The Role of Gonadotrophin Releasing Hormone in the Investiga- Tion and Treatment of Hypogonadism

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Gonadotrophin Releasing Hormone in the Investiga- Tion and Treatment of Hypogonadism Postgrad Med J: first published as 10.1136/pgmj.61.713.195 on 1 March 1985. Downloaded from Postgraduate Medical Journal (1985) 61, 195-200 Review article The role of gonadotrophin releasing hormone in the investiga- tion and treatment of hypogonadism Adrian Gossagel and Sheila Duncan2 Department ofMedicine' andDepartment ofObstetrics/Gynaecology2, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield S5 7A U UK. Introduction Normal progression through puberty and mainten- inhibitory feedback effects of sex-steroids and so the ance offertility depends on the integral functioning of release of Gn-RH and consequently FSH and LH is the hormonal circuit linking the hypothalamus, not inhibited until higher plasma concentrations of pituitary and gonads shown in Figure 1. The hypoth- sex-steroids are reached. An early manifestation of alamic factor - gonadotrophin-releasing hormone this change is the incremental development ofpulsatile (Gn-RH) was isolated and its structure determined in release of LH with maximal activity at about 0300 h 1971 (Schally et al., 1971). This releasing hormone acts (Boyar et al., 1972). In healthy pre-pubertal children on cells within the anterior pituitary and stimulates the gonadotrophins are present at low plasma concen- copyright. their secretion of the gonadotrophins, follicle trations but both FSH and LH will rise in response to stimulating hormone (FSH) and luteinizing hormone Gn-RH. At puberty the LH response becomes greater (LH). Gonadotrophin-releasing hormone is given for than that ofFSH (Roth et al., 1972). The pre-pubertal therapeutic as well as for diagnostic purposes and plasma levels ofLH and FSH respond to variations in there is now considerable clinical experience ofits use. the low plasma levels ofsex steroids but this regulatory This article discusses the clinical use of Gn-RH in the influence appears not to become dominant until investigation and treatment of infertility and delayed puberty. puberty and the clinical application of the develop- The pulses of gonadotrophins occur in response to ment of long-acting synthetic analogues. hypothalamic pulses of Gn-RH. Once established the http://pmj.bmj.com/ pulses of FSH and LH occur with a frequency of 2-4 per 6 h in men. In women they occur more closely to Hormonal changes of normal puberty hourly intervals during the follicular phase of the menstrual cycle, a pulse rhythm described as circhoral The first recognised hormonal change preceding by Knobil (1980), but during the luteal phase the puberty is an increase in the adrenal output of frequency and amplitude of the pulses and the mean androgenic steroids (Ducharme et al., 1976; plasma level of LH reduces, probably due to the on September 23, 2021 by guest. Protected Sizonenko & Paunier, 1975). The hormonal stimulus influence of progesterone (Soules et al., 1984). causing the increase in adrenal androgen production has not been identified but there is evidence for a shift in emphasis of the adrenal enzymes, resulting in Hypotamic hypogonadism greater production of androgens (Kelnar & Brook, 1983). The increase in plasma dehydroepiandros- Many of the patients who lack hypothalamic Gn-RH terone occurs before LH and FSH begin to rise and will present with delayed puberty or sometimes later adrenal androgens may be important for the 'matur- with infertility. There may be a congenital inability to ing' of the hypothalamus. As puberty progresses the detect smells, sometimes with additional midline de- hypothalamus seems to become less sensitive to the fects such as cleft palate, a condition known as Kallmann's syndrome (Kallmann et al., 1944). These Adrian Gossage M.D., M.R.C.P.; Sheila Duncan M.D., individuals will have persistently low or undetectable F.R.C.O.G. plasma levels ofLH and FSH and there will not be any Accepted: 25 July 1984 increase in plasma levels in response to the standard C The Fellowship ofPostgraduate Medicine, 1985 Postgrad Med J: first published as 10.1136/pgmj.61.713.195 on 1 March 1985. Downloaded from 196 A. GOSSAGE & S. DUNCAN a Hypothalamus GN - RH I+ve; Pituitary ve- { ~~~~~~~~Progesterone t ~~F.S.H. L.H. and Oestrogen/ \estrogen ve Ovary in Ovary in Testosterone follicular phase luteal phase androgens inhibin b Hypothalamus copyright. GN - RH Pituitary y http://pmj.bmj.com/ - y Qestradiol - ye Inhibin / \ F.S.H. L.H. (I.C.S.H.) Testosterone on September 23, 2021 by guest. Protected Testosterone 0 0 + ye ~,Sertoli cells Leydig cells Figure 1 (a) Female; (b) Male. The hypothalamus releases pulses ofgonadotrophin-releasing hormone (Gn-RH) which stimulate the pituitary to release pulses of the gonadotrophins: luteinising hormone (LH) and follicle stimulating hormone (FSH) (LH in the male was previously termed interstitial-cell-stimulating hormone ICSH). FSH stimulates the maturation ofgonadal germ cells. In