Astrophysical Techniques Fourth Edition

Total Page:16

File Type:pdf, Size:1020Kb

Astrophysical Techniques Fourth Edition Astrophysical Techniques Fourth Edition C R Kitchin University of Hertfordshire Observatory Institute of Physics Publishing Bristol and Philadelphia # IOP Publishing Ltd 2003 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with Universities UK (UUK). C R Kitchin has asserted his moral rights under the Copyright, Designs and Patents Act 1998 to be identified as the author of this work. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7503 0946 6 Library of Congress Cataloging-in-Publication Data are available First edition 1984, reprinted 1988 Second edition 1991, reprinted 1998 Third edition 1998, reprinted 2002 Commissioning Editor: John Navas Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fre´de´rique Swist Marketing: Nicola Newey and Verity Cooke Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 929, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset by Academic þ Technical, Bristol Printed in the UK by MPG Books Ltd, Bodmin, Cornwall For Christine Contents Standardsymbols Preface 1Detectors 1.1Opticalandinfrareddetection Introduction Detectortypes Theeye Semiconductors Thephotoelectriceffect Adetectorindex Detectorparameters Cryostats Charge-coupleddevices(CCD) Photography Photomultipliers Superconductingtunneljunctiondetectors(STJs) Othertypesofdetector Photovoltaiccells Thermocouples Phototransistors Chargeinjectiondevices(CID) Televisiontubes Imageintensifiers Infrareddetectors Photoconductivecells Bolometers Othertypesofdetector Ultravioletdetectors Futurepossibilities Noise Intrinsicnoise Signalnoise Digitization Telescopes Opticaltheory Telescopedesigns Background Designs Telescopesinspace Mountings Real-timeatmosphericcompensation Samplingsystem Wavefrontsensing Wavefrontcorrection Futuredevelopments Observingdomes,enclosuresandsites Exercises 1.2Radioandmicrowavedetection Introduction Detectorsandreceivers Radiotelescopes Construction Exercises 1.3X-rayandgamma-raydetection Introduction Detectors Geigercounters Proportionalcounters Scintillationdetectors Gasscintillationproportionalcounters Chargecoupleddevices Superconductingtunneljunctiondetectors Comptoninteractiondetectors Sparkdetectors Cˇ erenkovdetectors Solid-statedetectors Microchannelplates Nuclearemulsions Shielding Imaging Collimation Coincidencedetectors Occultation Reflectingtelescopes Resolutionandimageidentification Spectroscopy Gratingspectrometers Braggspectrometers Background Thespectrometer Polarimetry Observingplatforms 1.4Cosmicraydetectors Background Detectors Real-timemethods Cloudchamber Geigercounters Proportionalcounters Sparkdetectors Flashtubes Scintillationdetectors Cˇ erenkovdetectors Background Detectors Solid-statedetectors Nucleondetectors Residualtrackdetectors Photographicemulsions Ionizationdamagedetectors Indirectdetectors Electroscope 100MeVgammarays Diffuseradioemission Fluorescence Solarcosmicrays Carbon-14 Arrays Correctionfactors Atmosphericeffects Solareffects Terrestrialmagneticfield Exercises 1.5Neutrinodetectors Background Chlorine-37detectors Water-baseddetectors Gallium-baseddetectors Scintillator-baseddetectors Othertypesofdetector Direct-interaction-typedetectors Geologicaldetectors Currentlyoperatingandplannedneutrinodetectors Exercises 1.6Gravitationalradiation Introduction Detectors Directresonantdetectors Direct,non-resonantdetectors Indirectdetectors Exercises 2Imaging 2.1Theinverseproblem Deconvolution 2.2Photography Introduction Structureofthephotographicemulsion Thephotographicimage Processing Hypersensitization Heating Gasimmersioneffects Filmtypes Techniquesofastronomicalphotography Analysisofphotographicimages 2.3Electronicimaging Introduction Televisionandrelatedsystems Imageintensifiers Magneticallyfocusedimageintensifiers Electrostaticallyfocusedimageintensifiers Proximityfocusedimageintensifiers Cascades Recording Photoncountingimagingsystems 2.4Scanning 2.5Interferometry Introduction Michelsonopticalstellarinterferometer Michelsonradiointerferometer Reflectioninterferometers Aperturesynthesis Intensityinterferometer Exercises 2.6Speckleinterferometry 2.7Occultations Background Techniques Analysis 2.8Radar Introduction Theoreticalprinciples