Pituitary Insufficiency

Total Page:16

File Type:pdf, Size:1020Kb

Pituitary Insufficiency 7/18/12 PPY224 Pathophysiology of Endocrinology, Diabetes and Metabolism, Spring 2005 - Tufts OpenCours… S e a r c h Pituitary Insufficiency Author: Ronald Lechan, MD,PhD 1. Goals Color Key Important key words or phrases. To learn the symptoms, causes and management of pituitary insufficiency Important concepts or main ideas. 2. Learning Objectives To review the physiology and anatomy of the hypothalamus/pituitary To learn the definition and causes of pituitary insufficiency To learn the symptoms of pituitary insufficiency due to deficiencies in specific hormones To learn the difference between basal and dynamic testing To become familiar with testing for the various hypohormonal states of pituitary insufficiency 3. Definition Hypopituitarism is a term that refers to the defiiciency of one or more anterior and/or posterior pituitary hormones. The deficiency may be total (panhypopituitarism) or partial, in which one or more of the pituitary hormones may be deficient. Hypopituitarism may arise as a result of congenital defects in the development of individual anterior pituitary cell types or hypothalamic function, or from acquired disease of the pituitary or hypothalamus. 4. Review of Physiology and Anatomy The major cell types and secretory products of the pituitary gland are shown in Table 1. TABLE 1. Major cell types and secretory products of the pituitary gland. Anterior Pituitary Cell Type Secretory Products Cell Population % Somatotroph Growth Hormone 50 Lactotroph Prolactin 15 Corticotroph Adrenocorticotrophic hormone 15 Thyrotroph Thyroid­stimulating hormone 10 Gonadotroph Luteinizing hormone/Follicle­stimulating hormone 10 Posterior Pituitary Cell Type Secretory Products Axon terminals of hypothalamic neurons Vasopressin and Oxytocin Understanding the neuroanatomical relationships between the hypothalamus and pituitary gland can be very helpful in understanding the mechanisms whereby hypopituitarism can result and how disorders affecting the anterior pituitary can be distinguished from disorders affecting the hypothalamus. 4.1. Anatomy of the Pituitary Gland The pituitary gland lies within a recess of the sphenoid bone called the sella turcica and is composed of two major subdivisions, the anterior pituitary and posterior pituitary. These structures can be readily visualized by magnetic resonance imaging (MRI) because the posterior pituitary appears as a bright spot on T1­weighted images, as shown in Figure 1. Figure 1. Anterior pituitary and posterior pituitary Reprinted from Endocrin Metab Clin North Am, 16(3), Lechan RM, Neuroendocrinology ocw.tufts.edu/Content/14/lecturenotes/134087 1/9 7/18/12 PPY224 Pathophysiology of Endocrinology, Diabetes and Metabolism, Spring 2005 - Tufts OpenCours… Reprinted from Endocrin Metab Clin North Am, 16(3), Lechan RM, Neuroendocrinology of pituitary hormone regulation, pp475­501, 1987, with pemission from Elsevier. The anterior pituitary makes up most of the pituitary gland and gives rise to most of the pituitary hormones. As the anterior pituitary embyrologically derives from Rathke's pouch, it is composed primarily of epithelial cells and does not have direct neuronal connections to the brain. In contrast, the posterior pituitary contains axon terminals of specialized neurons that arise within the hypothalamus and thereby, is a direct extension of the brain. While secretion from the posterior pituitary can occur as a result of neuronal stimulation in the hypothalmus, secretion from the anterior pituitary is dependent upon a vascular conduit, or portal plexus, that directly links the hypothalamus to the anterior pituitary gland. The portal plexus is comprised of capillaries located in a specialized structure at the base of the hypothalamus, termed the median eminence, supplied by arterial blood via a branch of the internal carotid artery, the superior hypophyseal artery (Figure 2). The portal capillaries give rise to long veins that extend along the pituitary stalk and terminate in capillary beds in the anterior pituitary. Thus, the portal plexus is a venous plexus and is the major source of blood flow to the anterior pituitary, as the anterior pituitary has little or no arterial innervation. Figure 2. Portal plexus 4.2. Anatomy of the Hypothalamus The median eminence is one of the most important structures in the hypothalamus because it is the final, common locus where axons containing all of the hypothalamic releasing and inhibiting factors terminate. Due to the high vascularity of this structure created by the portal plexus, the median eminence can be easily visualized by MRI following contrast administration (Figure 3A). As shown in the schematic image (Fig. 3B), axons containing the hypothalamic releasing and inhibiting