the female FSH is predominant during the follicular phase ofthe cycle and stimulates the production ofoestrogens. During the luteal phase in females LH is predominant and stimulates the production ofprogesterone. In the male, LH stimulates the production oftestosterone. The pituitary production ofLH and FSH lessen as the levels ofgonadal steroids and inhibin rise. The LH surge predisposing to ovulation is dependent on the prior rise in plasma levels of oestrogens but with a fall in oestrogen levels just preceding the release of LH. Postgrad Med J: first published as 10.1136/pgmj.61.713.195 on 1 March 1985. Downloaded from ROLE OF GN-RH IN HYPOGONADISM 197 test doses of 100 lAg i.v. ofGn-RH. The frequency and Whilst the pituitary of females is receiving pulsatile amplitude of the hypothalamic pulses of Gn-RH can stimulation by the hypothalamic Gn-RH it should be also be reduced by illness, resulting in delayed puberty. capable ofmaking a positive response and release LH Delayed development of the pulses of Gn-RH is also following the administration of oestrogens (Knobil, thought to be the explanation for the delayed menar- 1980). This capability will be absent if the stimulation che occurring in marathon runners and ballet dancers by Gn-RH has not begun or has ceased. In general, (Warren, 1980), and a reversion to the pre-pubertal amenorrhoeic patients who have absent or impaired pattern is found in anorexia nervosa and secondary responses to Gn-RH will not respond to clomiphene amenorrhoea with low body weight syndromes. (Ginsburg et al., 1975) or oestrogens. Amenorrhoeic patients who do respond to administration of oes- tradiol by an increased pituitary secretion of LH will Investigation of hypogonadism still have pulsatile rhythms ofLH secretion (El Sheikh et al., 1983) and hence, presumably, pulses of Gn-RH It is difficult to distinguish between simple delay of secretion. puberty, due to slow development of the gonadotro- Ifgonadotrophins are lacking or reduced the ovary phic axis, and lack ofgonadotrophins due to pituitary or testis will remain underdeveloped. Consequently or hypothalamic disease states. A test with a single the hormonal response to an administered stimulus to bolus of Gn-RH will not reliably separate the two the gonad will be less than that ofgonadal tissue from groups (Roth et al., 1972), although it has been a normal person and an interval is needed during reported that the ratio of FSH to LH is increased in which the response to successive doses of the stimulus those with hypothalamic hypogonadism (Crowley et will increase. Both ovarian and testicular tissues are al., 1980). A poor response may occur in both delayed able to up-regulate and down-regulate their receptors puberty and hypothalamic hypogonadism, the mag- for the gonadotrophins (Conti et al., 1976). nitude and pattern of response being related to the In conclusion, Gn-RH will provide a valuable degree of prior exposure to Gn-RH. Following ex- contribution in the assessment of hypogonadal posure to Gn-RH, further provocation tests with patients but often further tests are necessary and boluses of Gn-RH show that the LH response be- continued stimulation by Gn-RH may be needed to copyright. comes more marked whereas the FSH response shows clarify the diagnosis. little enhancement (Roth et al., 1972). This alteration in FSH and LH response resembles the normal physiological pattern at puberty. Treatment ofinfertility by Go-RH Hypogonadism due to intrinsic pituitary failure is demonstrated by complete lack of gonadotrophin It had always been expected that the isolation and response despite repetitive infusions of Gn-RH subsequent synthesis and availability of Gn-RH (Snyder et al, 1979). Investigation of patients with would allow clinicians to help patients with delayed http://pmj.bmj.com/ delayed puberty and hypothalamic hypogonadism puberty and infertility. Gn-RH has however proved has also been explored by continuous infusion of difficult and unpredictable in clinical use. Continuous Gn-RH. The normal post-pubertal response to a 4 h infusion of Gn-RH to normal subjects for prolonged continuous infusion of Gn-RH is biphasic (Bremner periods will raise plasma levels ofLH and FSH but this & Paulsen, 1974). There is an initial surge of LH response begins to attenuate after about 5 h and is lost response which begins to decline at 40 min but then after a few days. However a pulsatile infusion of Gn- increases again at 90 min and the new raised level is RH results in an increase in FSH and LH levels that is sustained for the remainder of the 4 h. Bremner and sustained (this was studied in rhesus monkeys for 7 on September 23, 2021 by guest. Protected colleagues (1977) reported that the typical response for weeks (Belchetz et al., 1978)). The use of pulsatile pre-pubertal children, hypothalamic-hypogonadal prolonged infusions ofGn-RH allows the patient with patients and patients with anorexia nervosa is mono- hypothalamic deficiency to synthesize and release phasic; the initial response with FSH is relatively FSH and LH.
