Geology & Geophysics News

Total Page:16

File Type:pdf, Size:1020Kb

Geology & Geophysics News GEOLOGY & GEOPHYSICS NEWS Yale University I Department of Geology and Geophysics Spring 2007 Chairman’s Letter David Bercovici The Department of Geology and Geophysics continues to be a vibrant community of scientists with a tremendous diversity of interests. Our student body, both graduate students and undergraduate majors, is truly impressive and increasingly international. This year’s entering class of graduate students includes people from Denmark, Japan, China, and even Lowell, Massachusetts. Our growing postdoctoral program numbers nearly 20 scholars and we have plans to Living Fossil Garden Planted in Front of KGL increase it considerably in the next few years; this A garden of ancient living plants has been planted in program draws scientists from around the world, front of the KGL on a small plot formerly graced by including Australia, Korea, Israel, Japan, France, blacktop and dumpsters. Each of the plants (except for Ireland, Canada, and Russia. the inevitable weeds) belongs to a species or genus Our young faculty colleagues continue to win that has survived for tens of millions of years. Unlike awards and bring distinction to the Department. animals, plants evolve very slowly. Thus, the otherwise Most recently Jun Korenaga was awarded the unremarkable yew shrub in this garden belongs to Macelwane Medal, the outstanding young scientist a genus that dates back some 175 million years and award, by the American Geophysical Union. We may have provided graze for the sauropod dinosaurs. are also presently running two faculty searches, Several other genera, like the plum-yew, the kadsura in isotope geochemistry and mineral physics, tree, and the pachysandra that forms the ground cover, and so by this time next year we hope to have survived the gigantic asteroid impact that incinerated even more new young colleagues. Given the the dinosaurs and about 80 percent of terrestrial life- outstanding students, postdocs, and colleagues in forms at the end of the Cretaceous. Several of the this department, it is truly a privilege to have been species, like the dove tree, date back some 55 to 65 asked to serve as Chairman. million years to the time when earth’s vegetation was I also report with great pleasure the promotions regrouping after the catastrophe. of Ruth Blake, David Evans, and Mark Pagani to The species were selected because fossil or Associate Professor on term. Regretfully, I must molecular evidence points to their longevity. They also report the departure of Peter Reiners, who in also have to be able to survive the rigors of our New the late summer of 2006 accepted a position at England climate and not grow too large for the space. the University of Arizona. We were sad to see Peter continued on page 2 leave but wish him well in his new position. One of our distinguished senior colleagues has Inside this Issue decided to retire. Bob Berner stepped down from Professor and up to Senior Research Scientist at Faculty News . 2 year’s end. The department held a symposium in Recent Graduate Students . 3 Bob’s honor, the details of which appear later in this Paleomagnetism at Yale . 4 newsletter. The Black Dog . 6 I close with two bits of sad news. First, the The Deep Scaly Project . 7 death of Betty Waage on August 4, 2006. Betty Alumni News . 9 was the wife of the late Karl Waage, longtime The George Gaylord Simpson Prize . 11 continued on page 2 Centennial of Economic Geology . 12 GeoloGy & Geophysics News spring 007 Letter continued from page 1 faculty News faculty member, former Director of Peabody Museum, and former Symposium “Changes on Earth” Honors Bob Berner Chairman of the Department. Second, the passing of Albert Robert A. Berner, the Alan M. Bateman Professor of Geology and Lincoln (Linc) Washburn G ’42, Geophysics, joined the faculty in 1966 and retired December 31, 2006. and former faculty member, on Bob has pioneered in several topics during his career; most recently January 30, 2007. Our sympathies the geologic history of atmospheric oxygen and carbon dioxide. In go out to the family members of recognition of his seminal studies he was honored with a two-day these former colleagues. symposium December 8 and 9, 2006. The symposium, titled “Changes on Earth: Processes and Records,” included presentations by past About the New Chairman students and collaborators. All of the papers are available at http://www. geology.yale.edu/seminars/bernersymp.html. David Bercovici assumed the role Widely known for his modeling of the carbon and sulfur cycles, of Chairman of the Department of Bob has calculated the evolution of atmospheric CO and O over the Geology and Geophysics on July 1, 2 2 Phanerozoic era. His studies 2006. His appointment is for three have encompassed the years. He joined the Department effect of CO on climate in January 2001 as a