factors terminate on the portal capillary plexus. Because these capillaries are fenestrated, the secretary products released from the axon terminals can be taken up into the portal system and transported via the long portal veins to the anterior pituitary. The median eminence also contains axons in its innermost zone en route to the posterior pituitary. Figure 3 A&B ­ Median eminence The origin of the hypothalamic releasing and inhibitory factors is primarily from nuclear groups that are organized in medial regions of the hypothalamus that underlie the third ventricle, including the preoptic nucleus, paraventricular nucleus periventricular nucleus and arcuate nucleus. The location of these important hypothalamic nuclear groups is shown in Figure 4 on coronal MRI images of the human hypothalamus. The specific hypothalamic releasing and inhibitory hormones produced by the hypothalamus, their origin in the hypothalamus, and the anterior pituitary hormones they regulate are listed in Table 2. Figure 4. Coronal MRI images of the human hypothalamus ocw.tufts.edu/Content/14/lecturenotes/134087 2/9 7/18/12 PPY224 Pathophysiology of Endocrinology, Diabetes and Metabolism, Spring 2005 - Tufts OpenCours… Reprinted from Endocrin Metab Clin North Am, 16(3), Lechan RM, Neuroendocrinology of pituitary hormone regulation, pp475­501, 1987, with pemission from Elsevier. TABLE 2. Hypothalamic releasing and inhibitory factors. Releasing/Inhibiting Factor Hypothalamic Origin Function Corticotropin­releasing hormone (CRH) Paraventricular Nucleus Stimulate ACTH Dopamine Arcuate Nucleus Inhibit Prolactin Growth hormone­releasing hormone (GHRH) Arcuate Nucleus Stimulate GH Gonadotropin­releasing hormone (GnRH) Preoptic Nucleus Stimulate LH/FSH Somatostatin (SRIF) Periventricular Nucleus Inhibit GH/TSH Thyrotropin­releasing hormone (TRH) Paraventricular Nucleus Stimulate TSH/Prol. In contrast, neuronal cell groups giving rise to the posterior pituitary hormones, vasopressin (or antidiuretic hormone, ADH) and oxytocin, are located more laterally in the hypothalamus in lateral portions of the paraventricular nucleus and the supraoptic nucleus. 5. Hypopituitarism 5.1. Etiology of Hypopituitarism There are many disorders that can cause hypopituitarism, either by affecting the hypothalamus or the pituitary gland. Congenital disorders are a cause for hypopituitarism presenting in children. Formation of the pituitary during embryonic development depends upon the juxtaposition of cells of neurectodermal origin, which form the posterior pituitary, and endodermal cells which form the anterior pituitary. Defects in the transcription factors HESX­1, PROP­1, and PIT­1 are known to result in various degrees of hypopituitarism. HESX­1 mutations are associated with septo­optic dysplasia, characterized by the triad of optic nerve hypoplasia, midline neuroradiological abnormalities such as agenesis of the corpus callosum, and pituitary hypoplasia with hypopituitarism. PROP­1 mutations have deficiencies in the gonadotrophs (LH and FSH), growth hormone, prolactin and TSH. PIT­1 mutations result in combined deficiencies of growth hormone, prolactin and TSH. Mutations may also selectively affect posterior pituitary function including point mutations in the vasopressin­neurophysin II gene. Most involve the neurophysin II region of the vasopressin gene, resulting in abnormal processing, transport or cleavage of the vasopressin precursor, or cytotoxicity to vasospressin­producing cells in the hypothalamus. Wolfram syndrome (DIDMOAD syndrome) is an inherited autosomal recessive disorder due to a mutation in the transmembrane protein, wolframin, and characterized by DI, Diabetes Mellitus, Optic Atrophy and Deafness. Pituitary adenomas are the most common cause for hypopituitarism in adults. Causes of hypopituitarism are listed in Table 3. TABLE 3. Causes of hypopituitarism Congenital Disorders HESX­1, PIT­1, and PROP­1 mutations, KAL and DAX­1 mutations, GnRH and GHRH receptor mutations, Kallmann, Prader Willi and Bardet­ Beidl Syndromes, Vasopressin­Neurophysin gene mutations, DIDMOAD Benign Neoplasms Malignant Neoplasms Cysts Pituitary Adenoma Germ Cell Tumors (Germinoma) Arachnoid Craniopharyngioma Lymphoma Dermoid Meningioma Plasmacytoma Epidermoid ocw.tufts.edu/Content/14/lecturenotes/134087 3/9 7/18/12 PPY224 Pathophysiology of Endocrinology, Diabetes and Metabolism, Spring 2005 - Tufts OpenCours… Optic Nerve Glioma Metastatic Disease (breast, lung) Rathke's Cleft Granulomatous Disease Vascular Disorders Infections Eosiniphilic Granuloma Aneurysm Abscess Histiocytosis X Cavernous Angioma Cysticercosis Sarcoidosis Infarction (Postpartum, D.M.) Tuberculosis Autoimmune Traumatic Other Lymphocytic Hypophysitis Pituitary Stalk Transection Cerebral Edema Vasculitis Pituitary Apoplexy Radiation Therap 5.2.
