Yangtze River Four-Bridge Construction Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Miraculous Ningguo City of China and Analysis of Influencing Factors of Competitive Advantage
www.ccsenet.org/jgg Journal of Geography and Geology Vol. 3, No. 1; September 2011 A Miraculous Ningguo City of China and Analysis of Influencing Factors of Competitive Advantage Wei Shui Department of Eco-agriculture and Regional Development Sichuan Agricultural University, Chengdu Sichuan 611130, China & School of Geography and Planning Sun Yat-Sen University, Guangzhou 510275, China Tel: 86-158-2803-3646 E-mail: [email protected] Received: March 31, 2011 Accepted: April 14, 2011 doi:10.5539/jgg.v3n1p207 Abstract Ningguo City is a remote and small county in Anhui Province, China. It has created “Ningguo Miracle” since 1990s. Its general economic capacity has been ranked #1 (the first) among all the counties or cities in Anhui Province since 2000. In order to analyze the influencing factors of competitive advantages of Ningguo City and explain “Ningguo Miracle”, this article have evaluated, analyzed and classified the general economic competitiveness of 61 counties (cities) in Anhui Province in 2004, by 14 indexes of evaluation index system. The result showed that compared with other counties (cities) in Anhui Province, Ningguo City has more advantages in competition. The competitive advantage of Ningguo City is due to the productivities, the effect of the second industry and industry, and the investment of fixed assets. Then the influencing factors of Ningguo’s competitiveness in terms of productivity were analyzed with authoritative data since 1990 and a log linear regression model was established by stepwise regression method. The results demonstrated that the key influencing factor of Ningguo City’s competitive advantage was the change of industry structure, especially the change of manufacture structure. -
Landscape Analysis of Geographical Names in Hubei Province, China
Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors. -
A Simple Model to Assess Wuhan Lock-Down Effect and Region Efforts
A simple model to assess Wuhan lock-down effect and region efforts during COVID-19 epidemic in China Mainland Zheming Yuan#, Yi Xiao#, Zhijun Dai, Jianjun Huang & Yuan Chen* Hunan Engineering & Technology Research Centre for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha, Hunan, 410128, China. #These authors contributed equally to this work. * Correspondence and requests for materials should be addressed to Y.C. (email: [email protected]) (Submitted: 29 February 2020 – Published online: 2 March 2020) DISCLAIMER This paper was submitted to the Bulletin of the World Health Organization and was posted to the COVID-19 open site, according to the protocol for public health emergencies for international concern as described in Vasee Moorthy et al. (http://dx.doi.org/10.2471/BLT.20.251561). The information herein is available for unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited as indicated by the Creative Commons Attribution 3.0 Intergovernmental Organizations licence (CC BY IGO 3.0). RECOMMENDED CITATION Yuan Z, Xiao Y, Dai Z, Huang J & Chen Y. A simple model to assess Wuhan lock-down effect and region efforts during COVID-19 epidemic in China Mainland [Preprint]. Bull World Health Organ. E-pub: 02 March 2020. doi: http://dx.doi.org/10.2471/BLT.20.254045 Abstract: Since COVID-19 emerged in early December, 2019 in Wuhan and swept across China Mainland, a series of large-scale public health interventions, especially Wuhan lock-down combined with nationwide traffic restrictions and Stay At Home Movement, have been taken by the government to control the epidemic. -
Provenance of the Zhou Dynasty Bronze Vessels Unearthed from Zongyang County, Anhui Province, China: Determined by Lead Isotopes and Trace Elements
Provenance of the Zhou Dynasty Bronze Vessels Unearthed from Zongyang County, Anhui Province, China: Determined by Lead Isotopes and Trace Elements Yanjie Wang ( [email protected] ) Anhui University https://orcid.org/0000-0002-5768-5464 Guofeng Wei Anhui University Qiang Li Anhui University Xiaoping Zheng Wenzhou Party Institute of Cultural Relics and Archaeology Danchun Wang Anhui Museum Research Article Keywords: Bronze vessels, Mining and smelting, Lead isotopes, Trace elements, Provenance Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-176870/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Heritage Science on August 20th, 2021. See the published version at https://doi.org/10.1186/s40494-021-00566-5. Page 1/20 Abstract Thirteen Zhou Dynasty bronze vessels and two slags from Zongyang County along the north bank of the Yangtze River in Anhui were analyzed by LA-MC-ICP-MS and EDXRF. The results of the lead isotope analysis showed that there were two kinds of lead materials in the Zongyang bronzes. Class which could have originated from the Wannan region were mainly used in the Western Zhou and the following Spring and Autumn periods; while Class , possibly from the local mines in Zongyang County, were mainly present in the Warring States period. Such a shift in the ore material sources is also revealed by the analysis of the trace elements of the Zongyang bronzes. With reference to relevant historical documents, it can be inferred that the transformation of the bronze material sources could be related to the changes of the political situation during the Zhou Dynasty. -
