Copyright by Siavash Mir Arabbaygi 2015 the Dissertation Committee for Siavash Mir Arabbaygi Certifies That This Is the Approved Version of the Following Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Copyright by Siavash Mir Arabbaygi 2015 the Dissertation Committee for Siavash Mir Arabbaygi Certifies That This Is the Approved Version of the Following Dissertation Copyright by Siavash Mir arabbaygi 2015 The Dissertation Committee for Siavash Mir arabbaygi certifies that this is the approved version of the following dissertation: Novel scalable approaches for multiple sequence alignment and phylogenomic reconstruction Committee: Keshav Pingali, Supervisor Tandy Warnow, Co-Supervisor David Hillis Bonnie Berger Joydeep Ghosh Ray Mooney Novel scalable approaches for multiple sequence alignment and phylogenomic reconstruction by Siavash Mir arabbaygi, B.S.; M. APPL S. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN August 2015 Dedicated to my mother, and the memory of my father. Acknowledgments I wish to thank the countless people who helped me throughout my PhD. I enjoyed working with many collaborators, most of whom I never met, and not all of whom I can name here. I had the good fortune of working with my labmates, especially Nam Nguyen, Shamsuzzoha Md. Bayzid, and Th´eo Zimmermann, and our interactions have always been smooth and fruitful. I benefited tremendously from my involvement in both the avian phylogenomics and the thousand transcripts projects, both of which included many top re- searchers from across the world. I want to especially thank Bastien Boussau, Edward Braun, Tom Gilbert, Erich Jarvis, Jim Leebens-Mack, Gane Wong, Norman Wickett, and Guojie Zhang. I also thank Kevin Liu, Mark Holder, and Jeet Sukumaran for allowing me to use their code throughout my work. I would also like to thank all members of my committee. My understanding of the biology was tremendously improved by participation in discussions lead by Prof. David Hillis. I am also grateful to Prof. Keshav Pingali, who accepted me in his group after my original supervisor officialy left UT; Keshav was a role model, and involvement with his group has greatly expanded my depth. I should also thank my sources of funding (Howard Hughes Medical Insti- tute international student fellowship, Canadian NSERC Doctoral award, and NSF) and the generous computational support of Texas Advanced Computing Center (TACC) and the computing cluster (Condor) at the CS department. v I cannot start to thank enough my supervisor, Prof. Tandy Warnow, for all her guidance and her support. I enjoyed the chance to argue with her frequently on all matters related to our research, small or large, and even though I often found myself on the loosing side of these arguments, I always felt encouraged. Nothing like her openness and acceptance in rare occasions I won an argument could have better trained me for the skepticism and inquis- itiveness necessary for the scientific pursuit. I can only inspire to match her enthusiasm for research, which was a constant boost of energy to me through- out. Her endless support as a research advisor and a career mentor has opened to me many new doors, which I did not believe accessible when I started my studies. I owe much of my past and future achievements to her. For all the support I had at work, no progress was possible if it wasn't for the persistent emotional support my fiancee, now wife, showered me with. She raised my spirits with expressions of confidence in my abilities, warranted or not. Her confidence in me was a constant motivation to overcome obstacles. And that's to say nothing of all the day-to-day ways in which she has nudged me towards being a more organized and focused student. I would have never been in the office early in the