Equipment Dataanalysis Meteors Exercise 2.9Electronicimages Imageformats Imagecompression Imageprocessing Greyscaling Imagecombination Spatialfiltering 3Photometry 3.1Photometry Background Filtersystems Stellarparameters Exercises 3.2Photometers Instruments Observingtechniques Datareductionandanalysis Exercise 4Spectroscopy 4.1Spectroscopy Introduction Diffractiongratings Prisms Interferometers Fibreoptics Exercises 4.2Spectroscopes Basicdesignconsiderations Prism-basedspectroscopes Gratingspectroscopes Integralfieldspectroscopy Multi-objectspectroscopy Techniquesofspectroscopy Futuredevelopments Exercises 5Othertechniques 5.1Astrometry Introduction Background Transittelescopes Photographiczenithtubeandtheimpersonalastrolabe Micrometers Astrographsandothertelescopes Interferometers Space-basedsystems Detectors Measurementandreduction Skysurveysandcatalogues Exercises 5.2Polarimetry Background Opticalcomponentsforpolarimetry Polarimeters Spectropolarimetry Datareductionandanalysis Exercises 5.3Solarstudies Introduction Solartelescopes Spectrohelioscope Narrowbandfilters Coronagraph Pyrheliometer Solaroscillations Othersolarobservingmethods Exercise 5.4Magnetometry Background Magnetometers Datareductionandanalysis 5.5ComputersandtheWorldWideWeb Introduction Digitalskysurveys Virtualobservatories Appendices 1Northpolarsequence 2Juliandate 3Answerstotheexercises 4Acronyms 5Bibliography Standard symbols Most of the symbols used in this book are defined when they are first encoun- tered and that definition then applies throughout the rest of the section con- cerned. Some symbols, however, have acquired such a commonality of use that they have become standard symbols among astronomers. Some of these are listed below, and the symbol will not then be separately defined when it is encountered in the text. amu atomic mass unit ¼ 1:6605 Â 10ÿ27 kg ÿ1 c velocity of light in a vacuum ¼ 2:9979 Â 108 ms e charge on the electron ¼ 1:6022 Â 10ÿ19 C eÿ symbol for an electron eþ symbol for a positron eV electron volt ¼ 1:6022 Â 10ÿ19 J G gravitational constant ¼ 6:670 Â 10ÿ11 Nm2 kgÿ2 h Planck’s constant ¼ 6:6262 Â 10ÿ34 Js k Boltzmann’s constant ¼ 1:3806 Â 10ÿ23 JKÿ1 ÿ31 me mass of the electron ¼ 9:1096 Â 10 kg n symbol for a neutron pþ symbol for a proton U, B, V magnitudes through the standard UBV photometric system 12 6C symbol for nuclei (normal carbon isotope given as the example); the superscript is the atomic mass (in amu) to the nearest whole number and the subscript is the atomic number symbol for a gamma ray ÿ12 ÿ1 "0 permittivity of free space ¼ 8:85 Â 10 Fm symbol for wavelength symbol for refractive index (also, n is widely used) ÿ7 ÿ1 0 permeability of a vacuum ¼ 4 Â 10 Hm symbol for frequency (also, f is widely used). Preface The aim of this book is to provide a coherent state-of-the-art account of the instruments and techniques used in astronomy and astrophysics today. Whilst every effort has been made to make it as complete and up-to-date as possible, the author is only too well aware of the many omissions and skimpily treated subjects throughout the work. For some types of instru- mentation it is possible to give full details of the instrument in its finally developed form. However, for the ‘new astronomies’ and even some aspects of established fields, development is occurring at a rapid pace and the details will change between the writing and publishing of this edition. For those areas of astronomy therefore, a fairly general guide to the principles behind the techniques is given and this should enable the reader to follow the detailed designs in the scientific literature. With this fourth edition, many new instruments and techniques are included for the first time, and some topics have been eliminated on the grounds that they have not been used by either professional or amateur astronomers for many years. Other topics, while no longer employed by professional observers for current work, are included because archive material that is still in use was obtained using them and/or because amateur astronomers use the techniques. A few references to web sites have been included but not many because the sites change so frequently and search engines are now so good. However, this resource is now the point of first call for most scientists when they have a query, and much material, such as large sky surveys, is only available over the web. Further- more it is used for the operation of some remote telescopes and it forms the basis of ‘virtual’ telescopes as discussed in the last chapter. Another aim has been to try to reduce the trend towards fragmentation of astronomical studies. The new techniques that are required for observing in exotic regions of the spectrum bring their own concepts and terminology with them. This can lead