Recommended publications
  • HYPOPITUITARISM YOUR QUESTIONS ANSWERED Contents
    PATIENT INFORMATION HYPOPITUITARISM YOUR QUESTIONS ANSWERED Contents What is hypopituitarism? What is hypopituitarism? 1 What causes hypopituitarism? 2 The pituitary gland is a small gland attached to the base of the brain. Hypopituitarism refers to loss of pituitary gland hormone production. The What are the symptoms and signs of hypopituitarism? 4 pituitary gland produces a variety of different hormones: 1. Adrenocorticotropic hormone (ACTH): controls production of How is hypopituitarism diagnosed? 6 the adrenal gland hormones cortisol and dehydroepiandrosterone (DHEA). What tests are necessary? 8 2. Thyroid-stimulating hormone (TSH): controls thyroid hormone production from the thyroid gland. How is hypopituitarism treated? 9 3. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH): LH and FSH together control fertility in both sexes and What are the benefits of hormone treatment(s)? 12 the secretion of sex hormones (estrogen and progesterone from the ovaries in women and testosterone from the testes in men). What are the risks of hormone treatment(s)? 13 4. Growth hormone (GH): required for growth in childhood and has effects on the entire body throughout life. Is life-long treatment necessary and what precautions are necessary? 13 5. Prolactin (PRL): required for breast feeding. How is treatment followed? 14 6. Oxytocin: required during labor and delivery and for lactation and breast feeding. Is fertility possible if I have hypopituitarism? 15 7. Antidiuretic hormone (also known as vasopressin): helps maintain normal water Summary 15 balance. What do I need to do if I have a pituitary hormone deficiency? 16 Glossary inside back cover “Hypo” is Greek for “below normal” or “deficient” Hypopituitarism may involve the loss of one, several or all of the pituitary hormones.
    [Show full text]
  • Pyrexia of Unknown Origin. Presenting Sign of Hypothalamic Hypopituitarism R
    Postgrad Med J: first published as 10.1136/pgmj.57.667.310 on 1 May 1981. Downloaded from Postgraduate Medical Journal (May 1981) 57, 310-313 Pyrexia of unknown origin. Presenting sign of hypothalamic hypopituitarism R. MARILUS* A. BARKAN* M.D. M.D. S. LEIBAt R. ARIE* M.D. M.D. I. BLUM* M.D. *Department of Internal Medicine 'B' and tDepartment ofEndocrinology, Beilinson Medical Center, Petah Tiqva, The Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel Summary least 10 such admissions because offever of unknown A 62-year-old man was admitted to hospital 10 times origin had been recorded. During this period, he over 12 years because of pyrexia of unknown origin. was extensively investigated for possible infectious, Hypothalamic hypopituitarism was diagnosed by neoplastic, inflammatory and collagen diseases, but dynamic tests including clomiphene, LRH, TRH and the various tests failed to reveal the cause of theby copyright. chlorpromazine stimulation. Lack of ACTH was fever. demonstrated by long and short tetracosactrin tests. A detailed past history of the patient was non- The aetiology of the disorder was believed to be contributory. However, further questioning at a previous encephalitis. later period of his admission revealed interesting Following substitution therapy with adrenal and pertinent facts. Twelve years before the present gonadal steroids there were no further episodes of admission his body hair and sex activity had been fever. normal. At that time he had an acute febrile illness with severe headache which lasted for about one Introduction week. He was not admitted to hospital and did not http://pmj.bmj.com/ Pyrexia of unknown origin (PUO) may present receive any specific therapy.
