyperactive three-toed sloths, Bradypus variegates, on the island of Barro Colorado is due to the addition of Panamae caenaela to their diets. P. caenaela is only found on the Barro Colorado Island which explains why only hyperactive sloths were found on the Barro Colorado Island. Using gas chromatography/ mass spectrometry analysis, we were able to isolate the compound responsible for the hyperactive behaviour of the sloth. The compound was determined to be N-methyl-1-(3,4- methylenedioxyphenyl)-2aminopropane. We have named it MMAP for short. The Barro Colorado Island (BCI) of Panama was formed in 1914. The comprise most of the three-toed sloths’ diets16,20. However, a recent iden- island was separated from the mainland when the Chagras River was tification of an epiphytic plant, Panamae caenaela, exclusive to BCI is dammed to form the infamous Panama Canal4. After the formation of commonly seen in the BCI sloths’ diet due to its relatively easy digest- the island, the Smithsonian Tropical Research Institute built a research ibility by the animal18.
    [Show full text]
  • New Records of Bradypus Torquatus (Pilosa
    New Records of Bradypus torquatus (Pilosa: 37°33'W), in the municipality of Arauá (Figure 1), Bradypodidae) from Southern Sergipe, Brazil during a survey of local Callicebus populations (Jeru- salinsky et al., 2006). The adult sloth was seen at 14–14:30 h moving and feeding approximately 10 m Renata Rocha Déda Chagas above the ground in the crown of a jitaí tree (Apuleia João Pedro Souza-Alves leiocarpa) in a relatively small, disturbed fragment of Leandro Jerusalinsky less than 25 hectares. While local residents indicated Stephen F. Ferrari that Callicebus was also present in the fragment, this was not confirmed during the survey. One of the main threats to the survival of the endan- gered maned sloth (Bradypus torquatus) is its relatively Bradypus torquatus was also observed during mammal restricted geographic range, especially in comparison surveys at the Fazenda Trapsa (11°12'S, 37°14'W), with the other mainland species of the genus (Aguiar an abandoned farm in the municipality of Itapo- and Fonseca, 2008; Chiarello, 2008). This range ranga d’Ajuda, just south of the state capital Aracaju is basically restricted to the coastal Atlantic Forest (Figure 1). This site encompasses a mosaic of Atlantic between eastern Rio de Janeiro and southern Sergipe Forest fragments that vary in size from a few dozen (Fonseca and Aguiar, 2004; Lara-Ruiz and Chiarello, to more than a hundred hectares, with a total cover 2005), and thus also coincides with the region of of more than 500 ha. Maned sloths were observed Brazil with the longest history of European coloniza- in three of these fragments, denominated Alagado tion and deforestation (Dean, 1995).
    [Show full text]
  • Bradypus Torquatus)
    Mammalian Biology 80 (2015) 431–439 Contents lists available at ScienceDirect Mammalian Biology jou rnal homepage: www.elsevier.com/locate/mambio Original Investigation The home range and multi-scale habitat selection of the threatened maned three-toed sloth (Bradypus torquatus) a b,∗ c c Nereyda Falconi , Emerson M. Vieira , Julio Baumgarten , Deborah Faria , c Gastón Andrés Fernandez Giné a Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas, Programa de Pós-graduac¸ ão em Ecologia e Conservac¸ ão da Biodiversidade, Rodovia Ilhéus Itabuna, Km 16, CEP 45650-000, Ilhéus, Bahia, Brazil b Laboratório de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, C.P. 04457, Brasília, DF 70910-900, Brazil c Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservac¸ ão, Rodovia Ilhéus Itabuna, Km 16, CEP 45650-000, Ilhéus, Bahia, Brazil a r t i c l e i n f o a b s t r a c t Article history: Habitat selection is a scale-dependent process of paramount importance to the understanding of how Received 30 July 2014 species deal with environmental variation. This process has practical implications for wildlife conserva- Accepted 30 January 2015 tion, aiding in the identification of key resources for animals and in the definition of scales relevant to Handled by Francesco Ferretti the proposal of practical conservation actions. In this study, we investigated in different spatial scales the Available online 7 February 2015 habitat selection of the maned three-toed sloth (Bradypus torquatus), a threatened and endemic arboreal folivore of the Atlantic rainforest (vulnerable, sensu IUCN).