Recommended publications
  • International Comet Quarterly
    International Comet Quarterly Links International Comet Quarterly ICQ: Recommended (and condemned) sources for stellar magnitudes Cometary Science Center Comet magnitudes Below is a list that observers may use to evaluate whether the source(s) that they are Central Bureau for Astro. Tel. contemplating using for visual or V stellar magnitudes are recommended or not. Unfortunately, many errors have been found over the years in the both the individual variable-star charts of Minor Planet Center the AAVSO (ICQ code AC) and the AAVSO Variable Star Atlas (code AA); those variable-star EPS/Harvard charts were designed for the purpose of tracking the relative variation in brightness of individual variable stars, and they frequently are not adequately aligned with the proper magnitude scale. The new Hipparcos/Tycho catalogues have had new codes implemented (see below). New additions (and changes in categories) will be made to the following list as new information reaches the ICQ. MAGNITUDE-REFERENCE KEY Second-draft recommendation list, 1997 Dec. 1. Updated 2007 April 20 and 2017 Oct. 4. NOTE: For visual magnitude estimation of comets, NEVER USE SOURCES for which the available star magnitudes are only brighter than the comet! For example, the SAO Star Catalog is very poor for magnitudes fainter than 9.0, and should NEVER be used on comets fainter than mag 9.5. The Tycho catalogue should not be used for comets fainter than mag 10.5. (Even CCD photometrists should be wary of using bright stars for very faint comets; it is always best to use comparison stars within a few magnitudes of the comet when doing CCD photometry.) NOTE: It is highly recommended that users of variable-star charts also specify (in descriptive notes to accompany the tabulated data) the specific chart(s) used for each observation; this information will be published in the ICQ.
    [Show full text]
  • The Astronomicalsociety Ofedinburgh
    The AstronomicalSociety ofEdinburgh Journal 40 - December 1999 Harry Ford's modified Scotch Mount From the President - Alan Ellis 2 Cheap Astrophotography - a Variation on the Theme - Harry Ford 3 Scottish Astronomy Weekend - Dave Gavine 4 Leonids 1999 - Lorna McCalman 6 Other Observations - Dave Gavine 7 Popular Astronomy Class 7 Special Section on the Solar Eclipse of August 11 1999 8 Including "TheGreatHungarianEclipse" by GrahamYoung, plus reports from GerryTaylor, DaveGavine, MauriceFrank and GrahamRule James Melvill sees a great Comet in 1577 - Dave Gavine 13 Book Review - "The Young Astronomer" by Harry Ford 14 Scottish Astronomers' Group - Graham Rule 14 Published by the Astronomical Society of Edinburgh, City Observatory, Calton Hill, Edinburgh for circulation to members. Editor: Dr Dave Gavine, 29 Coillesdene Crescent, Edinburgh From the President Welcome to Edition 40 of the Society’s Journal. We have to thank Dave Gavine for editing this edition - and the other 39! Unfortunately, Dave has great difficulty in getting members to contribute articles so please consider writing about your astronomical interests whatever they might be - from reviews of books you have enjoyed to observations you have made. We have had quite a good year what with the eclipse and the Leonids - although the weather could have been a little more helpful for both these events. Charlie Gleed and Jim Douglas have continued to work on the Earlyburn site and we hope to start using it in the evenings soon - weather permitting. Recently the Observatory has featured in a BBC Scotland TV series in which Brian Kelly (formerly Dundee’s City Astronomer) may be seen sitting on the roof of the Playfair Building in a pink inflatable plastic arm-chair talking about aspects of astronomy.