    [Show full text]
  • From Isolated GH Deficiency to Multiple Pituitary Hormone
    European Journal of Endocrinology (2009) 161 S75–S83 ISSN 0804-4643 From isolated GH deficiency to multiple pituitary hormone deficiency: an evolving continuum – a KIMS analysis M Klose, B Jonsson1, R Abs2, V Popovic3, M Koltowska-Ha¨ggstro¨m4, B Saller5, U Feldt-Rasmussen and I Kourides6 Department of Medical Endocrinology, Copenhagen University Hospital, PE2131, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark, 1Department of Women’s and Children’s Health, Uppsala University, SE-75185 Uppsala, Sweden, 2Department of Endocrinology, University of Antwerp, Antwerp, Belgium, 3Neuroendocrine Unit, Institute of Endocrinology, University Clinical Center Belgrade, Belgrade, Serbia, 4KIMS Medical Outcomes, Pfizer Endocrine Care, Sollentuna, Sweden, 5Pfizer Endocrine Care Europe, Tadworth, UK and 6Global Endocrine Care, Pfizer Inc., New York, New York 10017, USA (Correspondence should be addressed to M Klose; Email: [email protected]) Abstract Objective: To describe baseline clinical presentation, treatment effects and evolution of isolated GH deficiency (IGHD) to multiple pituitary hormone deficiency (MPHD) in adult-onset (AO) GHD. Design: Observational prospective study. Methods: Baseline characteristics were recorded in 4110 patients with organic AO-GHD, who were GH naı¨ve prior to entry into the Pfizer International Metabolic Database (KIMS; 283 (7%) IGHD, 3827 MPHD). The effect of GH replacement after 2 years was assessed in those with available follow-up data (133 IGHD, 2207 MPHD), and development of new deficiencies in those with available data on concomitant medication (165 IGHD, 3006 MPHD). Results: IGHD and MPHD patients had similar baseline clinical presentation, and both groups responded similarly to 2 years of GH therapy, with favourable changes in lipid profile and improved quality of life.
    [Show full text]
  • Hypothalamic-Pituitary Axes
    Hypothalamic-Pituitary Axes Hypothalamic Factors Releasing/Inhibiting Pituitary Anterior Pituitary Hormones Circulating ACTH PRL GH Hormones February 11, 2008 LH FSH TSH Posterior Target Pituitary Gland and Hormones Tissue Effects ADH, oxytocin The GH/IGF-I Axis Growth Hormone Somatostatin GHRH Hypothalamus • Synthesized in the anterior lobe of the pituitary gland in somatotroph cells PITUITARY • ~75% of GH in the pituitary and in circulation is Ghrelin 191 amino acid single chain peptide, 2 intra-molecular disulfide bonds GH Weight; 22kD • Amount of GH secreted: IGF-I Women: 500 µg/m2/day Synthesis IGF- I Men: 350 µg/m2/day LIVER Local IGF-I Synthesis CIRCULATION GH Secretion: Primarily Pulsatile Pattern of GH Secretion Regulation by two hypothalamic in a Healthy Adult hormones 25 Sleep 20 Growth - SMS Hormone 15 Somatostatin Releasing GHRH + GH (µg/L) Hormone Inhibitory of 10 Stimulatory of GH Secretion GH Secretion 05 0 GHRH induces GH Somatostatin: Decreases to allow 0900 2100 0900 synthesis and secretion Clocktime GH secretory in somatotrophs Bursts GH From: “Acromegaly” by Alan G. Harris, M.D. 1 Other Physiological Regulators of GH Secretion Pharmacologic Agents Used to Stimulate GH Secretion Amino Sleep Exercise Stress Acids Fasting Glucose Stimulate hypothalamic GHRH or Inhibit Somatostatin Hypothalamus GHRH SMS Hypoglycemia(Insulin) Pituitary L-dopa Arginine Clonidine GHRH + - SMS Pyridostigmine GH Target Tissues Metabolic & Growth Promoting GH Effects IGF-I Insulin-like growth factor I (IGF-I) Major Determinants of Circulating
    [Show full text]
  • Clinical Manifestations of Hypothalamic Tumors*
