Nuisance Ants on Golf Courses

Total Page:16

File Type:pdf, Size:1020Kb

Nuisance Ants on Golf Courses Turfgrass and Environmental Research Online ...Using Science to Benefit Golf University of Kentucky researchers are studying the biology and behavior of mound-build- ing ants, Lasius neoniger, in an effort to develop an effective control strategy to limit their mounding activities on golf course tees and putting greens. Volume 2, Number 22 November 15, 2003 PURPOSE The purpose of USGA Turfgrass and Environmental Research Online is to effectively communicate the results of research projects funded under USGA’s Turfgrass and Environmental Research Program to all who can benefit from such knowledge. Since 1983, the USGA has funded more than 290 projects at a cost of $25 million. The pri- vate, non-profit research program provides funding opportunities to university faculty interested in working on envi- ronmental and turf management problems affecting golf courses. The outstanding playing conditions of today’s golf courses are a direct result of using science to benefit golf. Editor Research Director Jeff Nus, Ph.D. Michael P. Kenna, Ph.D. 904 Highland Drive P.O. Box 2227 Lawrence, KS 66044 Stillwater, OK 74076 [email protected] [email protected] (785) 832-2300 (405) 743-3900 (785) 832-9265 (fax) (405) 743-3910 (fax) USGA Turfgrass and Environmental Research Committee Bruce Richards, Chairman Ron Dodson Kimberly Erusha, Ph.D. Ali Harivandi, Ph.D. Ricky Heine, CGCS Noel Jackson, Ph.D. Michael P. Kenna, Ph.D. Jeff Krans, Ph.D. Pete Landschoot, Ph.D. James Moore Jeff Nus, Ph.D. Tim O’Neill, CGCS Paul Rieke, Ph.D. Robert Shearman, Ph.D. James T. Snow Clark Throssell, Ph.D. Pat Vittum, Ph.D. Scott Warnke, Ph.D. James Watson, Ph.D. Teri Yamada Permission to reproduce articles or material in the USGA Turfgrass and Environmental Research Online (ISSN 1541-0277) is granted to newspapers, periodicals, and educational institutions (unless specifically noted otherwise). Credit must be given to the author(s), the article title, and USGA Turfgrass and Environmental Research Online including issue and number. Copyright protection must be afforded. To reprint material in other media, written permission must be obtained fom the USGA. In any case, neither articles nor other material may be copied or used for any advertising, promotion, or commercial purposes. Nuisance Ants on Golf Courses Reid M. Maier and Daniel A. Potter enlarging the nest chambers. SUMMARY Ant mounds can be very abundant in high- sand rootzone putting greens and tees. Besides Mound-building nuisance ants have become one of the being unsightly, they dull mower blades, clog most troublesome pests in golf course maintenance. machinery, and smother closely mowed grass. On Knowledge of their biology is important in establishing a control strategy for golf course putting greens. University putting greens, ant mounds disrupt smoothness of Kentucky researchers have found: and uniformity and can directly impact the game. Most of the nuisance ant problems on golf courses in the This article provides an update on our current cool-season and transitional zones seem to be caused by USGA-funded research project concerning biolo- Lasius neoniger, the so-called turfgrass ant. gy and pro-active management of turf ants on golf Researchers determined that mound building started in February or March, increased rapidly in April and May, and courses. declined by late summer. Ants are the main predators of white grub eggs in the Basic Ant Biology soil, as well as eggs and small larvae of cutworms, sod webworms, and other turf insects. Most of the nuisance ant problems on golf Lasius ant mounds are concentrated around the edges of sand-based greens. More than 90% of mounds on greens courses in the cool-season and transitional zones were located within 2 meters (6.5 feet) of perimeter, and seem to be caused by Lasius neoniger, the so- only 3% were more than 3 meters (10 feet) into the green. called turfgrass ant (1). Worker ants, the form Turf ants have a mutualistic relationship with root most often seen, are light to medium brown and aphids which they maintain in their nests and “tend” like about 2-2.5 mm (1/10th inch ) long. Lasius dairy cattle, feeding on the aphids’ sugary excrement. Root aphids are abundant in native soil, but largely absent from neoniger is a cosmopolitan species that typically high-sand rootzone greens. Maintaining access to root nests in sunny open areas. The subterranean nest aphids may explain, in part, why ant nests are distributed consists of shallow interconnected chambers and around the edges of greens. Research will test whether con- is seldom more than 25-38 cm (10-15") deep. trolling the aphids will discourage ants from nesting. Besides workers, the nest contains a single repro- Queen ant emergence is synchronized in late summer. Researchers are testing whether treating