    [Show full text]
  • Introduction to Astronomical Photometry, Second Edition
    This page intentionally left blank Introduction to Astronomical Photometry, Second Edition Completely updated, this Second Edition gives a broad review of astronomical photometry to provide an understanding of astrophysics from a data-based perspective. It explains the underlying principles of the instruments used, and the applications and inferences derived from measurements. Each chapter has been fully revised to account for the latest developments, including the use of CCDs. Highly illustrated, this book provides an overview and historical background of the subject before reviewing the main themes within astronomical photometry. The central chapters focus on the practical design of the instruments and methodology used. The book concludes by discussing specialized topics in stellar astronomy, concentrating on the information that can be derived from the analysis of the light curves of variable stars and close binary systems. This new edition includes numerous bibliographic notes and a glossary of terms. It is ideal for graduate students, academic researchers and advanced amateurs interested in practical and observational astronomy. Edwin Budding is a research fellow at the Carter Observatory, New Zealand, and a visiting professor at the Çanakkale University, Turkey. Osman Demircan is Director of the Ulupınar Observatory of Çanakkale University, Turkey. Cambridge Observing Handbooks for Research Astronomers Today’s professional astronomers must be able to adapt to use telescopes and interpret data at all wavelengths. This series is designed to provide them with a collection of concise, self-contained handbooks, which covers the basic principles peculiar to observing in a particular spectral region, or to using a special technique or type of instrument. The books can be used as an introduction to the subject and as a handy reference for use at the telescope, or in the office.
    [Show full text]
  • 1949–1999 the Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics
    P1: FHN/fkr P2: FHN/fgm QC: FHN/anil T1: FHN September 9, 1999 19:34 Annual Reviews AR088-11 Annu. Rev. Astron. Astrophys. 1999. 37:445–86 Copyright c 1999 by Annual Reviews. All rights reserved THE FIRST 50 YEARS AT PALOMAR: 1949–1999 The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics Allan Sandage The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 Key Words stellar evolution, observational cosmology, radio astronomy, high energy astrophysics PROLOGUE In 1999 we celebrate the 50th anniversary of the initial bringing into operation of the Palomar 200-inch Hale telescope. When this telescope was dedicated, it opened up a much larger and clearer window on the universe than any telescope that had gone before. Because the Hale telescope has played such an important role in twentieth century astrophysics, we decided to invite one or two of the astronomers most familiar with what has been achieved at Palomar to give a scientific commentary on the work that has been done there in the first fifty years. The first article of this kind which follows is by Allan Sandage, who has been an active member of the staff of what was originally the Mount Wilson and Palomar Observatories, and later the Carnegie Observatories for the whole of these fifty years. The article is devoted to the topics which covered the original goals for the Palomar telescope, namely observational cosmology and the study of galaxies, together with discoveries that were not anticipated, but were first made at Palomar and which played a leading role in the development of high energy astrophysics.
