Management Prescriptions for Twite in Ireland

Total Page:16

File Type:pdf, Size:1020Kb

Management Prescriptions for Twite in Ireland Management prescriptions for twite in Ireland Irish Wildlife Manuals No. 52 Management prescriptions for twite in Ireland Derek T. McLoughlin Citation: McLoughlin, D.T. (2011) Management prescriptions for twite in Ireland. Irish Wildlife Manual s, No. 52. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland. Keywords: twite, prescription, habitat management, agri-environment schemes, Carduelis flavirostris Cover photo: Twite during winter season © Liam McDevitt The NPWS Project Officer for this report was: David Norriss; [email protected] Irish Wildlife Manuals Series Editors: F. Marnell & N. Kingston © National Parks and Wildlife Service 2011 ISSN 1393 – 6670 Species management plan for twite ____________________________ CONTENTS EXECUTIVE SUMMARY .....................................................................................................................................1 ACKNOWLEDGEMENTS ....................................................................................................................................1 DOCUMENT MAP ..............................................................................................................................................2 1.0 INTRODUCTION .........................................................................................................................................3 1.1 Background ........................................................................................................................................... 3 1.2 Current status........................................................................................................................................ 3 1.3 Aspects of the twite’s ecology............................................................................................................5 1.3.1 Nesting biology.................................................................................................................................5 1.3.2 Feeding ecology.................................................................................................................................7 1.3.3 Winter / non-breeding season ecology (September - April) ..............................................................7 1.3.4 Movement patterns...........................................................................................................................7 1.4 Relevant legislation.............................................................................................................................7 1.5 Threats to the twite ..............................................................................................................................7 1.6 Agri-environment schemes relevant to twite..................................................................................8 1.7 Previous work on twite in Ireland....................................................................................................9 1.8 Twite management prescription .......................................................................................................9 1.9 Gaps in knowledge of twite in Ireland............................................................................................9 1.10 Future monitoring of twite in Ireland............................................................................................9 2.0 NESTING AREAS AND BREEDING SEASON ROOST SITES ........................................................................ 11 2.1 Nest site requirements ...................................................................................................................... 11 2.2 Breeding season roost sites .............................................................................................................. 12 2.3 Conservation actions in the nesting areas..................................................................................... 12 2.4 Conservation prescriptions for twite in nesting areas in England ........................................... 13 3.0 BREEDING SEASON FORAGING AREAS ....................................................................................................15 3.1 Habitat and food requirements ....................................................................................................... 15 3.2 Home range size................................................................................................................................. 18 3.3 Conservation actions in the breeding season foraging areas..................................................... 19 3.4 Potential impacts of twite conservation actions on other species............................................. 21 3.5 Conservation actions in the breeding season foraging areas in England................................ 22 4.0 SUMMARY OF BREEDING SEASON CONSERVATION MEASURES ............................................................. 23 4.1 Overview ............................................................................................................................................. 23 4.2 Expansion of the breeding range of twite in Ireland ..................................................................23 4.2.1 Breeding areas outside of Mayo/Donegal breeding strongholds ..................................................... 25 5.0 WINTER SEASON ....................................................................................................................................... 26 5.1 Winter season habitat requirements............................................................................................... 26 5.2 Winter range sizes.............................................................................................................................. 27 Species management plan for twite ____________________________ 5.3 Conservation issues........................................................................................................................... 27 5.4 Suggested conservation measures .................................................................................................. 28 5.4.1 Suggested conservation measures................................................................................................... 28 5.4.2 Supplementary feeding plots........................................................................................................... 