Bradypodidae Physiology and Ecology Bibliography Megalonychidae Reproduction and Development Additional Readings

Total Page:16

File Type:pdf, Size:1020Kb

Bradypodidae Physiology and Ecology Bibliography Megalonychidae Reproduction and Development Additional Readings Sloth - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/sloth/628700 (http://www.accessscience.com/) Article by: Linzey, Donald W. Wytheville Community College, Wytheville, Virginia. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.628700 (http://dx.doi.org/10.1036/1097-8542.628700) Content Bradypodidae Physiology and ecology Bibliography Megalonychidae Reproduction and development Additional Readings A mammal classified in the order Xenarthra along with anteaters, tamanduas, and armadillos. The sloth differs from all other mammals by having additional articulations (xenarthrales) between their lumbar vertebrae (called xenarthrous vertebrae). They also have a double rather than a single inferior vena cava, the vein that returns blood from the posterior portion of the body to the heart. The dental formula is I 0/0, C 0/0, Pm 0/0, M 5/4 × 2, for a total of 18 teeth which grow throughout life. Females have a primitive, divided uterus and a common urinary and genital tract; males have internal testes. See also: Dentition (/content/dentition/186400) Two extant families of tree sloths (Bradypodidae and Megalonychidae) inhabit the lowland and upland tropical forests of Central and South America. Bradypodidae The family Bradypodidae includes a single genus, the three-toed tree sloth (Bradypus) [see illustration]. This is a slender- bodied animal with a head and body length of 413–700 mm (16–27 in.) and a tail length of 20–90 mm (0.75–3.5 in.) that looks heavier because of its long, thick, coarse hair. The three-toed sloth weighs 2.25–6.20 kg (5–13.5 lb). It has three toes on each front and rear foot. The head is small and round, the tail is short and stumpy, and the eyes and ears are reduced—the animal can neither hear nor see well but depends on its senses of smell and touch. The three species in this genus have 30 ribs and long necks containing nine vertebrae (two more than most mammals). These sloths are drab brown or gray with patches of white. Males have a bright yellow spot, about the size of a silver dollar, on their back. In this spot, the hair is short and glossy. 1 of 4 3/10/2016 9:24 AM Sloth - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/sloth/628700 Three-toed tree sloth (Bradypus tridactylus). (Photo by Dr. Lloyd Glenn Ingles; copyright © California Academy of Sciences) Megalonychidae The family Megalonychidae (two-toed tree sloths) contains a single genus (Choloepus) with two species. Two-toed tree sloths, or unau, with two toes on their front feet and three on their hind feet, are somewhat larger and more active than their three-toed cousins. Adults range 540–740 mm (21–28 in.) in total length and weigh 4.0–8.5 kg (9–18.5 lb). The coloration is grayish brown with a paler face. The large hooklike claws are 8–10 cm (3–4 in.) long. These sloths possess 48 ribs, six to eight vertebrae, and their tail is either absent or vestigial. Physiology and ecology Tree sloths are solitary and spend most of their lives hanging upside down from the upper branches of a tree. They hang by the long, hooked claws at the ends of their toes and slowly move along, hand over hand in the inverted position. They spend their waking hours slowly picking and eating leaves, especially the leaves of the Cecropia tree. Their stomachs contain cellulose-digesting bacteria and may retain food for as long as a month before passing it on to the small intestine. Sloths are so lethargic that two blue-green algae, which look like moss, actually grow in the grooves of their coarse hair. In the rainy