SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library Mark Gates Jakub Kurzak Ali Charara
[email protected] [email protected] [email protected] University of Tennessee University of Tennessee University of Tennessee Knoxville, TN Knoxville, TN Knoxville, TN Asim YarKhan Jack Dongarra
[email protected] [email protected] University of Tennessee University of Tennessee Knoxville, TN Knoxville, TN Oak Ridge National Laboratory University of Manchester ABSTRACT USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3295500. The SLATE (Software for Linear Algebra Targeting Exascale) library 3356223 is being developed to provide fundamental dense linear algebra capabilities for current and upcoming distributed high-performance systems, both accelerated CPU–GPU based and CPU based. SLATE will provide coverage of existing ScaLAPACK functionality, includ- ing the parallel BLAS; linear systems using LU and Cholesky; least 1 INTRODUCTION squares problems using QR; and eigenvalue and singular value The objective of SLATE is to provide fundamental dense linear problems. In this respect, it will serve as a replacement for Sca- algebra capabilities for the high-performance computing (HPC) LAPACK, which after two decades of operation, cannot adequately community at large. The ultimate objective of SLATE is to replace be retrofitted for modern accelerated architectures. SLATE uses ScaLAPACK [7], which has become the industry standard for dense modern techniques such as communication-avoiding algorithms, linear algebra operations in distributed memory environments. Af- lookahead panels to overlap communication and computation, and ter two decades of operation, ScaLAPACK is past the end of its life task-based scheduling, along with a modern C++ framework.