Supplementary Information Authors
Supplementary Information Authors: Xiaowei Song a,b, Yongpei Haoa,c* Manuscript title: Vehicular emission inventory and reduction scenario analysis in the Yangtze River Delta, China Table S1: Vehicular emission standards implementation timetable in the Yangtze River Delta, China Table S2: The survival rates of vehicles Table S3: Annual average vehicle kilometers travelled data for each vehicle category in the YRD (km) Table S4: The predicted value of vehicle kilometers travelled (km/year) Table S5: Vehicle categories in China corresponding with those in COPERT Ⅳ Table S6: The sulfur content limit in gasoline and diesel in the Yangtze River Delta (mg/kg) Table S7: Vehicular emission standards implementation timetable Table S8: The emission factors of hybrid and natural gas vehicles Table S9: The single vehicle emissions in well-to-tank phase in 2020 (g/km) Table S1. Vehicular emission standards implementation timetable in the Yangtze River Delta, China. Vehicle State I State II State III State IV State Regions types V Shanghai PC, LDV 1999 2003 2008 2010 2014 BUS, HDT 2001 2005 2008 2013 / MC 2002 2004 2009 / / Nanjing PC, LDV 2000/2001 2004/2006 2008 2011 / BUS, HDT 2001 2005 2008 2013 / MC 2002 2004 2010 / / Hangzhou PC, LDV 2000/2001 2004/2006 2008 2011 / BUS, HDT 2001 2005 2008 2013 / MC 2002 2004 2010 / / Other cities PC, LDV 2000/2001 2004/2006 2008 2012 / BUS, HDT 2001 2005 2008 2015 / MC 2002 2004 2010 / / PC: passenger car, LDV: light-duty vehicle, BUS: bus, HDT: heavy-duty truck, MC: motorcycle. Table S2. The survival rates of -
Safety Navigation Control of Huangshi Bridge
Advances in Engineering Research, volume 166 3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018) Safety Navigation Control of Huangshi Bridge Tongtong Lu1,a,*, Zeyuan Shao1,b, Huachao Peng1 and Wanzheng Ai2,c, Honggang Zhang2 1Marine College, Zhejiang Ocean University, Zhoushan, Zhejiang, P. R. China 2Marine College, Zhejiang Ocean University, Zhoushan, Zhejiang, P. R. China a [email protected], b [email protected], c [email protected] *corresponding author Keywords: Bridge area; Ships; Security; Navigation; Control. Abstract: Based on the analysis of the hydrological conditions, navigable conditions and navigable accidents of Huangshi Bridge, this paper puts forward the safety navigable control measures of Huangshi Bridge . 1. Introduction Huangshi Yangtze River Bridge is a super large bridge on National Highway 318, located in Huangshi City, Hubei Province, in the middle reaches of the Yangtze River. The length of the bridge is 2580.08 meters, the length of the main bridge is 1060 meters and the width of the bridge is 20m.Yellowstone bank approach bridge 840.7 meters long, consisting of continuous box girder bridge and bridge deck continuous T-beam bridge; Xishui shore approach bridge is 679.21 meters long and consists of a continuous T-beam bridge on the deck. The main pier adopts 28m diameter double-wall steel cofferdam and 16 Φ 3-meter bored cast-in-place pile foundation, which has high anti-ship impact capability. Navigable clearance 200x24 meters, can accommodate 5000 tons of single ships or 32000 tons of large fleet up and down navigation. However, since the construction of the bridge, there have been many accidents, and have been cited as teaching materials with improper distribution of bridge holes.[1]. -
Study on the Spatial-Temporal Pattern Evolution and Countermeasures of Regional Coordinated Development in Anhui Province, China
Current Urban Studies, 2020, 8, 115-128 https://www.scirp.org/journal/cus ISSN Online: 2328-4919 ISSN Print: 2328-4900 Study on the Spatial-Temporal Pattern Evolution and Countermeasures of Regional Coordinated Development in Anhui Province, China Yizhen Zhang1,2*, Weidong Cao1,2, Kun Zhang3 1School of Geography and Tourism, Anhui Normal University, Wuhu, China 2Urban and Regional Planning Research Center of Anhui Normal University, Wuhu, China 3College of Tourism, Huaqiao University, Quanzhou, China How to cite this paper: Zhang, Y. Z., Cao, Abstract W. D., & Zhang, K. (2020). Study on the Spatial-Temporal Pattern Evolution and Regional coordinated development was an important measure to resolve new Countermeasures of Regional Coordinated contradictions in the new era, and it has gradually become a hotspot in geog- Development