a narrow buffer ductive queen as well as immature stages (eggs, zone just outside the collar will intercept new queens, pre- larvae, and pupae) that collectively are called the vent nest establishment, and reduce ant problems the following year. Mound-building nuisance ants have become one of the most troublesome pests in golf course maintenance. The problem occurs when ants construct nests on putting greens and tees. Ant nests, which are located underground, often have multiple entrances each surrounded by a small volcano-shaped mound of soil. Mounds are formed from soil particles that the worker ants bring to the surface while excavating burrows and REID M. MAIER and DANIEL A. POTTER, Dept. of Entomology, S-225 Agric. Science Bldg. N., University of Kentucky, Lexington, KY 40546-0091 Lasius neoniger ant queen on closely mowed bentgrass USGA Turfgrass and Environmental Research Online 2(22):1-5. 1 TGIF Record Number: 94385 brood. mounds on ten sand-based creeping bentgrass tees For most of the growing season, the queen on each of two Kentucky golf courses monthly lays eggs that develop into infertile female work- from February through November. Mounding ers that cooperate in the various tasks in the started in February or March, increased rapidly in colony including cleaning and enlarging the nest, April and May, and declined by late summer. gathering food, defending the nest from natural Workers of L. neoniger forage on the sur- enemies, and tending to the queen and her brood. face for food including insect eggs, small insects, In mid- to late summer she begins laying eggs that or insect fragments. A successful foraging trip develop into reproductive individuals, i.e., males results in the worker depositing a trail pheromone and new queens. These winged reproductive ants from its hindgut while returning to the nest. emerge from the nest in late summer, mate, and Additional workers use this trail to find the the newly fertilized young queens fly or crawl to resource discovered by the scout. Subsequent new sites to overwinter where they will start a workers reinforce this trail pheromone so long as new colony the following year. the food resource is present. Workers also may Egg-laying begins in early spring. Queens obtain carbohydrates by feeding at extrafloral nec- initiating a new nest first lay a small batch of 10 taries, or by collecting nectar from flowers of to 20 eggs. This first brood will develop into tiny nearby plants. For example, we have observed L. workers called nanitics. Nanitics, although small neoniger feeding at extrafloral nectaries of and weak, begin foraging for food for the queen, peonies in flower beds near turf. ensuring that she will have enough nutrients to lay Ants, in general, are beneficial to turf- additional eggs. The queen then remains in the grass. They are important predators contributing nest and lays eggs that develop into normal work- to natural control of pest insects (2, 3). Ants are ers. The colony then grows rapidly during late the main predators of white grub eggs in the soil, spring and early summer as the ants enlarge their as well as eggs and small larvae of cutworms, sod foraging area and increasingly more brood and webworms, and other turf insects. Ants' burrow- workers are reared. Winged reproductive forms ing and nesting activities promote air and water are produced in late summer to complete the infiltration, and help to incorporate organic matter cycle. It is believed that once a nest is established, into the soil where the nutrients are available to the resident (old) queen may survive and lay eggs the grass roots. for more than one year. We determined the seasonal pattern of Ant-Aphid Mutualism mound-building by counting active L. neoniger Many ants obtain carbohydrates by feed- ing on honeydew that they obtain from aphids or other tiny insects that suck plant sap. The honey- dew, essentially sugary aphid excrement, is a complex mixture of nutrients including free amino acids and amides, minerals, and B-vitamins. Often the ants "tend" the aphids like dairy cattle and defend them from predators. When an ant strokes an aphid with its antennae, the aphid relin- quishes a sugary droplet from its anus. The ant swallows the droplet and carries it back to the nest where it is shared within the colony. Many ants obtain carbohydrates by feeding on honey- Lasius neoniger has a specific relationship dew that they obtain from aphids (such as the root with root-feeding aphids, Geoica spp., which they aphids shown above) or other tiny insects that suck maintain in their nests . The ants store and care plant sap. 2 University researchers measured the distance from the edge of puttings that ant mounds were found in an effort to understand the behavior of the turfgrass ant. for the aphid eggs over the winter, mixing them in efforts should be directed there, rather than spray- with their own.