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 6 Copyright © 1980, Institute for Clinical Science, Inc. Clinical Manifestations of Hypothalamic Tumors* ADOLFO D. GARNICA, M.D., MICHAEL L. NETZLOFF, M.D.,f and A. L. ROSENBLOOM, M.D. Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610 and f Department of Human Development, Michigan State University East Lansing, MI 88823 ABSTRACT The regulatory function of the central nervous system encompasses di­ verse endocrine, metabolic, and behavioral processes. Many of these origi­ nate, are integrated, or are coordinated through hypothalamic pathways or nuclei. Thus, tumors affecting areas projecting to the hypothalamus, tumors of the hypothalamus, and tumors invading or compressing the hypothalamus can produce abnormalities of hypothalamic function. Introduction tary.4,7,31 A secretory function for certain hypothalamic neurons was postulated in Until recently, no endocrine disorder 1928 and subsequently confirmed by the directly attributable to hypothalamic dys­ demonstration of hormone synthesis in function had been recognized, and the the supraoptic and paraventricular nu­ majority of endocrine-metabolic homeo­ clei.28,53 Moreover, observations on the static processes were acknowledged to be effects of environment on the menstrual under the control of the anterior pitui­ cycles of women and the study of repro­ tary.48,49 However, in 1901 Frohlich re­ ductive cycles in animals have shown a ported a patient with a suprasellar tumor, functional connection
    [Show full text]
  • Vasopressin V2 Is a Promiscuous G Protein-Coupled Receptor That Is Biased by Its Peptide Ligands
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.427950; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Vasopressin V2 is a promiscuous G protein-coupled receptor that is biased by its peptide ligands. Franziska M. Heydenreich1,2,3*, Bianca Plouffe2,4, Aurélien Rizk1, Dalibor Milić1,5, Joris Zhou2, Billy Breton2, Christian Le Gouill2, Asuka Inoue6, Michel Bouvier2,* and Dmitry B. Veprintsev1,7,8,* 1Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland 2Department of Biochemistry and Molecular medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA 4The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom 5Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus-Vienna-Biocenter 5, 1030 Vienna, Austria 6Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan. 7Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. 8Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK. *Correspondence should be addressed to: [email protected], [email protected], [email protected].
    [Show full text]
  • Delayed Diagnosis of Pituitary Stalk Interruption Syndrome with Severe Recurrent Hyponatremia Caused by Adrenal Insufficiency
    Case report https://doi.org/10.6065/apem.2017.22.3.208 Ann Pediatr Endocrinol Metab 2017;22:208-212 Delayed diagnosis of pituitary stalk interruption syndrome with severe recurrent hyponatremia caused by adrenal insufficiency Kyung Mi Jang, MD1, Pituitary stalk interruption syndrome (PSIS) involves the occurrence of a thin Cheol Woo Ko, MD, PhD2 or absent pituitary stalk, hypoplasia of the adenohypophysis, and ectopic neurohypophysis. Diagnosis is confirmed using magnetic resonance imaging. 1Department of Pediatrics, Yeungnam Patients with PSIS have a variable degree of pituitary hormone deficiency and a University College of Medicine, 2 wide spectrum of clinical manifestations. The clinical course of the disease in our Daegu, Department of Pediatric patient is similar to that of a syndrome of inappropriate antidiuretic hormone Endocrinology, Kyungpook National University Children’s Hospital, Daegu, secretion. This is thought to be caused by failure in the suppression of vasopressin Korea secretion due to hypocortisolism. To the best of our knowledge, there is no case report of a patient with PSIS presenting with hyponatremia as the first symptom in Korean children. Herein, we report a patient with PSIS presenting severe recurrent hyponatremia as the first symptom, during adolescence and explain the pathophysiology of hyponatremia with secondary adrenal insufficiency. Keywords: Pituitary stalk interruption syndrome, Hyponatremia, Hypopituitarism, Inappropriate ADH syndrome, Adrenal insufficiency Introduction Pituitary stalk interruption syndrome (PSIS) involves the occurrence of a thin or absent pituitary stalk, hypoplasia of the adenohypophysis, and ectopic neurohypophysis1). Diagnosis of this disease is confirmed using magnetic resonance imaging (MRI). PSIS was first reported in 1987, based on MRI results1).