in Anhui Province, China. raphy research. At three time points of 2010, 2013, and 2017, by constructing Current Urban Studies, 8, 115-128. an evaluation index system for the city comprehensive competitiveness, the https://doi.org/10.4236/cus.2020.81005 entropy method and the coupling coordination model were used to study the Received: March 2, 2020 coordinated development pattern of cities in Anhui Province. Moreover, we Accepted: March 27, 2020 tried to raise the issue of regional coordinated development in Anhui Prov- Published: March 30, 2020 ince and corresponding countermeasures. The results showed that the com- Copyright © 2020 by author(s) and prehensive competitiveness of cities in Anhui Province has strong spatio- Scientific Research Publishing Inc. temporal heterogeneity. The spatial development pattern with Hefei as the This work is licensed under the Creative core was more obvious. -
News Release: Ferrotec Holdings Corporation (6890 JASDAQ)
News Release: Ferrotec Holdings Corporation (6890 JASDAQ) August 30, 2019 Notice of Establishment of a New Company in China for Semiconductor Silicon Wafer Recycling Business At the meeting of the Board of Directors held on August 30, 2019, we resolved that our Chinese subsidiary, Shanghai Shenhe Thermo-Magnetics Electronics Co., Ltd., and Tongling Development Investment Group Co., Ltd., an investment fund under the Chinese government in Tongling City, Anhui Province, will jointly invest in the establishment of a new company in Tongling City, Anhui Province to enter the semiconductor silicon wafer recycling business. 1. Background to establishment of new company In China, capital expenditures by semiconductor manufacturers are expected to continue to increase due to the rapid diffusion of IoT, 5G, and EV and the acceleration of the trend toward domestic production of semiconductors caused by the trade conflicts between the United States and China. In this situation, in Hangzhou City, Zhejiang Province, we are currently preparing to mass-produce 200mm and 300mm medium and large diameter semiconductor wafers (200mm: monthly production of 350 thousand wafers, and 300mm: monthly production of 30 thousand wafers (pilot line)) from FY2021. On the other hand, Chinese semiconductor manufacturers are seeing rising demand for recycling services for specialized wafers (monitor wafers), which are used in large quantities to stabilize production lines prior to the start of mass production. Under these circumstances, we believe that this recycling business will generate synergies in the future because it is compatible with our existing businesses by transferring the resources of our semiconductor wafer business and the know-how of our precision recycling and cleaning business. -
2.2 Anhui Province Anhui Wanzhong Group Co., Ltd.1, Affiliated with The
2.2 Anhui Province Anhui Wanzhong Group Co., Ltd.1, affiliated with the Anhui Provincial Prison Administration Bureau, has 27 prison enterprises Legal representative of the prison company: Xu Xiaogang, Chairman of the company and Director of the Anhui Provincial Prison Administration Bureau.2 The company’s registered capital is 443.469 million yuan. Its total assets amounted to 1.5 billion yuan. Founded in December 1996, it has 19 wholly-owned subsidiaries (other information indicates that it has 27 prison enterprises) spreading out in 11 cities and counties in the province, with more than 7,000 regular workers and 47,000 prisoners. Its main products include railway sleeper fasteners, medium and low-pressure valves, automotive forgings, power accessories, textiles and garments, cement and building materials, specialty agricultural products, various types of labor processing products and hotel catering and other tertiary industry services. In 2007, the group realized an operating income of 1.44 billion yuan and a profit of 82 million yuan, and it paid taxes of 70.9 million yuan. Its total profit and taxes were 156 million yuan. No. Company Name of the Legal Person Legal Registered Business Scope Company Notes on the Prison Name Prison, to and representative / Capital Address which the Shareholder(s) Title Company Belongs 1 Anhui Anhui Anhui Xu Xiaogang 44.3469 Capital management; project 100 Qingxi The Anhui Provincial Prison Administration Province Provincial Provincial Chairman of Anhui million yuan investment, management and Road, Shushan Bureau4 is the administrative agency of the Wanzhong Prison People’s Wanzhong Group operation; material supply and District, Hefei provincial government responsible for the Group Co., Administrati Government Co., Ltd.; Director product sale related to investment City, Anhui administration of prisons throughout the province. -
Are China's Water Resources for Agriculture Sustainable? Evidence from Hubei Province