    [Show full text]
  • Bradypodidae Physiology and Ecology Bibliography Megalonychidae Reproduction and Development Additional Readings
    Sloth - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/sloth/628700 (http://www.accessscience.com/) Article by: Linzey, Donald W. Wytheville Community College, Wytheville, Virginia. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.628700 (http://dx.doi.org/10.1036/1097-8542.628700) Content Bradypodidae Physiology and ecology Bibliography Megalonychidae Reproduction and development Additional Readings A mammal classified in the order Xenarthra along with anteaters, tamanduas, and armadillos. The sloth differs from all other mammals by having additional articulations (xenarthrales) between their lumbar vertebrae (called xenarthrous vertebrae). They also have a double rather than a single inferior vena cava, the vein that returns blood from the posterior portion of the body to the heart. The dental formula is I 0/0, C 0/0, Pm 0/0, M 5/4 × 2, for a total of 18 teeth which grow throughout life. Females have a primitive, divided uterus and a common urinary and genital tract; males have internal testes. See also: Dentition (/content/dentition/186400) Two extant families of tree sloths (Bradypodidae and Megalonychidae) inhabit the lowland and upland tropical forests of Central and South America. Bradypodidae The family Bradypodidae includes a single genus, the three-toed tree sloth (Bradypus) [see illustration]. This is a slender- bodied animal with a head and body length of 413–700 mm (16–27 in.) and a tail length of 20–90 mm (0.75–3.5 in.) that looks heavier because of its long, thick, coarse hair. The three-toed sloth weighs 2.25–6.20 kg (5–13.5 lb).
    [Show full text]
  • Year 5 Literacy Non Chronological Reports
    Year 5 Literacy Non chronological reports - information about animals 29.6.2020 / 2.7.2020 Year 5 Literacy Non chronological reports - information about animals 29.6.2020 / 2.7.2020 One of the big cats, jaguar’s are solitary animals, usually hunting at night, they often drag their food up trees for safe keeping, they love to swim and roam the rainforests of Central and South America. The jaguar is a big cat in the Panthera genus, the jaguar's scientific name is Panthera onca. The jaguar is the 3rd largest of the big cats after the tiger and the lion and it is the largest of all the big cats in the Americas. Jaguar's are only found in the Americas. Their range extends from Arizona in South-west United States, Mexico, through Central America, into most Amazon River Basin countries in South America and as far south as northern Argentina. The jaguar's preferred habitat is dense rainforest, but they are also found across other forested areas and open plains. With its spotted coat the jaguar most closely resembles the leopard which is found in Asia and Africa, however, the jaguar is larger and has a stockier build than the leopard, it also has less but bigger rosettes (spots) with small dots in the middle. While the jaguars behavioural habits more resemble that of a tiger. Like the tiger, jaguars enjoy water and are good at swimming. Jaguars roam, hunt and live alone, only coming together to mate. They leave a scent to mark their territory. Female territories may overlap and range in size from 25 - 40 km2.
    [Show full text]
  • Why Do Xenarthrans Matter?
    Journal of Mammalogy, 96(4):617–621, 2015 DOI:10.1093/jmammal/gyv099 Why do Xenarthrans matter? Mariella Superina* and W. J. Loughry Instituto de Medicina y Biología Experimental de Cuyo, CCT CONICET Mendoza, Casilla de Correos 855, Mendoza 5500, Argentina (MS) Department of Biology, Valdosta State University, Valdosta, GA 31698, USA (WJL) * Correspondent: [email protected] Xenarthrans possess a suite of characteristics that make them among the most unusual of mammals. Understanding the functional significance of these traits is one prominent reason why xenarthrans matter. In addition, Xenarthra is currently considered one of the basal clades of placental mammals, and the only one to originate in South America. Consequently, studies of xenarthrans can provide important insights into the evolution of early placentals. The fossil record contains hundreds of recognized species of xenarthrans but this rich evolutionary history is currently distilled into just 31 extant species. Preserving this heritage through various conservation initiatives is yet another reason why xenarthrans matter. This Special Feature on xenarthrans provides an overview of current work and identifies many areas requiring further study. It is our hope that this Special Feature will raise the profile of xenarthrans among mammalogists and perhaps entice some to consider addressing one or more of the many lingering questions that remain about this enigmatic group. ¿Por qué importan los xenartros? Los xenartros poseen una serie de características que los convierten en algunos de los mamíferos más inusuales. La comprensión del significado funcional de estos rasgos es una de las razones sobresalientes de por qué los xenartros importan. Adicionalmente, los xenartros son actualmente considerados uno de los clados basales de los mamíferos placentarios, y el único que tuvo su origen en América del Sur.