season, their fur often has a distinct greenish tinge due to the luxuriant growth of algae; in times of drought, the fur turns yellowish. The greenish color serves to camouflage the animals in the tree canopy. Sloths have a low body temperature of 30–34°C (86–93°F) which fluctuates both daily and seasonally. They regulate their temperature by shifting their position in and out of the sun. Sloths make no attempt to construct a den or shelter in the trees. They sleep and give birth while hanging upside down. They normally sleep about 18 h per day on a vertical branch, keeping a firm hold with all four feet with their head hanging down and resting between the front limbs. Predators include jaguars and eagles, although habitat destruction and excessive hunting may prove to be the most detrimental factors affecting these species. One species (B. torquatus) is classified as endangered by the International Union for Conservation of Nature and Natural Resources (IUCN) and the U.S. Department of the Interior. Reproduction and development Most sloths are believed to breed throughout the year. A single young is born after a gestation ranging from 3.5 to 11.5 months. During its first few months, the young sloth clings flat to the mother's belly. They cease nursing between 4 and 5 2 of 4 3/10/2016 9:24 AM Sloth - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/sloth/628700 weeks of age. Female two-toed sloths reach sexual maturity at 3 years of age, whereas males are sexually mature at 4–5 years of age. Life expectancy in the wild is up to about 12 years, although they have lived up to 31 years in captivity. Donald W. Linzey Bibliography D. Macdonald (ed.), The Encyclopedia of Mammals, Oxford University Press, 2006 R. M. Nowak, Walker's Mammals of the World, 6th ed., The Johns Hopkins University Press, 1999 Additional Readings N. de Moraes-Barros, J. A. B. Silva, and J. S. Morgante, Morphology, molecular phylogeny, and taxonomic inconsistencies in the study of Bradypus sloths (Pilosa, Bradypodidae), J. Mammal., 92(1):86–100, 2011 DOI: 10.1644/10-MAMM-A-086.1 (http://dx.doi.org/10.1644/10-MAMM-A-086.1) J. F. Eisenberg, G. M. McKay, and M. R. Jainudeen, Reproduction by the two-toed sloth Choloepus hoffmanni in captivity, Amer. Soc. Mammal., Abstr. Tech. Pap., 58th Annual Meeting, pp. 41–42, 1978 L. Hautier et al., Skeletal development in sloths and the evolution of mammalian vertebral patterning, Proc. Natl. Acad. Sci. USA, 107(44):18903–18908, 2010 DOI: 10.1073/pnas.1010335107 (http://dx.doi.org/10.1073/pnas.1010335107) C. L. Henderson, Mammals, Amphibians, and Reptiles of Costa Rica: A Field Guide, 2d ed., University of Texas Press, Austin, TX, 2010 F. C. Mendel, Use of hands and feet of three-toed sloths (Bradypus variegatus) during climbing and terrestrial locomotion, J. Mammal., 66:359–366, 1985 F. C. Mendel, Use of hands and feet of two-toed sloths (Choloepus hoffmanni) during climbing and terrestrial locomotion, J. Mammal., 62:413–421, 1981 G. G. Montgomery, The evolution and ecology of armadillos, sloths, and vermilinguas, Smithsonian Institution Press, Washington, DC, 1985 L. Pinder, Body measurements, karyoptype, and birth frequencies of maned sloth (Bradypus torquatus), Mammali, 57:43–48, 1993 J. P. Rafferty (ed.), Rats, Bats, and Xenarthrans, 1st ed., Britannica Educational Publishing, New York, 2011 M. E. Sundquist and G. G. Montgomery, Activity patterns and rates of movement of two-toed and three-toed sloths (Choloepus hoffmanni and Bradypus infuscatus), J. Mammal., 54:946–954, 1973 Animal Diversity Web: Bradypodidae (http://animaldiversity.ummz.umich.edu/site/accounts/information/Bradypodidae.html) Mammal Directory: Sloths (http://www.montclair.edu/csam/prism/rainforest-connection/panama/mammal-directory/sloths/) 3 of 4 3/10/2016 9:24 AM .