Recommended publications
  • Pyrexia of Unknown Origin. Presenting Sign of Hypothalamic Hypopituitarism R
    Postgrad Med J: first published as 10.1136/pgmj.57.667.310 on 1 May 1981. Downloaded from Postgraduate Medical Journal (May 1981) 57, 310-313 Pyrexia of unknown origin. Presenting sign of hypothalamic hypopituitarism R. MARILUS* A. BARKAN* M.D. M.D. S. LEIBAt R. ARIE* M.D. M.D. I. BLUM* M.D. *Department of Internal Medicine 'B' and tDepartment ofEndocrinology, Beilinson Medical Center, Petah Tiqva, The Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel Summary least 10 such admissions because offever of unknown A 62-year-old man was admitted to hospital 10 times origin had been recorded. During this period, he over 12 years because of pyrexia of unknown origin. was extensively investigated for possible infectious, Hypothalamic hypopituitarism was diagnosed by neoplastic, inflammatory and collagen diseases, but dynamic tests including clomiphene, LRH, TRH and the various tests failed to reveal the cause of theby copyright. chlorpromazine stimulation. Lack of ACTH was fever. demonstrated by long and short tetracosactrin tests. A detailed past history of the patient was non- The aetiology of the disorder was believed to be contributory. However, further questioning at a previous encephalitis. later period of his admission revealed interesting Following substitution therapy with adrenal and pertinent facts. Twelve years before the present gonadal steroids there were no further episodes of admission his body hair and sex activity had been fever. normal. At that time he had an acute febrile illness with severe headache which lasted for about one Introduction week. He was not admitted to hospital and did not http://pmj.bmj.com/ Pyrexia of unknown origin (PUO) may present receive any specific therapy.
    [Show full text]
  • Hypothalamic-Pituitary Axes
    Hypothalamic-Pituitary Axes Hypothalamic Factors Releasing/Inhibiting Pituitary Anterior Pituitary Hormones Circulating ACTH PRL GH Hormones February 11, 2008 LH FSH TSH Posterior Target Pituitary Gland and Hormones Tissue Effects ADH, oxytocin The GH/IGF-I Axis Growth Hormone Somatostatin GHRH Hypothalamus • Synthesized in the anterior lobe of the pituitary gland in somatotroph cells PITUITARY • ~75% of GH in the pituitary and in circulation is Ghrelin 191 amino acid single chain peptide, 2 intra-molecular disulfide bonds GH Weight; 22kD • Amount of GH secreted: IGF-I Women: 500 µg/m2/day Synthesis IGF- I Men: 350 µg/m2/day LIVER Local IGF-I Synthesis CIRCULATION GH Secretion: Primarily Pulsatile Pattern of GH Secretion Regulation by two hypothalamic in a Healthy Adult hormones 25 Sleep 20 Growth - SMS Hormone 15 Somatostatin Releasing GHRH + GH (µg/L) Hormone Inhibitory of 10 Stimulatory of GH Secretion GH Secretion 05 0 GHRH induces GH Somatostatin: Decreases to allow 0900 2100 0900 synthesis and secretion Clocktime GH secretory in somatotrophs Bursts GH From: “Acromegaly” by Alan G. Harris, M.D. 1 Other Physiological Regulators of GH Secretion Pharmacologic Agents Used to Stimulate GH Secretion Amino Sleep Exercise Stress Acids Fasting Glucose Stimulate hypothalamic GHRH or Inhibit Somatostatin Hypothalamus GHRH SMS Hypoglycemia(Insulin) Pituitary L-dopa Arginine Clonidine GHRH + - SMS Pyridostigmine GH Target Tissues Metabolic & Growth Promoting GH Effects IGF-I Insulin-like growth factor I (IGF-I) Major Determinants of Circulating
    [Show full text]
  • Clinical Manifestations of Hypothalamic Tumors*