28 5.4.3 Location of winter season supplementary feeding plots.................................................................. 29 5.4.4 Saltmarshes..................................................................................................................................... 31 6.0 TWITE HABITAT INTERVENTION .............................................................................................................. 32 6.1 Suggested steps towards implementation of plan....................................................................... 32 6.2 Creation of new foraging habitat.................................................................................................... 32 6.2.1 Seed Crops targeting birds between November and March............................................................ 32 6.2.1.1 Suggested crops..................................................................................................................... 33 6.2.1.2 Possible benefits to corncrake ............................................................................................. 35 6.2.2 Supplementary feeding stations targeting birds between September and April............................. 35 6.2.3 Seed plants targeting birds between March and October............................................................... 36 6.2.3.1 Roadside verges .................................................................................................................... 37 6.3 Monitoring and further research on twite in Ireland.................................................................. 37 6.3.1 National population monitoring..................................................................................................... 37 6.3.2 Population monitoring relating to twite management actions....................................................... 38 6.3.3 Further research on twite in Ireland............................................................................................... 38 7.0 BIBLIOGRAPHY & RELEVANT LITERATURE ............................................................................................ 39 8.0 APPENDICES .............................................................................................................................................. 43 Appendix 1. Inventory of habitat and vegetation type in twite breeding areas in north County Mayo and west County Donegal detailing locations for potential habitat interventions ......... 43 Species management plan for twite ____________________________ EXECUTIVE SUMMARY The twite Carduelis flavirostris is one of only three passerine species on the Red List of Birds of Conservation Concern in Ireland. The national population is estimated at between 54 and 110 breeding pairs with an estimated minimum of 650 – 1100 birds in winter. Therefore, breeding twite can be categorised as being ‘Endangered’ using the IUCN criteria for the categorisation of Red List species and are thus considered to be facing a ‘very high risk of extinction in the wild’ in Ireland. Due to the precarious situation
Recommended publications
  • New Data on the Chewing Lice (Phthiraptera) of Passerine Birds in East of Iran
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244484149 New data on the chewing lice (Phthiraptera) of passerine birds in East of Iran ARTICLE · JANUARY 2013 CITATIONS READS 2 142 4 AUTHORS: Behnoush Moodi Mansour Aliabadian Ferdowsi University Of Mashhad Ferdowsi University Of Mashhad 3 PUBLICATIONS 2 CITATIONS 110 PUBLICATIONS 393 CITATIONS SEE PROFILE SEE PROFILE Ali Moshaverinia Omid Mirshamsi Ferdowsi University Of Mashhad Ferdowsi University Of Mashhad 10 PUBLICATIONS 17 CITATIONS 54 PUBLICATIONS 152 CITATIONS SEE PROFILE SEE PROFILE Available from: Omid Mirshamsi Retrieved on: 05 April 2016 Sci Parasitol 14(2):63-68, June 2013 ISSN 1582-1366 ORIGINAL RESEARCH ARTICLE New data on the chewing lice (Phthiraptera) of passerine birds in East of Iran Behnoush Moodi 1, Mansour Aliabadian 1, Ali Moshaverinia 2, Omid Mirshamsi Kakhki 1 1 – Ferdowsi University of Mashhad, Faculty of Sciences, Department of Biology, Iran. 2 – Ferdowsi University of Mashhad, Faculty of Veterinary Medicine, Department of Pathobiology, Iran. Correspondence: Tel. 00985118803786, Fax 00985118763852, E-mail [email protected] Abstract. Lice (Insecta, Phthiraptera) are permanent ectoparasites of birds and mammals. Despite having a rich avifauna in Iran, limited number of studies have been conducted on lice fauna of wild birds in this region. This study was carried out to identify lice species of passerine birds in East of Iran. A total of 106 passerine birds of 37 species were captured. Their bodies were examined for lice infestation. Fifty two birds (49.05%) of 106 captured birds were infested. Overall 465 lice were collected from infested birds and 11 lice species were identified as follow: Brueelia chayanh on Common Myna (Acridotheres tristis), B.
    [Show full text]
  • American Goldfinch Carduelis Tristis
    American Goldfinch Carduelis tristis Photo credit: Erin Alvey, May 2009 Photo credit: Ken Thomas, May 2007 The American Goldfinch is the state bird of New Jersey, Iowa, and Washington and is a highly recognizable and very handsome bird. They are very active foragers and welcomed guests of bird feeders that mostly eat seeds, especially thistle, and mainly eat sunflowers and nyjer at feeders. They are a common summer visitor to the Garden City Bird Sanctuary which has special "finch" feeders. Bird Statistics Description Scientific name- Carduelis (Spinus) tristis Size and Shape- A small finch with a short, Family- Fringillidae conical beak, small wings, and a notched tail. Conservation Status- Least concern Color Pattern- Males are bright yellow with Length- 4.3-5.1 in (11-13 cm) black cap. Females are golden yellow. Both have Wingspan- 7.5-8.7 in (19-22 cm) black and white striped wings and tail. Both are Weight- 0.4-0.7 oz (11-20 g) browner during winter. Behavior- Nimble and acrobatic birds that live in Egg Statistics flocks outside of the breeding season. They forage Color- Very pale blue-white with some brown actively and fly in an undulating pattern. spots near the large end Song- Varied; descending or random chirps. Nest- Tightly-woven rootlets and plant fibers Habitat- Live where weeds, brush, and thistles lined with plant down are common; including weedy fields, meadows, Clutch size- 2-7 eggs flood plains, roadsides, and orchards. Also found Number of broods- 1-2 near birdfeeders. Length- 0.6-0.7 in (1.62-1.69 cm) Range- Northeast, Central, and Northwest Width- 0.5-0.5 in (1.2-1.3 cm) America year-round.