Recommended publications
  • Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,***
    Woodburne, M.O.; Cione, A.L.; and Tonni, E.P., 2006, Central American provincialism and the 73 Great American Biotic Interchange, in Carranza-Castañeda, Óscar, and Lindsay, E.H., eds., Ad- vances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic In- terchange: Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial 4, p. 73–101. CENTRAL AMERICAN PROVINCIALISM AND THE GREAT AMERICAN BIOTIC INTERCHANGE Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,*** ABSTRACT The age and phyletic context of mammals that dispersed between North and South America during the past 9 m.y. is summarized. The presence of a Central American province of cladogenesis and faunal differentiation is explored. One apparent aspect of such a province is to delay dispersals of some taxa northward from Mexico into the continental United States, largely during the Blancan. Examples are recognized among the various xenar- thrans, and cervid artiodactyls. Whereas the concept of a Central American province has been mentioned in past investigations it is upgraded here. Paratoceras (protoceratid artio- dactyl) and rhynchotheriine proboscideans provide perhaps the most compelling examples of Central American cladogenesis (late Arikareean to early Barstovian and Hemphillian to Rancholabrean, respectively), but this category includes Hemphillian sigmodontine rodents, and perhaps a variety of carnivores and ungulates from Honduras in the medial Miocene, as well as peccaries and equids from Mexico. For South America, Mexican canids and hy- drochoerid rodents may have had an earlier development in Mexico. Remarkably, the first South American immigrants to Mexico (after the Miocene heralds; the xenarthrans Plaina and Glossotherium) apparently dispersed northward at the same time as the first Holarctic taxa dispersed to South America (sigmodontine rodents and the tayassuid artiodactyls).
    [Show full text]
  • Taphonomy and Significance of Jefferson's Ground Sloth (Xenarthra: Megalonychidae) from Utah
    Western North American Naturalist Volume 61 Number 1 Article 9 1-29-2001 Taphonomy and significance of Jefferson's ground sloth (Xenarthra: Megalonychidae) from Utah H. Gregory McDonald Hagerman Fossil Beds National Monument, Hagerman, Idaho Wade E. Miller Thomas H. Morris Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation McDonald, H. Gregory; Miller, Wade E.; and Morris, Thomas H. (2001) "Taphonomy and significance of Jefferson's ground sloth (Xenarthra: Megalonychidae) from Utah," Western North American Naturalist: Vol. 61 : No. 1 , Article 9. Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss1/9 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 61(1), © 2001, pp. 64–77 TAPHONOMY AND SIGNIFICANCE OF JEFFERSON’S GROUND SLOTH (XENARTHRA: MEGALONYCHIDAE) FROM UTAH H. Gregory McDonald1, Wade E. Miller2, and Thomas H. Morris2 ABSTRACT.—While a variety of mammalian megafauna have been recovered from sediments associated with Lake Bonneville, Utah, sloths have been notably rare. Three species of ground sloth, Megalonyx jeffersonii, Paramylodon har- lani, and Nothrotheriops shastensis, are known from the western United States during the Pleistocene. Yet all 3 are rare in the Great Basin, and the few existing records are from localities on the basin margin. The recent discovery of a partial skeleton of Megalonyx jeffersonii at Point-of-the-Mountain, Salt Lake County, Utah, fits this pattern and adds to our understanding of the distribution and ecology of this extinct species.
    [Show full text]
  • Sociedad Argentina Para El Estudio De Los Mamíferos Versión On-Line ISSN 2618-4788
    Sociedad Argentina para el Estudio de los Mamíferos Versión on-line ISSN 2618-4788 http://doi.org/10.31687/saremNMS.19.0.07 Patterns of mineral lick visitation by Linnaeus’s two-toed sloth Choloepus didactylus (Pilosa, Megalonychidae) in eastern Ecuador Diego Mosquera (1), Gabriela Vinueza-Hidalgo (1) and John G. Blake (2) (1)Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador. (2)Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA. [correspondence: [email protected]] ABSTRACT Geophagy involves the consumption of soil to supplement diets and to facilitate digestive processes. We used camera traps to document the use of a salt lick by Linnaeus’s two-toed sloth Choloepus didactylus (Linnaeus, 1758) from December 2014 to November 2015 in a lowland Ecuadorian forest. We obtained 201 videos of sloths and analyzed if rain or lunar-phase infl uenced these visits. Visits were positively correlated with monthly rainfall and negatively correlated with lunar illumination, but correlations were not signifi cant. We consider three hypotheses for visiting licks: (a) to supplement their diet, (b) to help digestion, and (c ) to obtain water. RESUMEN La geofagia involucra consumo de tierra para complementar la dieta y facilitar procesos digestivos. Utilizamos cámaras para documentar el uso de un saladero por perezosos de dos dedos de Linnaeus Choloepus didactylus (Linnaeus, 1758), desde diciembre 2014 a noviembre 2015, en un bosque de tierras bajas ecuatoriano. Obtuvimos 201 videos y analizamos si la lluvia o la fase lunar infl uyeron en estas visitas. Estas se correlacionaron positivamente con precipitación mensual y negativamente con iluminación lunar, pero las correlaciones no fueron signifi cativas.