professor of 2 and the atmospheric geophysics. greenhouse effect, and David’s tertiary education the effect of changing commenced at Harvey Mudd College, O on animal evolution. Claremont, California, where he 2 Among the topics of his earned a BS, with a major in Physics current research, Berner and a minor in History, in 1982. His studies weathering and graduate studies were at UCLA the resulting effects on the where he earned a PhD in 1989 in Geophysics and Space Physics. geochemical carbon cycle. Bob Berner and former student Bernie Boudreau G ’85 His mentor at UCLA was Gerald His recent work has also Schubert, and his thesis was on interfaced with paleobiologists who study the emergence of vertebrates convection in the mantle of the Earth as land animals. Field studies over the course of his career have taken and other solid planets. him to such disparate locations as Hawaii, Bermuda, Iceland, New From UCLA David moved to Hampshire (Hubbard Brook), and the Pacific Cascades. Woods Hole for a year as a postdoc, Bob is a Member of the National Academy of Sciences and a Fellow then it was on to the University of the American Academy of Arts and Sciences. He is the recipient of of Hawaii for ten years where he the Doctor Honoris Causa from the Université Aix-Marseille (France). He eventually became Chairman before has also been awarded the Huntsman Medal in Oceanography (Canada), leaving in December 2000 to come the Goldschmidt Medal of the Geochemical Society, the Arthur L. Day to Yale. (Yes, that’s right, he left Medal of the Geological Society of America, and the Murchinson Medal Hawaii in December to move to New from the Geological Society of London. Recently the Geochemical England). He has received several Society dedicated an issue of its journal, Geochimica et Cosmochimica prestigious awards, including a Acta, to his long career in geochemistry. Macelwane Medal from the American A festive dinner on December 8 provided the opportunity for Geophysical Union in 1996, the same remembrances of Bob’s long career from graduate school days to the year he was elected to Fellowship in present. The chief roaster and master of ceremonies was Pat Wilde ’57, the Union. David’s research interests a graduate-school classmate. continue to be focused on mantle convection and geophysical fluid Garden continued from page 1 dynamics and he has attracted a very active group of graduate students A set of permanent labels introduces the plants and tells a little of and postdocs to work with him. their history. If you come to visit the department, take a few moments You can learn more about David’s to get acquainted with these incredible survivors or just to relax on activities on his web page at www. the bench in their midst. The garden was planned by Leo Hickey, our geology.yale.edu/~dberco. paleobotanist, with design and layout by Walter Debboli, Jr., Manager of Yale’s Grounds, whose department maintains it by their dedicated labor. GeoloGy & Geophysics News spring 007 faculty News Recent Graduate Students petrology of the province, and with The following have received Tom he looked hard at the data graduate degrees over the past Andrew Scott, the and drew conclusions, a real tour three years, or will get a degree Professor of Applied de force. at Commencement 2007. Paleobotany at the Royal Holloway Mathias Bernet, now Assistant University of Professor of Tectonics, University London, is with us as Visiting Stephen Sparks, of Grenoble, France. Professor for parts of 2006 and the Director of the Christopher Breeding, Research 2007. Andrew is a specialist on the Research Center Scientist, Gemological Institute of role of fire in the environment and for Environmental America, Carlsbad, CA. especially the past, present, and and Geophysical Jason Downs, Postdoctoral Fellow, future of wildfires; the entombment Flows at the University of Bristol Philadelphia Academy of Sciences. and preservation of plants by in the UK, is visiting for six months volcanic processes; and geological in 2006 and 2007. Steve’s position Walter Joyce, Collections Manager, uses of charcoal. While at Yale, he at Yale is the Edward P. Bass Vertebrate Paleontology, Peabody is interacting particularly with Bob Distinguished Visiting Scholar. Museum, Yale University. Berner on issues of climate and Steve was formerly the Chief Yuhong Liang, Postdoctoral Fellow, composition of the atmosphere Scientist at the Montserrat Volcano Emory University, Atlanta, GA. and on paleontology issues with Observatory; his research interests Rebecca Masters, Teaching at Leo Hickey and Derek Briggs. range from the generation of Collegiate School, Richmond, As we were going to press magmas and the role of fluids in VA and parttime Instructor, word came in that Andrew is to the crust, to nonlinear dynamics of Mary Washington College, be awarded the 2007 Gilbert H. volcanic eruptions, and the effects Fredericksburg, VA.