    [Show full text]
  • A Hybrid Red Crossbill-Pine Siskin (Loxia Curvirostra X Carduelis Pinus
    January1984] ShortCommunications 155 HILLS, M. 1978. On ratios--a response to Atchley, nov, Cramer-Von Mises and related statistics Gaskins and Anderson. Syst. Zool. 27: 61-62. without extensive tables. J. Amer. Stat. Assoc. 69: SAS INSTITUTE.1982. SAS user's guide: basics.Cary, 730. North Carolina, SAS Institute, Inc. ZAR, J. H. 1974. Biostatisticalanalysis. Englewood SHAPIRO,S.S., & M. B. WILK. 1965. An analysis of Cliffs, New Jersey,Prentice-Hall, Inc. variance test for normality (complete samples). Biometrika 52:591-611. Received3 March 1983,accepted 6 September1983. STEPHENS,M.A. 1974. Use of the Kolmogorov-Smir- A Hybrid Red Crossbill-Pine Siskin (Loxia curvirostra x Carduelis pin us) and Speculations on the Evolution of Loxia DAN A. TALLMAN • AND RICHARD L. ZUSI 2 'Departmentof Mathematics,Natural Sciences and Health Professions, Northern State College, Aberdeen,South Dakota 57401 USA; and 2National Museum of NaturalHistory, SmithsonianInstitution, Washington, D.C. 20560 USA On the morning of 27 December1981, a strange streaksweakest on lower throat and belly and dark- finch appeared at Tallman's feeder in a residential est and best defined on flanks and crissum. backyardin Aberdeen,Brown County, South Dakota. Upperparts dusky olive streaked or spotted with Alone and in the companyof Pine Siskins,the bird dark gray. Feathersof forehead and crown dark with consumedsunflower seeds.It fed on the ground and whitish or yellowish edges, giving spotted effect. alsocracked seeds while perchedon a sunflowerhead Longer feathers of nape, neck, and back dark gray hung from a clothesline.Tallman noted that this finch, borderedwith dusky olive laterally, giving streaked when approached,did not fly with a small siskin effect.
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Developing Methods for the Field Survey and Monitoring of Breeding Short-Eared Owls (Asio Flammeus) in the UK: Final Report from Pilot Fieldwork in 2006 and 2007
    BTO Research Report No. 496 Developing methods for the field survey and monitoring of breeding Short-eared owls (Asio flammeus) in the UK: Final report from pilot fieldwork in 2006 and 2007 A report to Scottish Natural Heritage Ref: 14652 Authors John Calladine, Graeme Garner and Chris Wernham February 2008 BTO Scotland School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA Registered Charity No. SC039193 ii CONTENTS LIST OF TABLES................................................................................................................... iii LIST OF FIGURES ...................................................................................................................v LIST OF FIGURES ...................................................................................................................v LIST OF APPENDICES...........................................................................................................vi SUMMARY.............................................................................................................................vii EXECUTIVE SUMMARY ................................................................................................... viii CRYNODEB............................................................................................................................xii ACKNOWLEDGEMENTS....................................................................................................xvi 1. BACKGROUND AND AIMS...........................................................................................2
    [Show full text]
  • Collation of Brisson's Genera of Birds with Those of Linnaeus
    59. 82:01 Article XXVII. COLLATION OF BRISSON'S GENERA OF BIRDS WITH THOSE OF LINNAEUS. BY J. A. ALLEN. CONTENTS. Page. Introduction ....................... 317 Brisson not greatly indebted to Linnaeus. 319 Linneus's indebtedness to Brisson .... .. ... .. 320 Brisson's methods and resources . .. 320 Brisson's genera . 322 Brisson and Linnaeus statistically compared .. .. .. 324 Brisson's 'Ornithologia' compared with the Aves of the tenth edition of Lin- naeus's 'Systema'. 325 Brisson's new genera and their Linnwan equivalents . 327 Brisson's new names for Linnaan genera . 330 Linnaean (1764 and 1766) new names for Brissonian genera . 330 Brissonian names adopted. by Linnaeus . 330 Brissonian names wrongly ascribed to other authors in Sharpe's 'Handlist of Birds'.330 The relation of six Brissonian genera to Linnlean genera . 332 Mergus Linn. and Merganser Briss. 332 Meleagris Linn. and Gallopavo Briss. 332 Alcedo Linn. and Ispida Briss... .. 332 Cotinga Briss. and Ampelis Linn. .. 333 Coracias Linn. and Galgulus Briss.. 333 Tangara Briss. and Tanagra Linn... ... 334 INTRODUCTION. In considering recently certain questions of ornithological nomenclature it became necessary to examine the works of Brisson and Linnaeus in con- siderable detail and this-examination finally led to a careful collation of Brisson's 'Ornithologia,' published in 1760, with the sixth, tenth, and twelfth editions of Linnaeus's 'Systema Naturae,' published respectively in 1748, 1758, and 1766. As every systematic ornithologist has had occasion to learn, Linnaeus's treatment of the class Aves was based on very imperfect knowledge of the suabject. As is well-known, this great systematist was primarily a botanist, secondarily a zoologist, and only incidentally a mammalogist and ornithol- ogist.