    [Show full text]
  • Hematological and Biochemical Profile of Captive Brown-Throated Sloths Bradypus Variegatus, Schinz 1825, Feeding on Ambay Pumpwood Cecropia Pachystachya Trécul 1847
    Arq. Bras. Med. Vet. Zootec., v.73, n.4, p.877-884, 2021 Hematological and biochemical profile of captive brown-throated sloths Bradypus variegatus, Schinz 1825, feeding on ambay pumpwood Cecropia pachystachya Trécul 1847 [Perfil hematológico e bioquímico da preguiça-de-garganta-marrom Bradypus variegatus, Schinz 1825, em cativeiro alimentando-se de embaúba Cecropia pachystachya Trécul 1847] M.C. Tschá1, G.P. Andrade2, P.V. Albuquerque2, A.R. Tschá3, G.S. Dimech3, C.J.F.L. Silva1, E.T.N. Farias3, M.J.A.A.L. Amorim2 1Aluno de pós-graduação – Universidade Federal Rural de Pernambuco ˗ Recife, PE 2Universidade Federal Rural de Pernambuco ˗ Recife, PE 3Centro Universitário - Facol ˗UNIFACOL Vitória de Santo Antão, PE ABSTRACT The aim of this study was to establish reference parameters for the hematological and biochemical levels of five healthy captive sloths of the species Bradypus variegatus (brown-throated sloth) feeding on Cecropia pachystachya (Ambay pumpwood), alternating with a period of free diet in the Dois Irmãos State Park (DISP) Recife, Pernambuco – Brazil. Keywords: tests, hematology, biochemistry, ambay pumpwood, sloths RESUMO O objetivo da presente pesquisa foi estabelecer parâmetros de referência para níveis hematológicos e bioquímicos, de cinco preguiças sadias, da espécie Bradypus variegatus (preguiça-de-garganta-marrom), em cativeiro, alimentando-se de Cecropia pachystachya (embaúba) em períodos alternados com dieta livre, no Parque Estadual de Dois Irmãos (PEDI) Recife, Pernambuco-Brasil. Palavras-chave: exames, hematologia, bioquímica, embaúba, bicho-preguiça INTRODUCTION (International Union for Conservation of Nature) as being of low concern (LC). This species has Sloths, like anteaters, belong to the order Pilosa an ample distribution in the Neotropical region, (Rezende et al., 2013).
    [Show full text]
  • Neotropical Mammal Diversity and the Great American Biotic Interchange: Spatial and Temporal Variation in South America’S Fossil Record
    REVIEW ARTICLE published: 05 January 2015 doi: 10.3389/fgene.2014.00451 Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record Juan D. Carrillo 1,2*, Analía Forasiepi 3, Carlos Jaramillo 2 and Marcelo R. Sánchez-Villagra 1 1 Paläontologisches Institut und Museum, University of Zurich, Zurich, Switzerland 2 Smithsonian Tropical Research Institute, Panama City, Panama 3 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET Mendoza, Mendoza, Argentina Edited by: The vast mammal diversity of the Neotropics is the result of a long evolutionary history. James Edward Richardson, Royal During most of the Cenozoic, South America was an island continent with an endemic Botanic Garden Edinburgh, UK mammalian fauna. This isolation ceased during the late Neogene after the formation Reviewed by: of the Isthmus of Panama, resulting in an event known as the Great American Biotic William Daniel Gosling, University of Amsterdam, Netherlands Interchange (GABI). In this study, we investigate biogeographic patterns in South America, Bruce D Patterson, Field Museum of just before or when the first immigrants are recorded and we review the temporal Natural History, USA and geographical distribution of fossil mammals during the GABI. We performed a *Correspondence: dissimilarity analysis which grouped the faunal assemblages according to their age and Juan D. Carrillo, Paläontologisches their geographic distribution. Our data support the differentiation between tropical and Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 temperate assemblages in South America during the middle and late Miocene. The Zürich, Switzerland GABI begins during the late Miocene (∼10–7 Ma) and the putative oldest migrations are e-mail: [email protected] recorded in the temperate region, where the number of GABI participants rapidly increases after ∼5 Ma and this trend continues during the Pleistocene.