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 6 Copyright © 1980, Institute for Clinical Science, Inc. Clinical Manifestations of Hypothalamic Tumors* ADOLFO D. GARNICA, M.D., MICHAEL L. NETZLOFF, M.D.,f and A. L. ROSENBLOOM, M.D. Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610 and f Department of Human Development, Michigan State University East Lansing, MI 88823 ABSTRACT The regulatory function of the central nervous system encompasses di­ verse endocrine, metabolic, and behavioral processes. Many of these origi­ nate, are integrated, or are coordinated through hypothalamic pathways or nuclei. Thus, tumors affecting areas projecting to the hypothalamus, tumors of the hypothalamus, and tumors invading or compressing the hypothalamus can produce abnormalities of hypothalamic function. Introduction tary.4,7,31 A secretory function for certain hypothalamic neurons was postulated in Until recently, no endocrine disorder 1928 and subsequently confirmed by the directly attributable to hypothalamic dys­ demonstration of hormone synthesis in function had been recognized, and the the supraoptic and paraventricular nu­ majority of endocrine-metabolic homeo­ clei.28,53 Moreover, observations on the static processes were acknowledged to be effects of environment on the menstrual under the control of the anterior pitui­ cycles of women and the study of repro­ tary.48,49 However, in 1901 Frohlich re­ ductive cycles in animals have shown a ported a patient with a suprasellar tumor, functional connection
    [Show full text]
  • Oxytocin Therapy in Hypopituitarism: Challenges and Opportunities
    Oxytocin therapy in hypopituitarism: challenges and opportunities Running title: Oxytocin in hypopituitarism Raghav Bhargava*, Katie L Daughters*, D Aled Rees. Schools of Medicine (RB, DAR) and Psychology (KLD), Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK *These authors contributed equally to this work. Keywords: Oxytocin; hypopituitarism; central diabetes insipidus; craniopharyngioma Corresponding author: Dr Aled Rees, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University CF24 4HQ. Tel: +44 (0)2920 742309; email: [email protected] 1 Summary: Patients with hypopituitarism display impaired quality of life and excess morbidity and mortality, despite apparently optimal pituitary hormone replacement. Oxytocin is a neuropeptide synthesised in the anterior hypothalamus which plays an important role in controlling social and emotional behaviour, body weight and metabolism. Recent studies have suggested that a deficiency of oxytocin may be evident in patients with hypopituitarism and craniopharyngioma, and that this may be associated with deficits in cognitive empathy. Preliminary data hint at potential benefits of oxytocin therapy in improving these deficits and the accompanying metabolic disturbances that are common in these conditions. However, several challenges remain, including an incomplete understanding of the regulation and mechanisms of action of oxytocin, difficulties in accurately measuring oxytocin levels and in establishing a diagnosis of oxytocin deficiency, and a need to determine both the optimal mode of administration for oxytocin therapy and an acceptable safety profile with long-term use. This review considers the data linking oxytocin to the neuropsychological and metabolic disturbances evident in patients with craniopharyngioma and hypopituitarism, and describes the challenges that need to be overcome before replacement therapy can be considered as a therapeutic option in clinical practice.