    [Show full text]
  • William Pendry Bidelman (1918-2011)
    William Pendry Bidelman (1918–2011)1 Howard E. Bond2 Received ; accepted arXiv:1609.09109v1 [astro-ph.SR] 28 Sep 2016 1Material for this article was contributed by several family members, colleagues, and former students, including: Billie Bidelman Little, Joseph Little, James Caplinger, D. Jack MacConnell, Wayne Osborn, George W. Preston, Nancy G. Roman, and Nolan Walborn. Any opinions stated are those of the author. 2Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802; [email protected] –2– ABSTRACT William P. Bidelman—Editor of these Publications from 1956 to 1961—passed away on 2011 May 3, at the age of 92. He was one of the last of the masters of visual stellar spectral classification and the identification of peculiar stars. I re- view his contributions to these subjects, including the discoveries of barium stars, hydrogen-deficient stars, high-galactic-latitude supergiants, stars with anomalous carbon content, and exotic chemical abundances in peculiar A and B stars. Bidel- man was legendary for his encyclopedic knowledge of the stellar literature. He had a profound and inspirational influence on many colleagues and students. Some of the bizarre stellar phenomena he discovered remain unexplained to the present day. Subject headings: obituaries (W. P. Bidelman) –3– William Pendry Bidelman—famous among his astronomical colleagues and students for his encyclopedic knowledge of stellar spectra and their peculiarities—passed away at the age of 92 on 2011 May 3, in Murfreesboro, Tennessee. He was Editor of these Publications from 1956 to 1961. Bidelman was born in Los Angeles on 1918 September 25, but when the family fell onto hard financial times, his mother moved with him to Grand Forks, North Dakota in 1922.
    [Show full text]
  • A Brief History of Cosmology
    Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe, 2004 ed. W. L. Freedman (Cambridge: Cambridge Univ. Press) A Brief History of Cosmology MALCOLM S. LONGAIR Cavendish Laboratory, Cambridge, UK Abstract Some highlights of the history of modern cosmology and the lessons to be learned from the successes and blind alleys of the past are described. This heritage forms the background to the lectures and discussions at this Second Carnegie Centennial Symposium, which cele- brates the remarkable contributions of the Carnegie Institution in the support of astronomical and cosmological research. 1.1 Introduction It is a great honor to be invited to give this introductory address at the Second Carnegie Centennial Symposium to celebrate the outstanding achievements of the Obser- vatories of the Carnegie Institution of Washington. I assume that the point of opening this meeting with a survey of the history of cosmology is not only to celebrate the remarkable achievementsof modern observational and theoretical cosmology, but also to provide lessons for our time, which may enable us all to avoid some of the errors that we now recognize were made in the past. I am bound to say that I am not at all optimistic that this second aim will be achieved. I recall that, when I gave a similar talk many years ago with the same intention, Giancarlo Setti made the percipient remark: Cosmology is like love; everyone likes to make their own mistakes. By its very nature, the subject involves the confrontation of theoretical speculation with cosmological observations, the scepticism of the hardened observer about taking anything a theorist says seriously, the problems of pushing observations to the very limits of techno- logical capability, and sometimes beyond these, resulting in dubious data, and so on.
    [Show full text]
  • Albert E. Whitford
    NATIONAL ACADEMY OF SCIENCES ALBERT EDWARD WHITFORD 1905– 2002 A Biographical Memoir by DONALD E. OSTERBROCK Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 85 PUBLISHED 2004 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. Courtesy of the Mary Lea Shane Archives of the Lick Observatory, University of California, Santa Cruz ALBERT EDWARD WHITFORD October 22, 1905–March 28, 2002 BY DONALD E. OSTERBROCK LBERT E. WHITFORD WAS born, raised, and educated in A Wisconsin, and then made his mark as an outstanding research astrophysicist there and in California. As a graduate student in physics he developed instrumental improvements that greatly increased the sensitivity of photoelectric measure- ments of the brightness and color of stars. For the rest of his life he applied these and later even better tools for increasing our knowledge and understanding of stars, inter- stellar matter, star clusters, galaxies, and clusters of galaxies, from the nearest to the most distant. He became a leader of American astronomy, and his counsel was sought and heeded by the national government. Albert was born in Milton, Wisconsin, a little village halfway between Madison and Williams Bay, where Yerkes Observatory is located. When Albert was born, his father, Alfred E. Whitford, was the professor of mathematics and physics at tiny Milton College, and his father, Albert, for whom our subject was named, had been the professor of mathematics before him. Albert’s mother, Mary Whitford Whitford, was his father’s second cousin from Rhode Island, and he had one sister, Dorothy (later Lerdahl).