morning every day of the week, if it wasn't for her. She was a major reason I started my PhD studies, and her encouragements are a major reason I feel confident continuing as a researchers. Finally, everything I have ever achieved has been possible only because of my mother, who thought me starting is easy, persevering hard, and letting go the hardest. Her example is always with me. vi Novel scalable approaches for multiple sequence alignment and phylogenomic reconstruction Publication No. Siavash Mir arabbaygi, Ph.D. The University of Texas at Austin, 2015 Supervisors: Keshav Pingali Tandy Warnow The amount of biological sequence data is increasing rapidly, a promis- ing development that would transform biology if we can develop methods that can analyze large-scale data efficiently and accurately. A fundamental ques- tion in evolutionary biology is building the tree of life: a reconstruction of relationships between organisms in evolutionary time. Reconstructing phy- logenetic trees from molecular data is an optimization problem that involves many steps. In this dissertation, we argue that to answer long-standing phylo- genetic questions with large-scale data, several challenges need to be addressed in various steps of the pipeline. One challenges is aligning large number of se- quences so that evolutionarily related positions in all sequences are put in the same column. Constructing alignments is necessary for phylogenetic recon- struction, but also for many other types of evolutionary analyses. In response to this challenge, we introduce PASTA, a scalable and accurate algorithm that vii can align datasets with up to a million sequences. A second challenge is re- lated to the interesting fact that various parts of the genome can have different evolutionary histories. Reconstructing a species tree from genome-scale data needs to account for these differences. A main approach for species tree re- construction is to first reconstruct a set of \gene trees" from different parts of the genome, and to then summarize these gene trees into a single species tree. We argue that this approach can suffer from two challenges: reconstruction of individual gene trees from limited data can be plagued by estimation error, which translates to errors in the species tree, and also, methods that sum- marize gene trees are not scalable or accurate enough under some conditions. To address the first challenge, we introduce statistical binning, a method that re-estimates gene trees by grouping them into bins. We show that binning improves gene tree accuracy, and consequently the species tree accuracy. To address the second challenge, we introduce ASTRAL, a new summary method that can run on a thousand genes and a thousand species in a day and has outstanding accuracy. We show that the development of these methods has enabled biological analyses that were otherwise not possible. viii Table of Contents Acknowledgments v Abstract vii List of Tables xv List of Figures xvi Chapter 1. Introduction 1 Chapter 2. Background 11 2.1 Phylogeny: an evolutionary tree . 11 2.1.1 Properties of a phylogenetic tree . 12 2.1.2 Character evolution . 15 2.1.2.1 Substitutions . 16 2.1.2.2 Alignments . 19 2.2 Gene trees and the species tree . 21 2.2.1 Definitions and concepts . 21 2.2.2 Coalescence and Incomplete Lineage Sorting (ILS) . 23 2.2.2.1 Coalescence . 25 2.2.2.2 Multi-Species Coalescent (MSC) . 28 2.3 Phylogenetic reconstruction . 31 2.3.1 Multiple Sequence Alignment (MSA) . 34 2.3.2 Tree reconstruction . 37 2.3.2.1 Maximum parsimony . 38 2.3.2.2 Maximum likelihood . 38 2.3.2.3 Bayesian estimation . 39 2.3.2.4 Distance-based . 40 2.3.2.5 Branch support . 40 ix 2.3.3 Analyzing multiple genes . 41 2.3.3.1 Concatenation . 42 2.3.3.2 Summary methods . 