    [Show full text]
  • Diagnosis and Treatment of Hypopituitarism
    Review Endocrinol Metab 2015;30:443-455 http://dx.doi.org/10.3803/EnM.2015.30.4.443 Article pISSN 2093-596X · eISSN 2093-5978 Diagnosis and Treatment of Hypopituitarism Seong Yeon Kim Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Hypopituitarism is a chronic endocrine illness that caused by varied etiologies. Clinical manifestations of hypopituitarism are variable, often insidious in onset and dependent on the degree and severity of hormone deficiency. However, it is associated with increased mortality and morbidity. Therefore, early diagnosis and prompt treatment is necessary. Hypopituitarism can be easily diagnosed by measuring basal pituitary and target hormone levels except growth hormone (GH) and adrenocorticotropic hor- mone (ACTH) deficiency. Dynamic stimulation tests are indicated in equivocal basal hormone levels and GH/ACTH deficiency. Knowledge of the use and limitations of these stimulation tests is mandatory for proper interpretation. It is necessary for physi- cians to inform their patients that they may require lifetime treatment. Hormone replacement therapy should be individualized ac- cording to the specific needs of each patient, taking into account possible interactions. Long-term endocrinological follow-up of hypopituitary patients is important to monitor hormonal replacement regimes and avoid under- or overtreatment. Keywords: Hypopituitarism; Adrenocorticotropic hormone deficiency; Thyrotropin deficiency; Gonadotropin deficiency; Growth hormone deficiency; Anti-diuretic hormone deficiency INTRODUCTION mone secretion results in an emergency situation that requires immediate medical attention [2]. The treatment of hypopituita- Hypopituitarism is defined as the total or partial loss of anterior rism typically involves a replacement of the deficient hormone and posterior pituitary gland function that is caused by pituitary but care must be taken because several studies have reported an or hypothalamic disorders [1].
    [Show full text]
  • Animal Models of Central Diabetes Insipidus
    DOI: 10.5772/intechopen.69538 Provisional chapter Chapter 4 Animal Models of Central Diabetes Insipidus: Oxytocin Animaland Low-Sodium Models of Diets Central as ComplementaryDiabetes Insipidus: Treatments Oxytocin and Low-Sodium Diets as Complementary Treatments Antonio Bernal, Javier Mahía and Amadeo Puerto Antonio Bernal, Javier Mahía and Amadeo Puerto Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69538 Abstract Human central diabetes insipidus (CDI) is a neurobiological syndrome characterized by the presence of hypotonic polyuria, hypernatremia, and polydipsia. CDI can be acquired (aCDI) as the result of brain damage to magnocellular neurosecretory cells or fibers that constitute the hypothalamic-neurohypophyseal system or can be caused by genetic disorders (heredi- tary CDI). aCDI can be experimentally induced by various surgical interventions, including neurohypophysectomy, pituitary stalk compression (PSC), hypophysectomy, and hypotha- lamic mediobasal lesions. CDI has been associated with a deficient production of arginine vasopressin (AVP) (the antidiuretic hormone secreted by magnocellular system), while more recently, aCDI animal studies also suggest the possible involvement of oxytocin (OT) (a natriuretic-promoting hormone secreted by neurosecretory systems) and other factors related to serum fluid concentration. Both humans and animals with aCDI may benefit from the combined administration of AVP and OT and, importantly, from a low-sodium diet. Moreover, increased OT levels are observed in Brattleboro rats (with mutated AVP gene), which may explain the regulatory hydromineral capacity shown by these animals after hydromineral challenges. In short, the symptoms shown by the different CDI animal models suggest the involvement of additional factors besides the absence of AVP, which appear to depend on the particular neurobiological systems affected in each case.
    [Show full text]
  • Onc26. Pituitary Tumors, Apoplexy, Empty Sella.Pdf
    PITUITARY TUMORS Onc26 (1) Pituitary Tumors Last updated: December 22, 2020 Differential Diagnosis of Sellar and Parasellar Tumors ................................................................... 1 PITUITARY ADENOMAS ................................................................................................................... 1 PATHOPHYSIOLOGY, PATHOLOGY, ETIOLOGY ....................................................................................... 2 CLASSIFICATION .................................................................................................................................... 2 Size ........................................................................................................................................ 2 Hormonal secretion ............................................................................................................... 2 Histology ............................................................................................................................... 2 EPIDEMIOLOGY ...................................................................................................................................... 4 CLINICAL FEATURES .............................................................................................................................. 4 1. Hormonal function control ................................................................................................ 4 2. Mass effect .......................................................................................................................