    [Show full text]
  • Sloth Biology: an Update on Their Physiological Ecology, Behavior and Role As Vectors of Arthropods and Arboviruses
    Brazilian Journal of Medical and Biological Research (2001) 34: 9-25 Biology of the sloth 9 ISSN 0100-879X Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses D.P. Gilmore2, 1Departamento de Fisiologia e Farmacologia, C.P. Da Costa1 and Universidade Federal de Pernambuco, Recife, PE, Brasil D.P.F. Duarte1 2Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK Abstract Correspondence This is a review of the research undertaken since 1971 on the behavior Key words C.P. Da Costa and physiological ecology of sloths. The animals exhibit numerous · Sloths Departamento de Fisiologia e fascinating features. Sloth hair is extremely specialized for a wet · Ecology Farmacologia, UFPE · tropical environment and contains symbiotic algae. Activity shows Behavior 50670-901 Recife, PE · Parasites circadian and seasonal variation. Nutrients derived from the food, Brasil · Bradypus Fax: +55-81-271-8350 particularly in Bradypus, only barely match the requirements for · Choloepus E-mail: [email protected] energy expenditure. Sloths are hosts to a fascinating array of commen- sal and parasitic arthropods and are carriers of various arthropod- Research supported by CNPq and borne viruses. Sloths are known reservoirs of the flagellate protozoan FACEPE. D.P. Gilmore is the which causes leishmaniasis in humans, and may also carry trypano- recipient of a Royal Society and somes and the protozoan Pneumocystis carinii. Brazilian Academy of Sciences International Exchange fellowship. Introduction ela, French Guiana, Ecuador, Peru, Brazil Received April 12, 2000 and Bolivia. The species is still common, but Accepted August 7, 2000 We have recently reviewed the literature its numbers are fewer in areas where it coex- in terms of the physiological studies carried ists with the three-toed sloth.
    [Show full text]
  • Layout Sloth-3.P65
    FAKE PAPER (SCQ) Hyperactive sloths leads to isolation of a new compound Laura Schlobies§, Rachel Pan*, Chia-Chi Huang‡ , Katherine Fenton†§ & Harpreet Gill* *Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK †MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK ‡ Department of Biology, University of California, Riverside, California 92521,USA §Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK §Abteilung Meereszoologie, Institut fu¨r Meereskunde, Du¨sternbrooker Weg 20,D-24105 Kiel, Germany The observation of hyperactive three-toed sloths, Bradypus variegates, on the island of Barro Colorado is due to the addition of Panamae caenaela to their diets. P. caenaela is only found on the Barro Colorado Island which explains why only hyperactive sloths were found on the Barro Colorado Island. Using gas chromatography/ mass spectrometry analysis, we were able to isolate the compound responsible for the hyperactive behaviour of the sloth. The compound was determined to be N-methyl-1-(3,4- methylenedioxyphenyl)-2aminopropane. We have named it MMAP for short. The Barro Colorado Island (BCI) of Panama was formed in 1914. The comprise most of the three-toed sloths’ diets16,20. However, a recent iden- island was separated from the mainland when the Chagras River was tification of an epiphytic plant, Panamae caenaela, exclusive to BCI is dammed to form the infamous Panama Canal4. After the formation of commonly seen in the BCI sloths’ diet due to its relatively easy digest- the island, the Smithsonian Tropical Research Institute built a research ibility by the animal18.