44 2.3.3.3 Co-estimation of gene trees and species trees . 46 2.4 Method evaluation . 48 2.4.1 Comparing two phylogenies . 49 2.4.2 Comparing two alignments . 50 Chapter 3. PASTA: Practical Alignments using SAT´eand TrAn- sitivity 52 3.1 Motivation . 53 3.2 Background: SAT´e-II . 55 3.3 PASTA's algorithm . 56 3.3.1 Transitivity merge of two alignments . 58 3.3.2 Steps of a PASTA iteration . 60 3.3.2.1 Six PASTA Steps . 60 3.3.2.2 Computing the transitivity merge . 65 3.3.3 Running time . 69 3.4 Experimental setup . 73 3.4.1 Datasets . 73 3.4.1.1 Nucleotide . 74 3.4.1.2 Amino-acid . 76 3.4.2 Methods . 78 3.4.3 Criteria . 79 3.4.4 Computational platform . 79 3.5 Results . 80 3.5.1 Ability to complete analyses . 80 3.5.2 Results on nucleotide datasets . 81 3.5.3 Alignment accuracy on AA datasets . 87 3.5.4 Comparisons on larger datasets . 88 3.5.5 Running Time . 89 3.5.6 Impact of varying algorithmic parameters. 91 3.5.6.1 Starting tree . 91 x 3.5.6.2 Subset size . 92 3.5.6.3 Choice of tool for merging alignments . 93 3.5.7 Varying the bootstrap threshold for reference tree . 94 3.5.8 Comparisons to UPP . 95 3.6 Summary and discussion . 96 Chapter 4. Statistical Binning 98 4.1 Sensitivity of summary methods to gene tree error . 100 4.1.1 Gene tree error in simulations . 101 4.1.2 Genet tree estimation on the avian phylogenomics project 104 4.2 Statistical binning pipeline . 108 4.2.1 Details of statistical binning . 111 4.2.2 Theoretical properties of statistical binning . 117 4.3 Experimental setup . 127 4.3.1 Datasets . 127 4.3.1.1 Biological datasets . 127 4.3.1.2 Simulated datasets . 127 4.3.2 Methods . 137 4.3.3 Criteria . 140 4.3.4 Computational platform . 144 4.4 Simulation results . 144 4.4.1 Binning parameters . 144 4.4.1.1 Impact of support threshold . 145 4.4.1.2 Impact of weighting . 148 4.4.2 Avian simulations using unweighted binning .
Recommended publications
  • Algorithms for Computational Biology 8Th International Conference, Alcob 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings
    Lecture Notes in Bioinformatics 12715 Subseries of Lecture Notes in Computer Science Series Editors Sorin Istrail Brown University, Providence, RI, USA Pavel Pevzner University of California, San Diego, CA, USA Michael Waterman University of Southern California, Los Angeles, CA, USA Editorial Board Members Søren Brunak Technical University of Denmark, Kongens Lyngby, Denmark Mikhail S. Gelfand IITP, Research and Training Center on Bioinformatics, Moscow, Russia Thomas Lengauer Max Planck Institute for Informatics, Saarbrücken, Germany Satoru Miyano University of Tokyo, Tokyo, Japan Eugene Myers Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Marie-France Sagot Université Lyon 1, Villeurbanne, France David Sankoff University of Ottawa, Ottawa, Canada Ron Shamir Tel Aviv University, Ramat Aviv, Tel Aviv, Israel Terry Speed Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia Martin Vingron Max Planck Institute for Molecular Genetics, Berlin, Germany W. Eric Wong University of Texas at Dallas, Richardson, TX, USA More information about this subseries at http://www.springer.com/series/5381 Carlos Martín-Vide • Miguel A. Vega-Rodríguez • Travis Wheeler (Eds.) Algorithms for Computational Biology 8th International Conference, AlCoB 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings 123 Editors Carlos Martín-Vide Miguel A. Vega-Rodríguez Rovira i Virgili University University of Extremadura Tarragona, Spain Cáceres, Spain Travis Wheeler University of Montana Missoula, MT, USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Bioinformatics ISBN 978-3-030-74431-1 ISBN 978-3-030-74432-8 (eBook) https://doi.org/10.1007/978-3-030-74432-8 LNCS Sublibrary: SL8 – Bioinformatics © Springer Nature Switzerland AG 2021 This work is subject to copyright.