    [Show full text]
  • Resolving the Xenarthran Phylogeny Using Nuclear Loci Resolving the Xenarthran Phylogeny Using Nuclear Loci
    RESOLVING THE XENARTHRAN PHYLOGENY USING NUCLEAR LOCI RESOLVING THE XENARTHRAN PHYLOGENY USING NUCLEAR LOCI By JONATHAN J. HUGHES A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University © Copyright by Jonathan J. Hughes, August 2016 McMaster University MASTER OF SCIENCE (2016) Hamilton, Ontario (Biology) TITLE: Resolving the Xenarthran Phylogeny Using Nuclear Loci AUTHOR: Jonathan J Hughes, M.Sci. (University of Leicester) SUPERVISORS: Dr Hendrik Poinar & Dr Brian Golding NUMBER OF PAGES: x, 73 ii Lay Abstract Xenarthrans – sloths, armadillos, and anteaters – have a long and complicated evo- lutionary history. In recent years a growth of new genetic information has made it easier to answer questions about their relation to each other and to other species. By examining many new gene sequences across all living Xenarthra, plus some extinct species, we aim to bolster our understanding of these relationships and the importance of particular traits. iii Abstract Xenarthra form the least diversified major clade of placental mammals, being comprised of 31 described species of sloth, armadillo, and anteater. The past decade has seen a growth in the amount of xenarthran genetic data available, including the recent publication of a phylogenetic framework based on mitochondrial genomes, but more is required to aid in conservation assessments and to elucidate the evolutionary history of this unique order. We aimed to expand upon this by generating a framework based on nuclear genes. Using molecular baits, we enriched nuclear DNA from all extant and a selection of extinct ancient Xenarthrans for 74 phenotypically relevant genes.
    [Show full text]
  • Wildfire Against the Survival of Xenarthra: Anteaters, Armadillos, and Sloths Incêndios Contra a Sobrevivência De Xenarthra: Tamanduás, Tatus E Preguiças
    Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 15, n. 3, p. 523-532, set.-dez. 2020 Wildfire against the survival of Xenarthra: anteaters, armadillos, and sloths Incêndios contra a sobrevivência de Xenarthra: tamanduás, tatus e preguiças Sofia Marques SilvaI, II | Paloma Marques Santos I, III | Karina Theodoro MolinaI, IV | Alexandre Martins Costa LopesI, V | Fernanda Góss BragaI, VI | Abílio OhanaI, VII | Flávia R. MirandaI, IV | Alessandra BertassoniI, VIII IInstituto de Pesquisa e Conservação de Tamanduás no Brasil. Parnaíba, Piauí, Brasil IICentro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado. Vairão, Portugal IIICentro Nacional de Pesquisa e Conservação de Primatas Brasileiros, ICMBio. Cabedelo, Paraíba, Brasil IVUniversidade Estadual de Santa Cruz. Departamento de Ciência Animal Veterinária. Ilhéus, Bahia, Brasil VUniversidade Federal do Piauí. Programa de Pós-Graduação em Biologia e Conservação. Teresina, Piauí, Brasil VISecretaria de Estado do Desenvolvimento Sustentável e do Turismo. Curitiba, Paraná, Brasil VIIUniversidade Federal do Pará. Programa de Pós-Graduação em Biodiversidade e Biotecnologia. Belém, Pará, Brasil VIIIUniversidade Federal de Goiás. Programa de Pós-Graduação em Ecologia e Evolução. Goiânia, Goiás, Brasil Abstract: During 2019 and 2020, Amazon and Pantanal wildfires were news all over the world, followed by shocking images of burnt landscapes and animals. Fires within rainforests and wetlands are seldom related to natural causes. Instead, these are human-driven events, often caused by illegal actions associated with deforestation and land conversion to sustain intensive agriculture and farming, among other impacts. The loss of native vegetation, not only causes habitat loss, fragmentation and degradation, but also increases the risk of natural fires creating a vicious circle.