    [Show full text]
  • Order PASSERIFORMES: Passerine (Perching) Birds Suborder
    Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 275, 279 & 319-320. Order PASSERIFORMES: Passerine (Perching) Birds See Christidis & Boles (2008) for a review of recent studies relevant to the higher-level systematics of the passerine birds. Suborder PASSERES (or POLYMYODI): Oscines (Songbirds) The arrangement of songbirds in the 1970 Checklist (Checklist Committee 1970) was based on the premise that the species endemic to the Australasian region were derived directly from Eurasian groups and belonged in Old World families (e.g. Gerygone and Petroica in Muscicapidae). The 1990 Checklist (Checklist Committee 1990) followed the Australian lead in allocating various native songbirds to their own Australasian families (e.g. Gerygone to Acanthizidae, and Petroica to Eopsaltriidae), but the sequence was still based largely on the old Peters-Mayr arrangement. Since the late 1980s, when the 1990 Checklist was finalised, evidence from molecular biology, especially DNA studies, has shown that most of the Australian and New Zealand endemic songbirds are the product of a major Australasian radiation parallel to the radiation of songbirds in Eurasia and elsewhere. Many superficial morphological and ecological similarities between Australasian and Eurasian songbirds are the result of convergent evolution. Sibley & Ahlquist (1985, 1990) and Sibley et al. (1988) recognised a division of the songbirds into two groups which were called Corvida and Passerida (Sibley & Ahlquist 1990).
    [Show full text]
  • On the Advantages of Crossed Mandibles: an Experimental Approach
    IBIS 130: 288-293 On the advantages of crossed mandibles: an experimental approach CRAIG W. BENKMAN* Department of Biological Sciences, State Uniwersity of New York at Albany, 1400 Washington Avenue, Albany, New York 12222, USA Accepted 20 November 1986 The importance of the crossed mandibles to crossbills for foraging on conifer cones was studied by removing most of the crossed portion of the mandibles of two Red Crossbills L. curuirortra. The foraging rate of these two bill-altered crossbills on the cones of three species of conifers was compared to their rates prior to bill alteration and to two controls. The mandible crossing proved essential for extracting seeds from closed cones. However, as cones open the bill crossing becomes less critical. The mandible crossing appears to be one of several adaptationsof crossbills that have extended the period during which conifer seeds can be exploited effectively. The functions of morphological structures can often be understood by detailed observations of organisms. However, a difficulty with ascribing a function to a structure by observation alone is that different observers often come to different conclusions. Experimental investigations of function are desirable but are often either difficult or trivial. For example, removing a bird’s leg would make perching or terrestrial locomotion impossible or awkward. In some cases, however, slight modification of structures may provide a means for studying a structure’s utility. One striking example of the difficulty of attributing a function to a structure by observation alone is the crossed mandibles of crossbills Loxia. There have been many opinions as to the function of the mandible crossing ranging from those suggesting no adaptive value to those suggesting a specific adaptive function.