    [Show full text]
  • Dark Halos of Wide Triple Systems of Galaxies V
    Astronomy Reports, Vol. 46, No. 4, 2002, pp. 259–266. Translated from Astronomicheski˘ı Zhurnal, Vol. 79, No. 4, 2002, pp. 291–299. Original Russian Text Copyright c 2002 by Dolgachev, Domozhilova, Chernin. Dark Halos of Wide Triple Systems of Galaxies V. P. Dolgachev 1, L.M.Domozhilova1, and A. D. Chernin1, 2 1Sternberg Astronomical Institute, Universitetski ˘ı pr. 13, Moscow, 119899 Russia 2Tuorla Observatory, Turku, Finland Received July 10, 2001 Abstract—A new class of metagalactic system—wide triple systems of galaxies with characteristic scale lengths of ∼1 Mpc—are analyzed. Dynamical models of such systems are constructed, and the amount of dark mass contained in them is estimated. In principle, kinematic data for wide triplets allow two types of models: with individual galactic halos and with a common halo for the entire system. A choice between the two models can be made based on X-ray observations of these systems, which can determine whether clustering and hierarchical evolution continues on scales of ∼1 Mpc or whether systems with such scale lengths are in a state of virial quasi-equilibrium. c 2002 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION common quasi-stationary halo for the entire system. The kinematic data on wide triplets that we use as Wide galaxy triplets represent a new class of meta- the initial observations for our simulations can be galactic system. The first (and so far only) list of interpreted and reproduced (with almost equal accu- these objects was published by Trofimov and Chernin racy) in terms of both types of models. This raises [1]. This list contains data for 108 systems, of which the question of new observations that could distin- one third are “likely physically associated” systems, guish between alternative models, and thereby pro- according to the statistical criterion of Anosova [2].
    [Show full text]
  • Three Lectures on Astrophysics and Cosmology
    Three Lectures on Astrophysics and Cosmology • A Brief History of Cosmology • The Most Luminous Radio Galaxies • Galaxy Formation and Fluctuations in the Cosmic Microwave Background Radiation – What You Really Need to Know 1 A Brief History of Cosmology • Observational Cosmology to 1926 • Theoretical Cosmology to 1939 • Post-War Observational and Theoretical Cosmology to the 1990s • Where we are now 2 The Books of the Lecture Chapter 19 includes many To appear in March 2006. useful derivations and results 3 1. Observational Cosmology to 1926 4 Early Speculations The earliest cosmologies were speculative cosmologies. Rene´ Descartes The Thomas Wright An Thomas Wright An World (1636) Original Theory of the Original Theory of the Universe (1750) Universe (1750) 5 Early Speculations The hierarchical (fractal) Universe of Kant (1755) and Lambert (1761) Immanuel Kant had speculated that the flattening of celestial objects was due to their rotation. The early cosmologies were speculative ideas without quantitative support of observation. The first quantitative estimates of the scale and structure of the Universe were made by William Herschel. 6 William Herschel Herschel’s star counts provided the first quantitative evidence for the island Universe picture of Wright, Kant, Swedenborg, and Laplace. 7 Herschel’s 40-foot Telescope at Slough This photograph was taken by John Herschel within months of the announcement of the discovery of the photographic process by Daguerre and Fox-Talbot in 1839. 8 Herschel’s Model of the Galaxy Herschel assumed that all stars have the same absolute luminosities. The importance of interstellar extinction had yet to be appreciated. 9 John Michell and William Herschel • In 1767, Michell had already shown that Herschel’s assumption of the constancy of the absolute luminosities of stars was incorrect from observations of bright star clusters.