    [Show full text]
  • Grammar String: a Novel Ncrna Secondary Structure Representation
    Grammar string: a novel ncRNA secondary structure representation Rujira Achawanantakun, Seyedeh Shohreh Takyar, and Yanni Sun∗ Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 , USA ∗Email: [email protected] Multiple ncRNA alignment has important applications in homologous ncRNA consensus structure derivation, novel ncRNA identification, and known ncRNA classification. As many ncRNAs’ functions are determined by both their sequences and secondary structures, accurate ncRNA alignment algorithms must maximize both sequence and struc- tural similarity simultaneously, incurring high computational cost. Faster secondary structure modeling and alignment methods using trees, graphs, probability matrices have thus been developed. Despite promising results from existing ncRNA alignment tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA’s sequence and secondary structure in the parameter space of a context-free grammar (CFG). Being a string defined on a special alphabet constructed from a CFG, it converts ncRNA alignment into sequence alignment with O(n2) complexity. We align hundreds of ncRNA families from BraliBase 2.1 using grammar strings and compare their consensus structure with Murlet using the structures extracted from Rfam as reference. Our experiments have shown that grammar string based multiple sequence alignment competes favorably in consensus structure quality with Murlet. Source codes and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string. 1. INTRODUCTION both the sequence and structural conservations. A successful application of SCFG is ncRNA classifica- Annotating noncoding RNAs (ncRNAs), which are tion, which classifies query sequences into annotated not translated into protein but function directly as ncRNA families such as tRNA, rRNA, riboswitch RNA, is highly important to modern biology.
    [Show full text]
  • 120421-24Recombschedule FINAL.Xlsx
    Friday 20 April 18:00 20:00 REGISTRATION OPENS in Fira Palace 20:00 21:30 WELCOME RECEPTION in CaixaForum (access map) Saturday 21 April 8:00 8:50 REGISTRATION 8:50 9:00 Opening Remarks (Roderic GUIGÓ and Benny CHOR) Session 1. Chair: Roderic GUIGÓ (CRG, Barcelona ES) 9:00 10:00 Richard DURBIN The Wellcome Trust Sanger Institute, Hinxton UK "Computational analysis of population genome sequencing data" 10:00 10:20 44 Yaw-Ling Lin, Charles Ward and Steven Skiena Synthetic Sequence Design for Signal Location Search 10:20 10:40 62 Kai Song, Jie Ren, Zhiyuan Zhai, Xuemei Liu, Minghua Deng and Fengzhu Sun Alignment-Free Sequence Comparison Based on Next Generation Sequencing Reads 10:40 11:00 178 Yang Li, Hong-Mei Li, Paul Burns, Mark Borodovsky, Gene Robinson and Jian Ma TrueSight: Self-training Algorithm for Splice Junction Detection using RNA-seq 11:00 11:30 coffee break Session 2. Chair: Bonnie BERGER (MIT, Cambrige US) 11:30 11:50 139 Son Pham, Dmitry Antipov, Alexander Sirotkin, Glenn Tesler, Pavel Pevzner and Max Alekseyev PATH-SETS: A Novel Approach for Comprehensive Utilization of Mate-Pairs in Genome Assembly 11:50 12:10 171 Yan Huang, Yin Hu and Jinze Liu A Robust Method for Transcript Quantification with RNA-seq Data 12:10 12:30 120 Zhanyong Wang, Farhad Hormozdiari, Wen-Yun Yang, Eran Halperin and Eleazar Eskin CNVeM: Copy Number Variation detection Using Uncertainty of Read Mapping 12:30 12:50 205 Dmitri Pervouchine Evidence for widespread association of mammalian splicing and conserved long range RNA structures 12:50 13:10 169 Melissa Gymrek, David Golan, Saharon Rosset and Yaniv Erlich lobSTR: A Novel Pipeline for Short Tandem Repeats Profiling in Personal Genomes 13:10 13:30 217 Rory Stark Differential oestrogen receptor binding is associated with clinical outcome in breast cancer 13:30 15:00 lunch break Session 3.
    [Show full text]
  • Are Profile Hidden Markov Models Identifiable?