Recommended publications
  • Long-Term Rotational Effects on the Shape of the Earth and Its Oceans
    LONG-TERM ROTATIONAL EFFECTS ON THE SHAPE OF THE EARTH AND ITS OCEANS Jonathan Edwin Mound A thesis submitted in cooforrnity with the reqnhents for the degree of Doctor of Philosophy Gradiiate Depart ment of P hysics University of Toront O @ Copyright by Jonathan E. Mound 2001 . .. ilbitionsand et 9-Bib iogrephic SeMces -Iiographiques 395 WeIlington Street 395, ni6 Wellington ûttawa ON K1AOW OtEaweON KtAW Canada Canada The author has granted a non- L'auteur a accorde une licence ncm exdusive licence allouing the exclusive permettant à la National Library of Cana& to Bibliotheque natiode du Canada de reproduce, Ioan, distriibute or seli reproduire, prêter, distniuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reprociucbon sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. ttiesis nor substantial extracts &om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. LONG-TERM RQTATLONAL E-FFECTS ON THE SHAPE OF THE EARTH AND ITS OCEANS Doctor of Philosophy, 2001. Jonathan E. Mound Department of Physics, University of Toronto Abstract The centrifuga1 potent ial associated with the Eart h's rotation influences the shape of both the solid Earth and the oceaos. Changes in rotation t hus deform both the ocean and solid surfaces.
    [Show full text]
  • Testing the Axial Dipole Hypothesis for the Moon by Modeling the Direction of Crustal Magnetization J
    Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization J. Oliveira, M. Wieczorek To cite this version: J. Oliveira, M. Wieczorek. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2017, 122 (2), pp.383-399. 10.1002/2016JE005199. hal-02105528 HAL Id: hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528 Submitted on 21 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Geophysical Research: Planets RESEARCH ARTICLE Testing the axial dipole hypothesis for the Moon by modeling 10.1002/2016JE005199 the direction of crustal magnetization Key Points: • The direction of magnetization within J. S. Oliveira1 and M. A. Wieczorek1,2 the lunar crust was inverted using a unidirectional magnetization model 1Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France, 2Université Côte • The paleomagnetic poles of several d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France isolated anomalies are not randomly distributed, and some have equatorial latitudes • The distribution of paleopoles may Abstract Orbital magnetic field data show that portions of the Moon’s crust are strongly magnetized, be explained by a dipolar magnetic and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed field that was not aligned with the during the first several hundred million years of lunar history.