    [Show full text]
  • Management of Hypopituitarism
    Journal of Clinical Medicine Review Management of Hypopituitarism Krystallenia I. Alexandraki 1 and Ashley B. Grossman 2,3,* 1 Endocrine Unit, 1st Department of Propaedeutic Medicine, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; [email protected] 2 Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK 3 Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK * Correspondence: [email protected] Received: 18 November 2019; Accepted: 2 December 2019; Published: 5 December 2019 Abstract: Hypopituitarism includes all clinical conditions that result in partial or complete failure of the anterior and posterior lobe of the pituitary gland’s ability to secrete hormones. The aim of management is usually to replace the target-hormone of hypothalamo-pituitary-endocrine gland axis with the exceptions of secondary hypogonadism when fertility is required, and growth hormone deficiency (GHD), and to safely minimise both symptoms and clinical signs. Adrenocorticotropic hormone deficiency replacement is best performed with the immediate-release oral glucocorticoid hydrocortisone (HC) in 2–3 divided doses. However, novel once-daily modified-release HC targets a more physiological exposure of glucocorticoids. GHD is treated currently with daily subcutaneous GH, but current research is focusing on the development of once-weekly administration of recombinant GH. Hypogonadism is targeted with testosterone replacement in men and on estrogen replacement therapy in women; when fertility is wanted, replacement targets secondary or tertiary levels of hormonal settings. Thyroid-stimulating hormone replacement therapy follows the rules of primary thyroid gland failure with L-thyroxine replacement.
    [Show full text]
  • Oxytocin in Survivors of Childhood-Onset Craniopharyngioma
    Oxytocin in survivors of childhood-onset craniopharyngioma Anna M. M. Daubenbüchel, Anika Hoffmann, Maria Eveslage, Jale Özyurt, Kristin Lohle, Julia Reichel, Christiane M. Thiel, et al. Endocrine International Journal of Basic and Clinical Endocrinology ISSN 1355-008X Volume 54 Number 2 Endocrine (2016) 54:524-531 DOI 10.1007/s12020-016-1084-5 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Endocrine (2016) 54:524–531 DOI 10.1007/s12020-016-1084-5 ORIGINAL ARTICLE Oxytocin in survivors of childhood-onset craniopharyngioma 1,2 1 3 4 Anna M. M. Daubenbüchel ● Anika Hoffmann ● Maria Eveslage ● Jale Özyurt ● 1 1 4,5 6 Kristin Lohle ● Julia Reichel ● Christiane M. Thiel ● Henri Martens ● 6 1 Vincent Geenen ● Hermann L. Müller Received: 19 July 2016 / Accepted: 9 August 2016 / Published online: 1 September 2016 © Springer Science+Business Media New York 2016 Abstract Quality of survival of childhood-onset cranio- irradiation were analyzed.
    [Show full text]
  • Pituitary Insufficiency
    7/18/12 PPY224 Pathophysiology of Endocrinology, Diabetes and Metabolism, Spring 2005 - Tufts OpenCours… S e a r c h Pituitary Insufficiency Author: Ronald Lechan, MD,PhD 1. Goals Color Key Important key words or phrases. To learn the symptoms, causes and management of pituitary insufficiency Important concepts or main ideas. 2. Learning Objectives To review the physiology and anatomy of the hypothalamus/pituitary To learn the definition and causes of pituitary insufficiency To learn the symptoms of pituitary insufficiency due to deficiencies in specific hormones To learn the difference between basal and dynamic testing To become familiar with testing for the various hypohormonal states of pituitary insufficiency 3. Definition Hypopituitarism is a term that refers to the defiiciency of one or more anterior and/or posterior pituitary hormones. The deficiency may be total (panhypopituitarism) or partial, in which one or more of the pituitary hormones may be deficient. Hypopituitarism may arise as a result of congenital defects in the development of individual anterior pituitary cell types or hypothalamic function, or from acquired disease of the pituitary or hypothalamus. 4. Review of Physiology and Anatomy The major cell types and secretory products of the pituitary gland are shown in Table 1. TABLE 1. Major cell types and secretory products of the pituitary gland. Anterior Pituitary Cell Type Secretory Products Cell Population % Somatotroph Growth Hormone 50 Lactotroph Prolactin 15 Corticotroph Adrenocorticotrophic hormone 15 Thyrotroph Thyroid­stimulating hormone 10 Gonadotroph Luteinizing hormone/Follicle­stimulating hormone 10 Posterior Pituitary Cell Type Secretory Products Axon terminals of hypothalamic neurons Vasopressin and Oxytocin Understanding the neuroanatomical relationships between the hypothalamus and pituitary gland can be very helpful in understanding the mechanisms whereby hypopituitarism can result and how disorders affecting the anterior pituitary can be distinguished from disorders affecting the hypothalamus.