    Are Profile Hidden Markov Models Identifiable? Srilakshmi Pattabiraman Tandy Warnow Department of Electrical and Computer Engineering Department of Computer Science University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Urbana, Illinois Urbana, Illinois [email protected] [email protected] ABSTRACT 1 INTRODUCTION Profile Hidden Markov Models (HMMs) are graphical models that Profile Hidden Markov Models (HMMs) are arguably themost can be used to produce finite length sequences from a distribution. common statistical models in bioinformatics. Originally introduced In fact, although they were only introduced for bioinformatics 25 by Haussler and colleagues in [10, 12], and then expanded later years ago (by Haussler et al., Hawaii International Conference on in many subsequent texts [4–6, 9, 11, 21, 25], profile HMMs are Systems Science 1993), they are arguably the most commonly used now used in many analytical steps in biological sequence analysis statistical model in bioinformatics, with multiple applications, in- [15, 17–19, 22]. cluding protein structure and function prediction, classifications Profile Hidden Markov models are graphical models with match of novel proteins into existing protein families and superfamilies, states, insertion states, and deletion states; and the match and in- metagenomics, and multiple sequence alignment. The standard use sertion states emit letters from an underlying alphabet Σ (i.e., Σ of profile HMMs in bioinformatics has two steps: first a profile may be the 20 amino acids, the four nucleotides, or some other HMM is built for a collection of molecular sequences (which may set of symbols). In the standard form presented in [4] (widely in not be in a multiple sequence alignment), and then the profile HMM use in bioinformatics applications), each profile Hidden Markov is used in some subsequent analysis of new molecular sequences.
    [Show full text]
  • Computational Biology and Bioinformatics
    Vol. 30 ISMB 2014, pages i1–i2 BIOINFORMATICS EDITORIAL doi:10.1093/bioinformatics/btu304 Editorial This special issue of Bioinformatics serves as the proceedings of The conference used a two-tier review system, a continuation the 22nd annual meeting of Intelligent Systems for Molecular and refinement of a process begun with ISMB 2013 in an effort Biology (ISMB), which took place in Boston, MA, July 11–15, to better ensure thorough and fair reviewing. Under the revised 2014 (http://www.iscb.org/ismbeccb2014). The official confer- process, each of the 191 submissions was first reviewed by at least ence of the International Society for Computational Biology three expert referees, with a subset receiving between four and (http://www.iscb.org/), ISMB, was accompanied by 12 Special eight reviews, as needed. These formal reviews were frequently Interest Group meetings of one or two days each, two satellite supplemented by online discussion among reviewers and Area meetings, a High School Teachers Workshop and two half-day Chairs to resolve points of dispute and reach a consensus on tutorials. Since its inception, ISMB has grown to be the largest each paper. Among the 191 submissions, 29 were conditionally international conference in computational biology and bioinfor- accepted for publication directly from the first round review Downloaded from matics. It is expected to be the premiere forum in the field for based on an assessment of the reviewers that the paper was presenting new research results, disseminating methods and tech- clearly above par for the conference. A subset of 16 papers niques and facilitating discussions among leading researchers, were viewed as potentially in the top tier but raised significant practitioners and students in the field.
    [Show full text]
  • Michael S. Waterman: Breathing Mathematics Into Genes >>>
    ISSUE 13 Newsletter of Institute for Mathematical Sciences, NUS 2008 Michael S. Waterman: Breathing Mathematics into Genes >>> setting up of the Center for Computational and Experimental Genomics in 2001, Waterman and his collaborators and students continue to provide a road map for the solution of post-genomic computational problems. For his scientific contributions he was elected fellow or member of prestigious learned bodies like the American Academy of Arts and Sciences, National Academy of Sciences, American Association for the Advancement of Science, Institute of Mathematical Statistics, Celera Genomics and French Acadèmie des Sciences. He was awarded a Gairdner Foundation International Award and the Senior Scientist Accomplishment Award of the International Society of Computational Biology. He currently holds an Endowed Chair at USC and has held numerous visiting positions in major universities. In addition to research, he is actively involved in the academic and social activities of students as faculty master Michael Waterman of USC’s International Residential College at Parkside. Interview of Michael S. Waterman by Y.K. Leong Waterman has served as advisor to NUS on genomic research and was a member of the organizational committee Michael Waterman is world acclaimed for pioneering and of the Institute’s thematic program Post-Genome Knowledge 16 fundamental work in probability and algorithms that has Discovery (Jan – June 2002). On one of his advisory tremendous impact on molecular biology, genomics and visits to NUS, Imprints took the opportunity to interview bioinformatics. He was a founding member of the Santa him on 7 February 2007. The following is an edited and Cruz group that launched the Human Genome Project in enhanced version of the interview in which he describes the 1990, and his work was instrumental in bringing the public excitement of participating in one of the greatest modern and private efforts of mapping the human genome to their scientific adventures and of unlocking the mystery behind completion in 2003, two years ahead of schedule.