    [Show full text]
  • True Polar Wander of Mercury
    Mercury: Current and Future Science 2018 (LPI Contrib. No. 2047) 6098.pdf TRUE POLAR WANDER OF MERCURY. J. T. Keane1 and I. Matsuyama2; 1California Institute of Technology, Pasadena, CA 91125, USA ([email protected]); 2Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. Introduction: The spin of a planet is not constant to the Sun and subject to stronger tidal and rotational with time. Planetary spins evolve on a variety of time- forces. However, even with this corrected dynamical scales due to a variety of internal and external forces. oblateness, the required orbital configuration appears One process for changing the spin of a planet is true po- unreasonable−requiring semimajor axes <0.1 AU [5]. lar wander (TPW). TPW is the reorientation of the bulk An alternative explanation may be that a large fraction planet with respect to inertial space due to the redistri- of Mercury’s figure is a “thermal” figure, set Mercury’s bution of mass on or within the planet. The redistribu- close proximity to the Sun and its unique spin-orbit res- tion of mass alters the planet’s moments of inertia onance [7-8] (which are related to the planet’s spherical harmonic de- True Polar Wander of Mercury: While Mercury’s gree/order-2 gravity field). This process has been meas- impact basins and volcanic provinces cannot explain ured on the Earth, and inferred for a variety of solar sys- Mercury’s anomalous figure, they still have an im- tem bodies [1]. TPW can have significant consequences portant effect on planet’s moments of inertia and orien- for the climate, tectonics, and geophysics of a planet.
    [Show full text]
  • True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T
    True Polar Wander: linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T. D. Raub, Yale University, New Haven, CT, USA J. L. Kirschvink, California Institute of Technology, Pasadena, CA, USA D. A. D. Evans, Yale University, New Haven, CT, USA © 2007 Elsevier SV. All rights reserved. 5.14.1 Planetary Moment of Inertia and the Spin-Axis 565 5.14.2 Apparent Polar Wander (APW) = Plate motion +TPW 566 5.14.2.1 Different Information in Different Reference Frames 566 5.14.2.2 Type 0' TPW: Mass Redistribution at Clock to Millenial Timescales, of Inconsistent Sense 567 5.14.2.3 Type I TPW: Slow/Prolonged TPW 567 5.14.2.4 Type II TPW: Fast/Multiple/Oscillatory TPW: A Distinct Flavor of Inertial Interchange 569 5.14.2.5 Hypothesized Rapid or Prolonged TPW: Late Paleozoic-Mesozoic 569 5.14.2.6 Hypothesized Rapid or Prolonged TPW: 'Cryogenian'-Ediacaran-Cambrian-Early Paleozoic 571 5.14.2.7 Hypothesized Rapid or Prolonged TPW: Archean to Mesoproterozoic 572 5.14.3 Geodynamic and Geologic Effects and Inferences 572 5.14.3.1 Precision of TPW Magnitude and Rate Estimation 572 5.14.3.2 Physical Oceanographic Effects: Sea Level and Circulation 574 5.14.3.3 Chemical Oceanographic Effects: Carbon Oxidation and Burial 576 5..14.4 Critical Testing of Cryogenian-Cambrian TPW 579 5.14A1 Ediacaran-Cambrian TPW: 'Spinner Diagrams' in the TPW Reference Frame 579 5.14.4.2 Proof of Concept: Independent Reconstruction of Gondwanaland Using Spinner Diagrams 581 5.14.5 Summary: Major Unresolved Issues and Future Work 585 References 586 5.14.1 Planetary Moment of Inertia location ofEarth's daily rotation axis and/or by fluc­ and the Spin-Axis tuations in the spin rate ('length of day' anomalies).
    [Show full text]
  • A Novel Plate Tectonic Scenario for the Genesis and Sealing of Some Major Mesozoic Oil Fields
    It’s Time—Renew Your GSA Membership and Save 15% DECEMBER | VOL. 26, 2016 12 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® IRAQ A Novel Plate Tectonic Scenario for the Genesis KUWAIT and Sealing of Some Major PERSIAN GULF Mesozoic Oil Fields IRAN BAHRAIN Ghawar Field QATAR SAUDI ARABIA OMAN U.A.E. DECEMBER 2016 | VOLUME 26, NUMBER 12 GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news Featured Articles and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (March/ April is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at SCIENCE 3300 Penrose Place, Boulder, Colorado, USA, and a mail- ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. 4 A Novel Plate Tectonic Scenario for the Genesis GSA provides this and other forums for the presentation and Sealing of Some Major Mesozoic Oil Fields of diverse opinions and positions by scientists worldwide, Giovanni Muttoni and Dennis V. Kent regardless of race, citizenship, gender, sexual orientation, religion, or political viewpoint. Opinions presented in this Cover: NASA satellite photo of the Persian Gulf area publication do not reflect official positions of the Society. with the Ghawar Oil Field in the lower left of the picture. © 2016 The Geological Society of America Inc. All rights See related article, p. 4–10. reserved. Copyright not claimed on content prepared wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single GROUNDWORK figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA 36 Physical Experiments of Tectonic Deformation TODAY for noncommercial use in classrooms to further and Processes: Building a Strong Community education and science.