    [Show full text]
  • Premaxillae of the Extinct Megalonychid Sloths Acratocnus, Neocnus, and Megalonyx, and Their Phylogenetic Implication
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282505841 Premaxillae of the Extinct Megalonychid Sloths Acratocnus, Neocnus, and Megalonyx, and their Phylogenetic Implication.... Article in Journal of Mammalian Evolution · September 2015 DOI: 10.1007/s10914-015-9308-7 CITATIONS READS 2 169 4 authors, including: Lauren Lyon H. Gregory McDonald East Tennessee State University BLM - The Bureau of Land Management Salt … 8 PUBLICATIONS 2 CITATIONS 127 PUBLICATIONS 2,512 CITATIONS SEE PROFILE SEE PROFILE Timothy J. Gaudin University of Tennessee at Chattanooga 61 PUBLICATIONS 1,618 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Digital endocasts of extinct and extant sloths View project Palaeobiology and functional anatomy of fossil Carnivora View project All content following this page was uploaded by Timothy J. Gaudin on 27 November 2015. The user has requested enhancement of the downloaded file. Premaxillae of the Extinct Megalonychid Sloths Acratocnus, Neocnus, and Megalonyx, and their Phylogenetic Implications (Mammalia, Xenarthra) Lauren M. Lyon, Chelsea Powell, H. Gregory McDonald & Timothy J. Gaudin Journal of Mammalian Evolution ISSN 1064-7554 J Mammal Evol DOI 10.1007/s10914-015-9308-7 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website.
    [Show full text]
  • New Records of Bradypus Torquatus (Pilosa
    New Records of Bradypus torquatus (Pilosa: 37°33'W), in the municipality of Arauá (Figure 1), Bradypodidae) from Southern Sergipe, Brazil during a survey of local Callicebus populations (Jeru- salinsky et al., 2006). The adult sloth was seen at 14–14:30 h moving and feeding approximately 10 m Renata Rocha Déda Chagas above the ground in the crown of a jitaí tree (Apuleia João Pedro Souza-Alves leiocarpa) in a relatively small, disturbed fragment of Leandro Jerusalinsky less than 25 hectares. While local residents indicated Stephen F. Ferrari that Callicebus was also present in the fragment, this was not confirmed during the survey. One of the main threats to the survival of the endan- gered maned sloth (Bradypus torquatus) is its relatively Bradypus torquatus was also observed during mammal restricted geographic range, especially in comparison surveys at the Fazenda Trapsa (11°12'S, 37°14'W), with the other mainland species of the genus (Aguiar an abandoned farm in the municipality of Itapo- and Fonseca, 2008; Chiarello, 2008). This range ranga d’Ajuda, just south of the state capital Aracaju is basically restricted to the coastal Atlantic Forest (Figure 1). This site encompasses a mosaic of Atlantic between eastern Rio de Janeiro and southern Sergipe Forest fragments that vary in size from a few dozen (Fonseca and Aguiar, 2004; Lara-Ruiz and Chiarello, to more than a hundred hectares, with a total cover 2005), and thus also coincides with the region of of more than 500 ha. Maned sloths were observed Brazil with the longest history of European coloniza- in three of these fragments, denominated Alagado tion and deforestation (Dean, 1995).
    [Show full text]
  • Evolution of Body Size in Anteaters and Sloths (Xenarthra, Pilosa): Phylogeny, Metabolism, Diet and Substrate Preferences N
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106, 289–301, 2017 Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences N. Toledo1,2, M.S. Bargo2,3, S.F. Vizcaı´no1,2, G. De Iuliis4 and F. Pujos5 1 CONICET – La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina. Email: [email protected] 2 Divisio´n Paleontologı´a Vertebrados, Unidades de Investigacio´n Anexo Museo FCNyM-UNLP, Av. 60 y 122, 1900, La Plata, Argentina. 3 Comisio´n de Investigaciones Cientı´ficas, Buenos Aires, Argentina. 4 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto M5S 3G5, Ontario, Canada; Section of Palaeobiology, Department of Natural History, Royal Ontario Museum, 100 Queen’s Park Crescent, Toronto M5S 2C6, Ontario, Canada. 5 IANIGLA,CCT-CONICET-Mendoza,Av.RuizLeals/n,ParqueGral.SanMartı´n, 5500 Mendoza, Argentina. ABSTRACT: Pilosa include anteaters (Vermilingua) and sloths (Folivora). Modern tree sloths are represented by two genera, Bradypus and Choloepus (both around 4–6 kg), whereas the fossil record is very diverse, with approximately 90 genera ranging in age from the Oligocene to the early Holocene. Fossil sloths include four main clades, Megalonychidae, Megatheriidae, Nothrotheriidae, and Mylo- dontidae, ranging in size from tens of kilograms to several tons. Modern Vermilingua are represented by three genera, Cyclopes, Tamandua and Myrmecophaga, with a size range from 0.25 kg to about 30 kg, and their fossil record is scarce and fragmentary. The dependence of the body size on phylo- genetic pattern of Pilosa is analysed here, according to current cladistic hypotheses.