    [Show full text]
  • Research News
    Computing Research News COMPUTING RESEARCH ASSOCIATION, CELEBRATING 40 YEARS OF SERVICE TO THE COMPUTING RESEARCH COMMUNITY JUNE 2013 Vol. 25 / No. 6 Announcements 2 Coalition for National Science Funding 2 CRA Announces Outstanding Undergraduate Researcher Award Winners 3 Computing Research in Action 5 CERP Infographic 6 NSF Funding Opportunity 6 CRA Recognizes Participants 7 CRA Board Members 16 CRA Board Officers 16 CRA Staff 16 Professional Opportunities 17 COMPUTING RESEARCH NEWS, JUNE 2013 Vol. 25 / No. 6 Announcements 2012 Taulbee Report Updated May 15, 2013 Corrected Table F6 Click here to download updated version CRA Releases Latest Research Issue Report New Technology-based Models for Postsecondary Learning: Conceptual Frameworks and Research Agendas The report details the findings of a National Science Foundation-Sponsored Computing Research Association Workshop held at MIT on January 9-11, 2013. From the report: “Advances in technology and in knowledge about expertise, learning, and assessment have the potential to reshape the many forms of education and training past matriculation from high school. In the next decade, higher education, military and workplace training, and professional development must all transform to exploit the opportunities of a new era, leveraging emerging technology-based models that can make learning more efficient and possibly improve student support, all at lower cost for a broader range of learners.” The report is now available as a pdf at http://cra.org/resources/research-issues/. Slides from the presentation at NSF on April 19, 2013 are also available. Investments in STEM Research and Education: Fueling American Innovation On May 7, at the Rayburn House Office Building in Brett Bode from the National Center for Supercomputing Washington, DC, the Coalition for National Science Funding Applications at University of Illinois Urbana-Champaign were (CNSF) held its 19th annual exhibition and reception, on hand to talk about the “Blue Waters” project.
    [Show full text]
  • Gene and Genome Duplication David Sankoff
    681 Gene and genome duplication David Sankoff Genomic sequencing projects have revealed the productivity of tetraploidization. I also summarize some mathematical processes duplicating genes or entire chromosome segments. modeling and algorithmics inspired by duplication phenomena. Substantial proportions of the yeast, Arabidopsis and human gene complements are made up of duplicates. This has prompted much Gene duplication interest in the processes of duplication, functional divergence and Li et al. [2] find that duplicated genes, as identified through loss of genes, has renewed the debate on whether an early fairly selective criteria, account for ~15% of the protein genes vertebrate genome was tetraploid, and has inspired mathematical in the human genome (counting both genes in each pair). In a models and algorithms in computational biology. survey of eukaryotic genome sequences, Lynch and Conery [3••], using a somewhat different filter, accounted for ~8%, Addresses 10% and 20% of the gene complement of the fly, yeast and Centre de recherches mathématiques, Université de Montréal, worm genomes, respectively. (Other estimates put the figure CP 6128 succursale Centre-Ville, Montreal, Québec H3C 3J7, Canada; at 16% for yeast and 25% for Arabidopsis [4•].) They estimated e-mail: [email protected] highly variable rates of gene duplication, averaging ~0.01 per Current Opinion in Genetics & Development 2001, 11:681–684 gene per Myr (million years). On the basis of ratios of silent and replacement rearrangements, they found that there is 0959-437X/01/$ — see front matter © 2001 Elsevier Science Ltd. All rights reserved. typically a period of neutral or (occasionally) even slightly accelerated evolution, lasting a few Myr at most, with one of Abbreviation the copies eventually being silenced in a large majority of Myr million years cases, and the remaining ones undergoing relatively stringent purifying selection.