    [Show full text]
  • Download File
    Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Pangea B and the Late Paleozoic Ice Age ⁎ D.V. Kenta,b, ,G.Muttonic a Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA b Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA c Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, via Mangiagalli 34, I-20133 Milan, Italy ARTICLE INFO ABSTRACT Editor: Thomas Algeo The Late Paleozoic Ice Age (LPIA) was the penultimate major glaciation of the Phanerozoic. Published compi- Keywords: lations indicate it occurred in two main phases, one centered in the Late Carboniferous (~315 Ma) and the other Late Paleozoic Ice Age in the Early Permian (~295 Ma), before waning over the rest of the Early Permian and into the Middle Permian Pangea A (~290 Ma to 275 Ma), and culminating with the final demise of Alpine-style ice sheets in eastern Australia in the Pangea B Late Permian (~260 to 255 Ma). Recent global climate modeling has drawn attention to silicate weathering CO2 Greater Variscan orogen consumption of an initially high Greater Variscan edifice residing within a static Pangea A configuration as the Equatorial humid belt leading cause of reduction of atmospheric CO2 concentrations below glaciation thresholds. Here we show that Silicate weathering CO2 consumption the best available and least-biased paleomagnetic reference poles place the collision between Laurasia and Organic carbon burial Gondwana that produced the Greater Variscan orogen in a more dynamic position within a Pangea B config- uration that had about 30% more continental area in the prime equatorial humid belt for weathering and which drifted northward into the tropical arid belt as it transformed to Pangea A by the Late Permian.
    [Show full text]
  • Apparent and True Polar Wander and the Geometry of the Geomagnetic
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B11, 2300, doi:10.1029/2000JB000050, 2002 Correction published 10 October 2003 Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr Jean Besse and Vincent Courtillot Laboratoire de Pale´omagne´tisme, UMR 7577, Institut de Physique du Globe de Paris, Paris, France Received 8 November 2000; revised 15 January 2002; accepted 20 January 2002; published 15 November 2002. [1] We have constructed new apparent polar wander paths (APWPs) for major plates over the last 200 Myr. Updated kinematic models and selected paleomagnetic data allowed us to construct a master APWP. A persistent quadrupole moment on the order of 3% of the dipole over the last 200 Myr is suggested. Paleomagnetic and hot spot APW are compared, and a new determination of ‘‘true polar wander’’ (TPW) is derived. Under the hypothesis of fixed Atlantic and Indian hot spots, we confirm that TPW is episodic, with periods of (quasi) standstill alternating with periods of faster TPW (in the Cretaceous). The typical duration of these periods is on the order of a few tens of millions of years with wander rates during fast tracks on the order of 30 to 50 km/Myr. A total TPW of some 30° is suggested for the last 200 Myr. We find no convincing evidence for episodes of superfast TPW such as proposed recently by a number of authors. Comparison over the last 130 Myr of TPW deduced from hot spot tracks and paleomagnetic data in the Indo-Atlantic hemisphere with an independent determination for the Pacific plate supports the idea that, to first order, TPW is a truly global feature of Earth dynamics.