    [Show full text]
  • Phylogenetic Analysis of 16S Mitochondrial DNA Data in Sloths and Anteaters
    Genetics and Molecular Biology, 26, 1, 5-11 (2003) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article Phylogenetic analysis of 16S mitochondrial DNA data in sloths and anteaters Maria Claudene Barros1, Iracilda Sampaio2 and Horacio Schneider2 1Universidade Estadual do Maranhão, CESC, Caxias, MA, Brazil. 2Universidade Federal do Pará, Núcleo de Estudos Costeiros, Campus de Bragança, Bragança, Pará, Brazil. Abstract We sequenced part of the 16S rRNA mitochondrial gene in 17 extant taxa of Pilosa (sloths and anteaters) and used these sequences along with GenBank sequences of both extant and extinct sloths to perform phylogenetic analysis based on parsimony, maximum-likelihood and Bayesian methods. By increasing the taxa density for anteaters and sloths we were able to clarify some points of the Pilosa phylogenetic tree. Our mitochondrial 16S results show Bradypodidae as a monophyletic and robustly supported clade in all the analysis. However, the Pleistocene fossil Mylodon darwinii does not group significantly to either Bradypodidae or Megalonychidae which indicates that trichotomy best represents the relationship between the families Mylodontidae, Bradypodidae and Megalonychidae. Divergence times also allowed us to discuss the taxonomic status of Cyclopes and the three species of three-toed sloths, Bradypus tridactylus, Bradypus variegatus and Bradypus torquatus. In the Bradypodidae the split between Bradypus torquatus and the proto-Bradypus tridactylus / B. variegatus was estimated as about 7.7 million years ago (MYA), while in the Myrmecophagidae the first offshoot was Cyclopes at about 31.8 MYA followed by the split between Myrmecophaga and Tamandua at 12.9 MYA. We estimate the split between sloths and anteaters to have occurred at about 37 MYA.
    [Show full text]
  • Mating Behavior of the Northern Tamandua
    Caso seja confirmada a utilização de sinais vocais por fêmeas de Bradypus variegatus na atração dos machos, Mating Behavior of the Northern Tamandua conforme observado para Bradypus torquatus em (Tamandua mexicana) in Costa Rica semi-cativeiro, as observações descritas acima esta- riam relacionadas ao comportamento reprodutivo da The mating behavior of several anteater species has espécie, constituindo o primeiro registro deste com- been documented under zoo conditions (Sanmarco, portamento na natureza. Neste caso, as observações 1985; Moeller, 1990; Coleman, 2003), but observa- realizadas indicariam que as interações sociais ocorri- tions have yet to be made in the wild. No descrip- das durante o período de reprodução destes animais tions have been published on the mating behavior of não são restritas ao momento da cópula, estando Tamandua mexicana under any conditions, although associadas a um maior período de contato macho- it is the most common anteater in Central America fêmea durante o qual os animais permanecem na (Lubin, 1983). mesma área, chegando a compartilhar a arvore de repouso e alimentação. As interações observadas Northern tamanduas are medium-sized animals (4–6 durante o período relatado indicam que estes animais kg) that feed on ants and termites (Montgomery, geralmente solitários podem apresentar períodos de 1985a, 1985b); they range from eastern Mexico to interações sociais de vários dias de duração. O fato northwestern Venezuela, Colombia, Ecuador and é mais relevante ainda considerando que existem Peru (Wetzel, 1975, 1982, 1985; Fonseca and Aguiar, poucas observações de interações entre indivíduos 2004). Macdonald (1995) speculated that T. mexicana adultos na natureza, sendo que estas normalmente may mate in the fall, but the few reports available sug- são efetuadas em regiões com densidades populacio- gest that mating is aseasonal (Lubin, 1983).
    [Show full text]