    [Show full text]
  • I S C B N E W S L E T T
    ISCB NEWSLETTER FOCUS ISSUE {contents} President’s Letter 2 Member Involvement Encouraged Register for ISMB 2002 3 Registration and Tutorial Update Host ISMB 2004 or 2005 3 David Baker 4 2002 Overton Prize Recipient Overton Endowment 4 ISMB 2002 Committees 4 ISMB 2002 Opportunities 5 Sponsor and Exhibitor Benefits Best Paper Award by SGI 5 ISMB 2002 SIGs 6 New Program for 2002 ISMB Goes Down Under 7 Planning Underway for 2003 Hot Jobs! Top Companies! 8 ISMB 2002 Job Fair ISCB Board Nominations 8 Bioinformatics Pioneers 9 ISMB 2002 Keynote Speakers Invited Editorial 10 Anna Tramontano: Bioinformatics in Europe Software Recommendations11 ISCB Software Statement volume 5. issue 2. summer 2002 Community Development 12 ISCB’s Regional Affiliates Program ISCB Staff Introduction 12 Fellowship Recipients 13 Awardees at RECOMB 2002 Events and Opportunities 14 Bioinformatics events world wide INTERNATIONAL SOCIETY FOR COMPUTATIONAL BIOLOGY A NOTE FROM ISCB PRESIDENT This newsletter is packed with information on development and dissemination of bioinfor- the ISMB2002 conference. With over 200 matics. Issues arise from recommendations paper submissions and over 500 poster submis- made by the Society’s committees, Board of sions, the conference promises to be a scientific Directors, and membership at large. Important feast. On behalf of the ISCB’s Directors, staff, issues are defined as motions and are discussed EXECUTIVE COMMITTEE and membership, I would like to thank the by the Board of Directors on a bi-monthly Philip E. Bourne, Ph.D., President organizing committee, local organizing com- teleconference. Motions that pass are enacted Michael Gribskov, Ph.D., mittee, and program committee for their hard by the Executive Committee which also serves Vice President work preparing for the conference.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Tandy Warnow Grainger Distinguished Chair in Engineering 1 Contact Information Department of Computer Science The University of Illinois at Urbana-Champaign Email: [email protected] Homepage: http://tandy.cs.illinois.edu 2 Research Interests Phylogenetic tree inference in biology and historical linguistics, multiple sequence alignment, metage- nomic analysis, big data, statistical inference, probabilistic analysis of algorithms, machine learning, combinatorial and graph-theoretic algorithms, and experimental performance studies of algorithms. 3 Professional Appointments • Co-chief scientist, C3.ai Digital Transformation Institute, 2020-present • Grainger Distinguished Chair in Engineering, 2020-present • Associate Head for Computer Science, 2019-present • Special advisor to the Head of the Department of Computer Science, 2016-present • Associate Head for the Department of Computer Science, 2017-2018. • Founder Professor of Computer Science, the University of Illinois at Urbana-Champaign, 2014- 2019 • Member, Carl R. Woese Institute for Genomic Biology. Affiliate of the National Center for Supercomputing Applications (NCSA), Coordinated Sciences Laboratory, and the Unit for Criticism and Interpretive Theory. Affiliate faculty member in the Departments of Mathe- matics, Electrical and Computer Engineering, Bioengineering, Statistics, Entomology, Plant Biology, and Evolution, Ecology, and Behavior, 2014-present. • National Science Foundation, Program Director for Big Data, July 2012-July 2013. • Member, Big Data Senior Steering Group of NITRD (The Networking and Information Tech- nology Research and Development Program), subcomittee of the National Technology Council (coordinating federal agencies), 2012-2013 • Departmental Scholar, Institute for Pure and Applied Mathematics, UCLA, Fall 2011 • Visiting Researcher, University of Maryland, Spring and Summer 2011. 1 • Visiting Researcher, Smithsonian Institute, Spring and Summer 2011. • Professeur Invit´e,Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Summer 2010.