    [Show full text]
  • True Polar Wander Recorded by the Distribution of Martian Valley Networks S
    46th Lunar and Planetary Science Conference (2015) 1887.pdf TRUE POLAR WANDER RECORDED BY THE DISTRIBUTION OF MARTIAN VALLEY NETWORKS S. Bouley1 , D. Baratoux2, I. Matsuyama3, F. Forget4, F. Costard1 and A. Séjourné,1 - 1GEOPS – UMR 8148- Bât.509, Université Paris Sud - 91405 Orsay Cedex ([email protected]), 2 Geosciences Environnement Toulouse, Université de Toulouse III UMR 5563, 14 Avenue Edouard Belin, 31400, Toulouse, France, 3Lunar and Planetary Laboratory, University of Arizona, AZ, USA, 4Laboratoire de Métérologie Dynamique, Institut Pierre Simon Laplace, Paris, France Introduction: Hesperian-Noachian (older than 3.5 putative paleoshorelines of the northern ocean [7]. Ga) Martian valley networks (VNs) are essentially However, the latter hypothesis was not confirmed by located on the highlands [1,2,3] within a domain of the elevations of deltas [13]. Once again, the position latitudes ranging from – 60°S to +30°N and are con- of the paleopoles inferred from the VNs distribution is sidered to be one of the best evidences for different consistent with TPW driven by the formation of Thar- climatic conditions during early Mars [e.g., 4,5]. In this sis. Estimates of the paleopole location prior to the study, we show that their distribution suggest a reori- formation of Tharsis using gravity data are consistent entation of Mars’ rotation axis with respect to the man- with the paleopoles found in this study (95°W, 65°N, tle, or true polar wander (TPW) . The timing and char- [6], 100.5 ± 49.5°E, 71.1+17.5°N [10]). The paleo acteristics of this true polar wander event appear to be south-pole (62°E, 69°S) is also close to the center of also supported by other independent observations.
    [Show full text]
  • Present True Polar Wander in the Frame of the Geotectonic Reference System
    1661-8726/08/030629-8 Swiss J. Geosci. 101 (2008) 629–636 DOI 10.1007/s00015-008-1284-y Birkhäuser Verlag, Basel, 2008 Present true polar wander in the frame of the Geotectonic Reference System NAZARIO PAVONI Key words: Geotectonic Reference System, polar wander, geodynamics, geotectonic bipolarity ABSTRACT The Mesozoic-Cenozoic evolution of the Earth’s lithosphere reveals a funda- mA which are responsible for the two geoid highs results in the long-standing mental hemispherical symmetry inherent in global tectonics. The symmetry stability of location of the geotectonic axis PA. The Earth’s rotation axis is is documented by the concurrent regular growth of the Pacific and African oriented perpendicularly to the PA axis. Owing to the extraordinary stabil- plates over the past 180 million years, and by the antipodal position of the two ity of the geotectonic axis, any change of orientation of the rotation axis, e.g. plates. The plates are centered on the equator, where center P of the Pacific induced by post-glacial rebound, occurs in such a way that the axis remains plate is located at 170° W/0° N, and center A of the African plate at 10° E/0° N. in the equatorial plane of the geotectonic system, i.e. in the 80° W/100° E P and A define a system of spherical coordinates, the Geotectonic Reference meridional plane. Observed present polar wander is directed towards 80° W System GRS, which shows a distinct relation to Cenozoic global tectonics. P (79.2 ± 0.2° W). This indicates that the present true polar wander is directed and A mark the poles of the geotectonic axis PA.