    [Show full text]
  • Seed Handling Ability, Bill Structure, and the Cost of Specialization for Crossbills
    SEED HANDLING ABILITY, BILL STRUCTURE, AND THE COST OF SPECIALIZATION FOR CROSSBILLS CRAIG W. BENKMAN • Departmentof BiologicalSciences, State University of New Yorkat Albany, 1400Washington Avenue, Albany, New York12222 USA AssT•cT.--Crossbills(Loxia) are specialized to extractand handle seeds from conifercones. I evaluatedthe ability of crossbillsto handlenonconifer seeds by comparingseed handling efficiencieswith other carduelinefinches. For all seedsizes, crossbills required seed encounter ratesor seedabundances 2-3 times greaterthan other speciesto meet their daily energy requirements.Consequently, crossbills may suffer high mortality during conifer cone failures. Crossbillsare inefficientat meetingtheir energydemands on nonconiferseeds because of their narrowmandibles, lowered horny palate,and large body size.The narrow mandibles enablecrossbills to efficientlyextract seeds from conifer cones and the loweredpalate enables them to handle small seedsrapidly. Crossbillshave evolvedlarger bills, and associated musculatureand bodymass, to providethe power necessaryto separatecone scales. Some of the increasein bodymass, however, may counterbalance the largebills to improvepredator evasion. Received27 October1987, accepted17 June1988. THE carduelinefinches (subfamily Cardueli- 1976) and Eurasia(Newton 1970, 1972),and at nae) are highly specializedseedeating birds this time many crossbillsfeed on nonconifer (Newton 1967, 1972). Most consume seeds, seed(see Newton 1970,1972). These periods of mainlyfrom dicotyledonousplants, throughout
    [Show full text]
  • The Phylogenetic Relationships and Generic Limits of Finches
    Molecular Phylogenetics and Evolution 62 (2012) 581–596 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogenetic relationships and generic limits of finches (Fringillidae) ⇑ Dario Zuccon a, , Robert Pryˆs-Jones b, Pamela C. Rasmussen c, Per G.P. Ericson d a Molecular Systematics Laboratory, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Bird Group, Department of Zoology, Natural History Museum, Akeman St., Tring, Herts HP23 6AP, UK c Department of Zoology and MSU Museum, Michigan State University, East Lansing, MI 48824, USA d Department of Vertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence Received 30 June 2011 of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a com- Revised 27 September 2011 bination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly sup- Accepted 3 October 2011 ported phylogenetic hypothesis for this family. We identified three well supported, subfamily level Available online 17 October 2011 clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Keywords: Although usually separated in a different
    [Show full text]
  • Advances in the Study of Irruptive Migration
    Advances in the study of irruptive migration Ian Newton1 Newton I. 2006. Advances in the study of irruptive migration. Ardea 94(3): 433–460. This paper discusses the movement patterns of two groups of birds which are generally regarded as irruptive migrants, namely (a) boreal finches and others that depend on fluctuating tree-fruit crops, and (b) owls and others that depend on cyclically fluctuating rodent popula- tions. Both groups specialise on food supplies which, in particular regions, fluctuate more than 100-fold from year to year. However, seed- crops in widely separated regions may fluctuate independently of one another, as may rodent populations, so that poor food supplies in one region may coincide with good supplies in another. If individuals are to have access to rich food supplies every year, they must often move hun- dreds or thousands of kilometres from one breeding area to another. In years of widespread food shortage (or high numbers relative to food supplies) extending over many thousands or millions of square kilome- tres, large numbers of individuals migrate to lower latitudes, as an ‘irruptive migration’. For these reasons, the distribution of the popula- tion, in both summer and winter, varies greatly from year to year. In irruptive migrants, in contrast to regular migrants, site fidelity is poor, and few individuals return to the same breeding areas in succes- sive years (apart from owls in the increase phase of the cycle). Moreover, ring recoveries and radio-tracking confirm that the same indi- viduals can breed in different years in areas separated by hundreds or thousands of kilometres.
    [Show full text]
  • Assessing Population Changes from Disparate Data Sources: the Decline of the Twite Carduelis Flavirostris in England
    Bird Conservation International (2009) 19:401–416. ª BirdLife International, 2009 doi:10.1017/S0959270909990086 Assessing population changes from disparate data sources: the decline of the Twite Carduelis flavirostris in England ANDRE´ F. RAINE, ANDREW F. BROWN, TATSUYA AMANO and WILLIAM J. SUTHERLAND Summary Conservationists often find it difficult to assess long-term population change in a species when the only data available are from disparate sources. This is especially the case when a range of survey methodologies and reporting units have been utilised and the results have been published in the ‘grey’ literature. Although the production of a cohesive assessment of change may be a daunting task, in such circumstances, a sound assessment of change is often possible. We illustrate this by considering the decline of the Twite Carduelis flavirostris in England. Whilst there is evidence of decline, it is widely dispersed and the losses have yet to be formally documented. To assess longer-term change, we reviewed information available in county avi- faunas and historical accounts of the status of the species throughout its former English range. Twite now only breed regularly in six of their 12 historical range counties, and in all of these six, the birds have declined markedly in abundance. We collated and analysed data drawn from a diverse range of surveys and county bird reports to assess more recent change and assessed contemporary distribution and abundance during our own surveys of breeding colonies in the South Pennines, an area supporting the last known nesting colonies in England. Combined, the data clearly indicate that the range and numbers of breeding Twite have declined considerably since the 1970s.
    [Show full text]