    [Show full text]
  • Structure-Based Realignment of Non-Coding Rnas in Multiple Whole Genome Alignments
    Structure-based Realignment of Non-coding RNAs in Multiple Whole Genome Alignments. by Michael Ku Yu Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of ARCHIVES Masters of Engineering in Computer Science and Engineering MASSACHUE N U TE at the OF TECH IOLOY MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUN 2 1 2011 June 2011 LIBRARI ES @ Massachusetts Institute of Technology 2011. All rights reserved. '$7 A uthor ............ .. .. ... ............. Department of Electrical Wgineering and Computer Science May 20, 2011 Certified by..................................... ...... Bonnie Berger Professor of Applied Mathematics and Computer Science Thesis Supervisor Accepted by.... ....................................... Christopher J. Terman Chairman, Department Committee on Graduate Theses 2 Structure-based Realignment of Non-coding RNAs in Multiple Whole Genome Alignments by Michael Ku Yu Submitted to the Department of Electrical Engineering and Computer Science on May 20, 2011, in partial fulfillment of the requirements for the degree of Masters of Engineering in Computer Science and Engineering Abstract Whole genome alignments have become a central tool in biological sequence analy- sis. A major application is the de novo prediction of non-coding RNAs (ncRNAs) from structural conservation visible in the alignment. However, current methods for constructing genome alignments do so by explicitly optimizing for sequence simi- larity but not structural similarity. Therefore, de novo prediction of ncRNAs with high structural but low sequence conservation is intrinsically challenging in a genome alignment because the conservation signal is typically hidden. This study addresses this problem with a method for genome-wide realignment of potential ncRNAs ac- cording to structural similarity.
    [Show full text]
  • Fast Non-Parametric Improvement of Estimated Gene Trees Sarah Christensen University of Illinois at Urbana-Champaign, USA [email protected] Erin K
    TRACTION: Fast Non-Parametric Improvement of Estimated Gene Trees Sarah Christensen University of Illinois at Urbana-Champaign, USA [email protected] Erin K. Molloy University of Illinois at Urbana-Champaign, USA [email protected] Pranjal Vachaspati University of Illinois at Urbana-Champaign, USA [email protected] Tandy Warnow1 University of Illinois at Urbana-Champaign, USA http://tandy.cs.illinois.edu [email protected] Abstract Gene tree correction aims to improve the accuracy of a gene tree by using computational techniques along with a reference tree (and in some cases available sequence data). It is an active area of research when dealing with gene tree heterogeneity due to duplication and loss (GDL). Here, we study the problem of gene tree correction where gene tree heterogeneity is instead due to incomplete lineage sorting (ILS, a common problem in eukaryotic phylogenetics) and horizontal gene transfer (HGT, a common problem in bacterial phylogenetics). We introduce TRACTION, a simple polynomial time method that provably finds an optimal solution to the RF-Optimal Tree Refinement and Completion Problem, which seeks a refinement and completion of an input tree t with respect to a given binary tree T so as to minimize the Robinson-Foulds (RF) distance. We present the results of an extensive simulation study evaluating TRACTION within gene tree correction pipelines on 68,000 estimated gene trees, using estimated species trees as reference trees. We explore accuracy under conditions with varying levels of gene tree heterogeneity due to ILS and HGT. We show that TRACTION matches or improves the accuracy of well-established methods from the GDL literature under conditions with HGT and ILS, and ties for best under the ILS-only conditions.
    [Show full text]