    [Show full text]
  • Mantle Anchor Structure: an Argument for Bottom up Tectonics
    Earth and Planetary Science Letters 299 (2010) 69–79 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mantle Anchor Structure: An argument for bottom up tectonics Adam M. Dziewonski a,⁎, Vedran Lekic b,1, Barbara A. Romanowicz b a Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA b Berkeley Seismological Laboratory, University of California, Berkeley, CA, USA article info abstract Article history: Close examination of the long wavelength shear velocity signal in the lowermost mantle in the wavenumber Received 25 January 2010 domain ties several geophysical observations together and leads to fundamental inferences. When mantle Received in revised form 2 August 2010 shear velocity model S362ANI at a depth of 2800 km is expanded in spherical harmonics up to degree 18, Accepted 6 August 2010 more than one half of the seismic model's total power is contained in a single spherical harmonic coefficient: Available online 28 September 2010 the “recumbent” Y20 spherical harmonic; a Y20 with its axis of symmetry rotated to the equatorial plane. This – Editor: R.D. van der Hilst degree 2 signal, which continues with decreasing amplitude for more than 1000 km above the core mantle boundary (CMB), is characterized by two antipodal regions of low velocities, separated by a circum-polar Keywords: torus of higher than average velocities. If the slow regions are associated with net excess mass, then any axis mantle dynamics of rotation located in the plane of the circum-polar torus will be close to the maximum moment of inertia seismic tomography axis; this includes, of course, the current axis of rotation.
    [Show full text]
  • The Influence of True Polar Wander on Glacial Inception in North America
    The Influence of True Polar Wander on Glacial Inception in North America The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Daradich, A., P. Huybers, J.X. Mitrovica, N.-H. Chan, and J. Austermann. 2017. The Influence of True Polar Wander on Glacial Inception in North America. Earth and Planetary Science Letters 461: 96-104. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41292196 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Earth and Planetary Science Letters 461 (2017) 96–104 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl The influence of true polar wander on glacial inception in North America ∗ A. Daradich a, , P. Huybers b, J.X. Mitrovica b, N.-H. Chan c,1, J. Austermann b a Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, Canada b Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA c Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA a r t i c l e i n f o a b s t r a c t Article history: The impact that long-term changes in Earth’s rotation axis relative to the surface geography, or true Received 6 March 2016 polar wander (TPW), and continental drift have had in driving cooling of high-latitude North America Received in revised form 16 October 2016 since the Eocene is explored.
    [Show full text]
  • The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of The
    RESEARCH | REPORTS induced magnetization in the present field and, on the candidate magnetic mineralogies implied, 23. P. B. James, M. T. Zuber, R. J. Phillips, S. C. Solomon, second,thatitcouldbeaviscousremanentmag- and knowledge of their magnetic properties. J. Geophys. Res. Planets 120, 287–310 (2015). netization (VRM) acquired during prolonged ex- 24. S. Padovan, M. A. Wieczorek, J.-L. Margot, N. Tosi, S. C. Solomon, Geophys. Res. Lett. 42,1029–1038 (2015). posure of the magnetic minerals to the planetary REFERENCES AND NOTES 25. A. C. M. Correia, J. Laskar, Icarus 201,1–11 (2009). field and hence reflecting an unknown, but youn- 1. N. F. Ness, K. W. Behannon, R. P. Lepping, Y. C. Whang, – 26. J.-P. Williams, O. Aharonson, F. Nimmo, Geophys. Res. Lett. 34, ger, age than that of the smooth plains. Although K. H. Schatten, Science 185, 151 160 (1974). 2. B. J. Anderson et al., Science 321,82–85 (2008). L21201 (2007). both of these physical processes are likely to 3. B. J. Anderson et al., Science 333,1859–1862 (2011). 27. M. Grott, D. Breuer, M. Laneuville, Earth Planet. Sci. Lett. 307, – operate, induced magnetizations cannot fully 4. B. J. Anderson et al., J. Geophys. Res. 117 (E12), E00L12 (2012). 135 146 (2011). explain the observed HPF field strengths, and 5. C. L. Johnson et al., J. Geophys. Res. 117 (E12), E00L14 (2012). 28. N. Tosi, M. Grott, A.-C. Plesa, D. Breuer, J. Geophys. Res. Planets 118, 2474–2487 (2013). the net effect of VRM will be that our estimates 6. H. Cao et al., Geophys.
    [Show full text]