sustainability Article Are China’s Water Resources for Agriculture Sustainable? Evidence from Hubei Province Hao Jin and Shuai Huang * School of Public Economics and Administration, Shanghai University of Finance and Economics, Shanghai 200433, China; [email protected] * Correspondence: [email protected]; Tel.: +86-21-65903686 Abstract: We assessed the sustainability of agricultural water resources in Hubei Province, a typical agricultural province in central China, for a decade (2008–2018). Since traditional evaluation models often consider only the distance between the evaluation point and the positive or negative ideal solution, we introduce gray correlation analysis and construct a new sustainability evaluation model. Our research results show that only one city had excellent sustainable development capacity of agricultural water resources, and the evaluation value of eight cities fluctuated by around 0.5 (the median of the evaluation result), while the sustainable development capacity of agricultural water resources in other cities was relatively poor. Our findings not only reflect the differences in the natural conditions of water resources among various cities in Hubei, but also the impact of the cities’ policies to ensure efficient agricultural water use for sustainable development. The indicators and methods Citation: Jin, H.; Huang, S. Are in this research are not difficult to obtain in most countries and regions of the world. Therefore, the China’s Water Resources for indicator system we have established by this research could be used to study the sustainability of Agriculture Sustainable? Evidence agricultural water resources in other countries, regions, or cities. from Hubei Province. Sustainability 2021, 13, 3510. https://doi.org/ Keywords: water resources; agricultural water resources; sustainability; gray correlation analysis; 10.3390/su13063510 evaluation model Academic Editors: Daniela Malcangio, Alan Cuthbertson, Juan 1. -
Map 4-7-4 City Planning of Tongling Mun/Ipality , I4-2-5
E685 Vol. 4 World Bank Financed Project Anhui Expressway Project II Public Disclosure Authorized Public Disclosure Authorized Tongling-Tangkou Expressway Project Environment Assessment Report (Third Edition) Public Disclosure Authorized World Bank Financed Project Office of Anhui Provincial Communications Dzpartment Public Disclosure Authorized Dec. 2002 FILE COPY Tongling-Tangkou highway project EIA CONTENTS Chapter I Introduction ............................................ I 1.1 Project Background ............................................ I 1.2 Progress of EA ........................................... .1 1.3 Purpose of EA ............................................. 2 1.4 Bases of Assessment ........................................... .2 1.5 Technical Process for EA ....... ..................................... 3 1.6 Scope of Assessment ............................................ 5 1.7 Methodology ............................................ 5 1.8 Applicable Standards ............................................ 5 1.8.1 Ambient Air Quality Standards ........................................... 6 1.8.2 Environmental Noise Standards .................. ......................... 6 1.8.3 Surface Water Quality Standards ............................................ 6 Chapter 2 Environmental Assessment Team ......... .................................. 8 Chapter 3 Project Description ............................................ 10 3.1 Direct Project Benefit Area ........................................... 10 3.2 Geographical Location ..... -
Hubei Province Overview
Mizuho Bank China Business Promotion Division Hubei Province Overview Abbreviated Name E Provincial Capital Wuhan Administrative 12 cities, 1 autonomous Divisions prefecture, and 64 counties Secretary of the Li Hongzhong; Provincial Party Wang Guosheng Committee; Mayor 2 Size 185,900 km Shaanxi Henan Annual Mean Hubei Anhui 15–17°C Chongqing Temperature Hunan Jiangxi Annual Precipitation 800–1,600 mm Official Government www.hubei.gov.cn URL Note: Personnel information as of September 2014 [Economic Scale] Unit 2012 2013 National Share (%) Ranking Gross Domestic Product (GDP) 100 Million RMB 22,250 24,668 9 4.3 Per Capita GDP RMB 38,572 42,613 14 - Value-added Industrial Output (enterprises above a designated 100 Million RMB 9,552 N.A. N.A. N.A. size) Agriculture, Forestry and Fishery 100 Million RMB 4,732 5,161 6 5.3 Output Total Investment in Fixed Assets 100 Million RMB 15,578 20,754 9 4.7 Fiscal Revenue 100 Million RMB 1,823 2,191 11 1.7 Fiscal Expenditure 100 Million RMB 3,760 4,372 11 3.1 Total Retail Sales of Consumer 100 Million RMB 9,563 10,886 6 4.6 Goods Foreign Currency Revenue from Million USD 1,203 1,219 15 2.4 Inbound Tourism Export Value Million USD 19,398 22,838 16 1.0 Import Value Million USD 12,565 13,552 18 0.7 Export Surplus Million USD 6,833 9,286 12 1.4 Total Import and Export Value Million USD 31,964 36,389 17 0.9 Foreign Direct Investment No.