    [Show full text]
  • ADRENAL INSUFFICIENCY Renin Secretion and Angiotensin II Formation
    The New England Journal of Medicine Review Article Current Concepts dosterone secretion is more dependent on angioten- sin II than on corticotropin, aldosterone deficiency is not a problem in hypopituitarism. Selective aldos- terone deficiency can occur as a result of depressed ADRENAL INSUFFICIENCY renin secretion and angiotensin II formation. CAUSES WOLFGANG OELKERS, M.D. Primary Adrenal Insufficiency Primary and secondary adrenal insufficiency are HE hypothalamic–pituitary–adrenal axis has hormone deficiency syndromes with many possible an important role in the body’s ability to causes (Table 1). The prevalence of chronic primary Tcope with stresses such as infections, hypoten- adrenal insufficiency (Addison’s disease) has been re- sion, and surgery. The hypothalamus is subject to ported to be 39 to 60 per million population.3 The regulatory influences from other parts of the brain, mean age at diagnosis in adult patients is 40 years especially the limbic system. The hypothalamic hor- (range, 17 to 72).4 The most common cause was for- mones corticotropin-releasing hormone and argi- merly tuberculous adrenalitis, but now it is auto- nine vasopressin are important stimulants of cortico- immune adrenalitis (slow destruction of the adrenal tropin secretion by the anterior pituitary. In this cortex by cytotoxic lymphocytes), sometimes accom- gland, the action of the hypothalamic hormones is panied by autoimmune thyroid disease and other amplified so that a much larger number of cortico- autoimmune endocrine deficiencies (autoimmune tropin molecules is secreted. Similarly, in the adrenal polyglandular syndromes). Most patients with the cortex the action of corticotropin is amplified; a adult form (type II) of the polyglandular syndrome plasma corticotropin concentration of approximately (Table 1) have antibodies against the steroidogenic 25 pg per milliliter (5.5 pmol per liter) results in enzyme 21-hydroxylase,5 but their role in the patho- a plasma cortisol concentration of approximately genesis of autoimmune adrenalitis is uncertain.
    [Show full text]
  • Dr Caroline Ann Steele, Mbchb, MRCPCH (UK)
    EATING BEHAVIOUR AND NEURAL REPRESENTATIONS OF HUNGER AND SATIETY IN PATIENTS WITH ACQUIRED STRUCTURAL HYPOTHALAMIC DAMAGE: A CLINICAL AND FUNCTIONAL NEUROIMAGING STUDY Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by Dr Caroline Ann Steele, MBChB, MRCPCH (UK) December 2017 Institute of Ageing and Chronic Disease, Department of Obesity and Endocrinology, Clinical Sciences Centre, Aintree University Hospital, Liverpool, L9 7AL 1 CONTENTS Page Declaration 4 Abbreviations 5 Abstract 8 Acknowledgements 11 Chapter One Introduction 12 Section I: 13 Section II: 15 Section III: 18 Section IV: 21 Section V: 37 Section VI: 43 Section VII: 44 Section VIII: 54 Section IX (Contribution of thesis to knowledge): 60 Section X: 63 Section XI: 75 Aims of thesis and hypotheses: 94 Chapter Two Methods 96 Chapter Three Adults with acquired structural hypothalamic damage: 103 A 7-year follow-up study 2 CONTENTS PAGE Chapter Four Pituitary tumours in children and adolescents: 124 presentation and long-term endocrine and metabolic outcomes Chapter Five Cerebral activations during viewing of food stimuli in 139 adult patients with acquired structural hypothalamic damage: A functional neuroimaging study Chapter Six Microstructure and macrostructure of eating behaviour 178 in adult patients with acquired, structural hypothalamic damage: a laboratory study of eating rate, total intake and within meal appetite ratings and a real-world assessment of eating behaviour and food intake Chapter Seven Final discussion and future research 222 Chapter Eight Publications and abstracts 234 Appendices 237 References 288 3 Declaration Candidate Dr C A Steele This thesis is the result of work performed whilst registered as a candidate for the degree of Doctor of Philosophy at the University of Liverpool.
    [Show full text]