    [Show full text]
  • Introduction to Amateur Astronomy TCAA Guide #1 Carl J
    Introduction to Amateur Astronomy TCAA Guide #1 Carl J. Wenning Introduction to Amateur Astronomy Copyright © 2019 Twin City Amateur Astronomers, Inc. All Rights Reserved 1 Introduction to Amateur Astronomy TCAA Guide #1 VERSION 1.6 SEPTEMBER 3, 2019 ABOUT THIS GUIDE: This Introduction to Amateur Astronomy guide – one of several such TCAA guides – was created after several years of thinking about the question of why more people don’t become amateur astronomers. This remains a mystery for most amateur astronomers and astronomy clubs, but especially for the TCAA where we have a friendly and stable organization, outstanding resources, two good observing sites, a solid web presence, a nationally-recognized award-winning newsletter, membership brochures, a good Facebook presence, regular publicity, and plenty of member education and public outreach. Despite these facts, membership in the TCAA has been roughly stable at around 40-50 members since the start of the club in 1960. Why should this be when we have a metropolitan area of over 100,000 people? There appears to be two contributing causes: (1) people no longer understand the concept of a hobby, and (2) given the recent technological advances in telescopes and imaging equipment many people are flummoxed by what they need to know to pursue amateur astronomy as a hobby. This guide has been created in response to the latter impediment. A second publication, TCAA Guide # 3 – Astronomy as a Hobby – addresses the former impediment. (http://tcaa.us/Download/Astronomy_as_a_Hobby.pdf) This guide, TCAA Guide #1, provides an introduction to the basic knowledge with which a would-be amateur astronomer should be familiar.
    [Show full text]
  • 1945Apj. . .102. .318S SIX-COLOR PHOTOMETRY of STARS III. THE
    .318S SIX-COLOR PHOTOMETRY OF STARS .102. III. THE COLORS OF 238 STARS OF DIFFERENT SPECTRAL TYPES* Joel Stebbins1 and A. E. Whiteord2 1945ApJ. Mount Wilson Observatory and Washburn Observatory Received June 8,1945 ABSTRACT Colors have been obtained for 238 stars of all spectral types from O to M by measuring intensities i six spectral regions from X 3530 to X 10,300 A (Tables 2 and 3). The early-type stars from O to B3 sho small dispersion in intrinsic color, but many are strongly affected by space reddening. A dozen late-tyx giants in low latitudes are likewise affected. The most marked effect of absolute magnitude is near spe< trum K0, where the colors of dwarfs, ordinary giants, and supergiants are all different {Fig. 1). The observed colors of the stars agree closely with the colors of a black body at suitable temperatur« (Fig. 2). The derived relative color temperatures are based upon the mean of ten stars of spectrum dG with an assumed temperature of 5500°K. On this scale the values are 23,000° for O stars, 11,000° for A( and 5950° for dGO. An alternative scale, with 6700° and spectrum dG2 for the sun, gives 140,000° fc O stars, 16,000° for A0, and 6900° for dGO (Table 7). A definitive zero point for the temperature seal has not been determined. The bluest O and B stars agree very well with each other, but there is still the possibility that all ai slightly affected by space reddening. A dozen bright stars of the Pleiades seem normal for their type.
    [Show full text]
  • Powell William Lee Diss.Pdf (5.582Mb)
    Tidal Streams in the Milky Way: An Observational Study by William Lee Powell Jr., B.S., M.S. A Dissertation In PHYSICS Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Dr. Ronald J. Wilhelm, Chair Dr. Nural Akchurin Dr. Thomas Gibson Dr. Charley Myles Fred Hartmeister Dean of the Graduate School May, 2008 Copyright 2008, William Lee Powell Jr. Texas Tech University, W. Lee Powell Jr., May 2008 ACKNOWLEDGMENTS I wish to acknowledge the support of the NOAO. I received travel funds for two separate observing runs through their program that supports doctoral student research. They paid the travel expenses for my trip to Chile. The data from this run are the backbone of this dissertation. Kitt Peak National Observatory and Cerro Tololo Inter-American Observatory are operated by AURA, Inc. under contract to the National Science Foundation. Thanks to McDonald Observatory for their generous allocation of observing time to my projects throughout this dissertation. Without the observing time I received at McDonald, I am not sure I would have been able to justify the time I received through NOAO. The proposals would certainly have been the poorer if I had not had data from McDonald Observatory. Thanks to Sigma Xi. I received a grant-in-aid of research. The funds received in this grant paid for three separate observing runs to McDonald Observatory. Thanks also to the American Astronomical Society. Dr. Ron Wilhelm received two Small Research Grants that supported more research travels on the many observing runs I made in pursuit of the data that make up this dissertation.
    [Show full text]