    [Show full text]
  • Oxytocin Therapy in Hypopituitarism: Challenges and Opportunities
    Oxytocin therapy in hypopituitarism: challenges and opportunities Running title: Oxytocin in hypopituitarism Raghav Bhargava*, Katie L Daughters*, D Aled Rees. Schools of Medicine (RB, DAR) and Psychology (KLD), Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK *These authors contributed equally to this work. Keywords: Oxytocin; hypopituitarism; central diabetes insipidus; craniopharyngioma Corresponding author: Dr Aled Rees, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University CF24 4HQ. Tel: +44 (0)2920 742309; email: [email protected] 1 Summary: Patients with hypopituitarism display impaired quality of life and excess morbidity and mortality, despite apparently optimal pituitary hormone replacement. Oxytocin is a neuropeptide synthesised in the anterior hypothalamus which plays an important role in controlling social and emotional behaviour, body weight and metabolism. Recent studies have suggested that a deficiency of oxytocin may be evident in patients with hypopituitarism and craniopharyngioma, and that this may be associated with deficits in cognitive empathy. Preliminary data hint at potential benefits of oxytocin therapy in improving these deficits and the accompanying metabolic disturbances that are common in these conditions. However, several challenges remain, including an incomplete understanding of the regulation and mechanisms of action of oxytocin, difficulties in accurately measuring oxytocin levels and in establishing a diagnosis of oxytocin deficiency, and a need to determine both the optimal mode of administration for oxytocin therapy and an acceptable safety profile with long-term use. This review considers the data linking oxytocin to the neuropsychological and metabolic disturbances evident in patients with craniopharyngioma and hypopituitarism, and describes the challenges that need to be overcome before replacement therapy can be considered as a therapeutic option in clinical practice.
    [Show full text]
  • Hypopituitarism
    Revista de Endocrinología y Nutrición Volumen Suplemento Julio-Septiembre Volume 13 Supplement 1 July-September 2005 Artículo: Hypopituitarism Derechos reservados, Copyright © 2005: Sociedad Mexicana de Nutrición y Endocrinología, AC Otras secciones de Others sections in este sitio: this web site: ☞ Índice de este número ☞ Contents of this number ☞ Más revistas ☞ More journals ☞ Búsqueda ☞ Search edigraphic.com Revista de Endocrinología y Nutrición Vol. 13, No. 3. Supl.1 Julio-Septiembre 2005 pp S47-S51 Hipófisis Hypopituitarism Mark E. Molitch* * Division of Endocrinology, Metabolism and Molecular Medicine. Northwestern University Feinberg School of Medicine. Hypopituitarism indicates the diminished production of one Gene mutations have been found at several steps lead- or more anterior pituitary hormones. Although the recog- ing to pituitary hormone secretion, including those for the nition of complete or panhypopituitarism is usually straight- hypophysiotropic releasing factor receptors for GnRH, GHRH, forward, the detection of partial or selective hormone and TRH; those for the pituitary hormone structures for GH, deficiencies is more challenging. Pituitary hormone defi- ACTH, and the a subunits of FSH, TSH, and LH; and those for ciencies can be caused by loss of hypothalamic stimula- the target organ receptors for GH, ACTH, TSH, and LH. Best tion (tertiary hormone deficiency) or by direct loss of pi- studied are mutations of the GH gene, which include large tuitary function (secondary hormone deficiency). The deletions and point mutations; some of these can be inher- distinction between hypothalamic and pituitary causes of ited in an autosomal dominant manner, apparently because hypopituitarism is important for establishing the correct the mutant hormone impairs GH biosynthesis and normal diagnosis and but less so when applying and interpret- function of the somatotroph cell.
    [Show full text]
  • Distinguishing Constitutional Delay of Growth and Puberty from Isolated Hypogonadotropic Hypogonadism: Critical Appraisal of Available Diagnostic Tests
    SPECIAL FEATURE Clinical Review Distinguishing Constitutional Delay of Growth and Puberty from Isolated Hypogonadotropic Hypogonadism: Critical Appraisal of Available Diagnostic Tests Jennifer Harrington and Mark R. Palmert Division of Endocrinology, The Hospital for Sick Children and Department of Pediatrics, The University of Toronto, Toronto, Canada M5G1X8 Context: Determining the etiology of delayed puberty during initial evaluation can be challenging. Specifically, clinicians often cannot distinguish constitutional delay of growth and puberty (CDGP) from isolated hypogonadotropic hypogonadism (IHH), with definitive diagnosis of IHH awaiting lack of spontaneous puberty by age 18 yr. However, the ability to make a timely, correct diagnosis has important clinical implications. Objective: The aim was to describe and evaluate the literature regarding the ability of diagnostic tests to distinguish CDGP from IHH. Evidence Acquisition: A PubMed search was performed using key words “puberty, delayed” and “hypogonadotropic hypogonadism,” and citations within retrieved articles were reviewed to identify studies that assessed the utility of basal and stimulation tests in the diagnosis of delayed puberty. Emphasis was given to a test’s ability to distinguish prepubertal adolescents with CDGP from those with IHH. Evidence Synthesis: Basal gonadotropin and GnRH stimulation tests have limited diagnostic spec- ificity, with overlap in gonadotropin levels between adolescents with CDGP and IHH. Stimulation tests using more potent GnRH agonists and/or human chorionic gonadotropin may have better discriminatory value, but small study size, lack of replication of diagnostic thresholds, and pro- longed protocols limit clinical application. A single inhibin B level in two recent studies demon- strated good differentiation between groups. Conclusion: Distinguishing IHH from CDGP is an important clinical issue.