    [Show full text]
  • Bradypus Torquatus)
    Mammalian Biology 80 (2015) 431–439 Contents lists available at ScienceDirect Mammalian Biology jou rnal homepage: www.elsevier.com/locate/mambio Original Investigation The home range and multi-scale habitat selection of the threatened maned three-toed sloth (Bradypus torquatus) a b,∗ c c Nereyda Falconi , Emerson M. Vieira , Julio Baumgarten , Deborah Faria , c Gastón Andrés Fernandez Giné a Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas, Programa de Pós-graduac¸ ão em Ecologia e Conservac¸ ão da Biodiversidade, Rodovia Ilhéus Itabuna, Km 16, CEP 45650-000, Ilhéus, Bahia, Brazil b Laboratório de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, C.P. 04457, Brasília, DF 70910-900, Brazil c Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservac¸ ão, Rodovia Ilhéus Itabuna, Km 16, CEP 45650-000, Ilhéus, Bahia, Brazil a r t i c l e i n f o a b s t r a c t Article history: Habitat selection is a scale-dependent process of paramount importance to the understanding of how Received 30 July 2014 species deal with environmental variation. This process has practical implications for wildlife conserva- Accepted 30 January 2015 tion, aiding in the identification of key resources for animals and in the definition of scales relevant to Handled by Francesco Ferretti the proposal of practical conservation actions. In this study, we investigated in different spatial scales the Available online 7 February 2015 habitat selection of the maned three-toed sloth (Bradypus torquatus), a threatened and endemic arboreal folivore of the Atlantic rainforest (vulnerable, sensu IUCN).
    [Show full text]
  • A New Genus and Species of Ground Sloth (Mammalia, Xenarthra, Megalonychidae) from the Hemphillian (Late Miocene) of Jalisco, Mexico
    Journal of Paleontology, 91(5), 2017, p. 1069–1082 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2017.45 Increased xenarthran diversity of the Great American Biotic Interchange: a new genus and species of ground sloth (Mammalia, Xenarthra, Megalonychidae) from the Hemphillian (late Miocene) of Jalisco, Mexico H. Gregory McDonald1 and Oscar Carranza-Castañeda2 1Bureau of Land Management, Utah State Office, 440 West 200 South, Salt Lake City, Utah USA 84101-1345 〈[email protected]〉 2Centro de Geociencias, Campus Juriquilla, Universidad Nacional Autónoma de México, C.P. 76230, Juriquilla, Querétaro, México 〈[email protected]〉 Abstract.—A new genus and species of megalonychid sloth, Zacatzontli tecolotlanensis n. gen. n. sp., is described from the late Hemphillian of Jalisco, Mexico. Comparison and analysis of the type specimen, a mandible, with other megalonychid sloths shows a closer relationship to South American taxa than those from North America or the Caribbean. This suggests that during the early stages of the Great American Biotic Interchange there were two separate dispersal events of megalonychid sloths—an earlier one represented by Pliometanastes and the later one by Zacatzontli n. gen. While the morphology of the spout of Zacatzontli more closely resembles that of Megalonyx, based on the current record, Zacatzontli does does not enter North America until after the evolution of Megalonyx from Pliometanastes. The role of the northern neotropics in South America as a staging area for South American taxa that entered North America is discussed. Introduction various early Blancan localities, dated at 4.7 Ma. We note that the Hemphillian-Blancan boundary as used here (4.8–4.7 Myr; Ongoing research of the geology and paleontology of the late Flynn et al., 2005) is later than that of Lindsay et al.
    [Show full text]