    [Show full text]
  • Specialty Pharmacy Program Drug List
    Specialty Pharmacy Program Drug List The Specialty Pharmacy Program covers certain drugs commonly referred to as high-cost Specialty Drugs. To receive in- network benefits/coverage for these drugs, these drugs must be dispensed through a select group of contracted specialty pharmacies or your medical provider. Please call the BCBSLA Customer Service number on the back of your member ID card for information about our contracted specialty pharmacies. All specialty drugs listed below are limited to the retail day supply listed in your benefit plan (typically a 30-day supply). As benefits may vary by group and individual plans, the inclusion of a medication on this list does not imply prescription drug coverage. Please refer to your benefit plan for a complete list of benefits, including specific exclusions, limitations and member cost-sharing amounts you are responsible for such as a deductible, copayment and coinsurance. Brand Name Generic Name Drug Classification 8-MOP methoxsalen Psoralen ACTEMRA SC tocilizumab Monoclonal Antibody/Arthritis ACTHAR corticotropin Adrenocortical Insufficiency ACTIMMUNE interferon gamma 1b Interferon ADCIRCA tadalafil Pulmonary Vasodilator ADEMPAS riociguat Pulmonary Vasodilator AFINITOR everolimus Oncology ALECENSA alectinib Oncology ALKERAN (oral) melphalan Oncology ALUNBRIG brigatinib Oncology AMPYRA ER dalfampridine Multiple Sclerosis APTIVUS tipranavir HIV/AIDS APOKYN apomorphine Parkinson's Disease ARCALYST rilonacept Interleukin Blocker/CAPS ATRIPLA efavirenz-emtricitabine-tenofovir HIV/AIDS AUBAGIO
    [Show full text]
  • Diagnosis and Treatment of Hypopituitarism
    Review Endocrinol Metab 2015;30:443-455 http://dx.doi.org/10.3803/EnM.2015.30.4.443 Article pISSN 2093-596X · eISSN 2093-5978 Diagnosis and Treatment of Hypopituitarism Seong Yeon Kim Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Hypopituitarism is a chronic endocrine illness that caused by varied etiologies. Clinical manifestations of hypopituitarism are variable, often insidious in onset and dependent on the degree and severity of hormone deficiency. However, it is associated with increased mortality and morbidity. Therefore, early diagnosis and prompt treatment is necessary. Hypopituitarism can be easily diagnosed by measuring basal pituitary and target hormone levels except growth hormone (GH) and adrenocorticotropic hor- mone (ACTH) deficiency. Dynamic stimulation tests are indicated in equivocal basal hormone levels and GH/ACTH deficiency. Knowledge of the use and limitations of these stimulation tests is mandatory for proper interpretation. It is necessary for physi- cians to inform their patients that they may require lifetime treatment. Hormone replacement therapy should be individualized ac- cording to the specific needs of each patient, taking into account possible interactions. Long-term endocrinological follow-up of hypopituitary patients is important to monitor hormonal replacement regimes and avoid under- or overtreatment. Keywords: Hypopituitarism; Adrenocorticotropic hormone deficiency; Thyrotropin deficiency; Gonadotropin deficiency; Growth hormone deficiency; Anti-diuretic hormone deficiency INTRODUCTION mone secretion results in an emergency situation that requires immediate medical attention [2]. The treatment of hypopituita- Hypopituitarism is defined as the total or partial loss of anterior rism typically involves a replacement of the deficient hormone and posterior pituitary gland function that is caused by pituitary but care must be taken because several studies have reported an or hypothalamic disorders [1].
    [Show full text]