Recommended publications
  • Effects of Landscape, Intraguild Interactions, and a Neonicotinoid on Natural Enemy and Pest Interactions in Soybeans
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2016 EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS Hannah J. Penn University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0002-3692-5991 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.441 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Penn, Hannah J., "EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS" (2016). Theses and Dissertations-- Entomology. 30. https://uknowledge.uky.edu/entomology_etds/30 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Choate 2015 Crop.Pdf
    Faculty Scholarship Collection The faculty at Allegheny College has made this scholarly article openly available through the Faculty Scholarship Collection (FSC). Article Title Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis Author(s) Beth A. Choate and Jonathan G. Lundgren Journal Title Crop Protection Citation Choate, Beth A. and Jonathan G. Lundgren. 2015. "Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis." Crop Protection 77: 110-118. Link to article on publisher’s http://dx.doi.org/10.1016/j.cropro.2015.07.021 website Version of article in FSC Postprint Link to this article through FSC https://dspace.allegheny.edu/handle/10456/40034 Date article added to FSC December 23, 2015 Terms of Use © 2015, Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Information about Allegheny’s Open Access Policy is available at http://sites.allegheny.edu/scholarlycommunication/ For additional articles from this collection, visit https://dspace.allegheny.edu/handle/10456/34250 *Manuscript Click here to view linked References 1 Running Head: Invertebrate communities in spring wheat 2 For Submission to Crop Protection 3 4 5 Title: Invertebrate communities in spring wheat and the identification of cereal aphid predators 6 through molecular gut content analysis. 7 8 Beth A. Choate* and Jonathan G. Lundgren 9 USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, 57006 10 11 *Address correspondence to 12 Dr. Beth A.
    [Show full text]
  • Agrotis Ipsilon): a Glimpse on Globally Important Crop Pest
    Volume 2021, issue 2, pages 36–42 30 June 2021 https://doi.org/10.33493/scivis.21.02.02 REVIEW ARTICLE An insight into black cutworm (Agrotis ipsilon): A glimpse on globally important crop pest Christopher Rodingpuia*, H. Lalthanzara Department of Life Sciences, Pachhunga University College, Mizoram University, Aizawl 796001, India Many agricultural pests create problems for farmers leading to production loss. Received 11 January 2021 Accepted 15 February 2021 Since agriculture plays an important role in the economy of a nation, controlling and management of such pests is of great importance. Cutworms are notorious *For correspondence: [email protected] agricultural pests infesting a wide variety of crops leading to production loss. Cutworms are distributed worldwide and many species of cutworms have also Contact us: been reported feeding on all kinds of crops. Agrotis ipsilon is one of the most [email protected] common cutworm species prevailing in different continents. Understanding the biology and management of these pests will be of great use for farmers. In this article, brief information on cutworms; specifically A. ipsilon species is highlighted. A brief description of host, migration, control and management of A. ipsilon are also highlighted. Keywords: Caterpillars, infestation, host, parasite, economy, control-management. Introduction Cutworms are caterpillars belonging to the order may extend up to 1 inch (2.5 cm).4 There are Lepidoptera and family Noctuidae; a large family of variations within the genera and may differ moth.1-4 Cutworms got their names from their depending on the region where they are found.1-4 feeding habit of “cutting-off”’ a seedling at ground Most common cutworm species are Agrotis level by chewing through the stem.
    [Show full text]
  • A Phylogenetic Analysis of North American Lasius Ants Based on Mitochondrial and Nuclear DNA Trevor Manendo University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2008 A Phylogenetic Analysis of North American Lasius Ants Based on Mitochondrial and Nuclear DNA Trevor Manendo University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Manendo, Trevor, "A Phylogenetic Analysis of North American Lasius Ants Based on Mitochondrial and Nuclear DNA" (2008). Graduate College Dissertations and Theses. 146. https://scholarworks.uvm.edu/graddis/146 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A phylogenetic analysis of North American Lasius ants based on mitochondrial and nuclear DNA. A Thesis Presented by Trevor Manendo to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Biology May, 2008 Accepted by the Faculty of the Graduate College, The University of Vermont in Partial fulfillment of the requirements for the degree of Master of Science specializing in Biology. Thesis Examination Committee: ice President for Research and Dean of Graduate Studies Date: March 19,2008 ABSTRACT The ant genus Lasius (Formicinae) arose during the early Tertiary approximately 65 million years ago. Lasius is one of the most abundant and widely distributed ant genera in the Holarctic region, with 95 described species placed in six subgenera: Acanthomyops, Austrolasius, Cautolasius, Chthonolasius, Dendrolasius and Lasius.
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]
  • Nematodes As Biocontrol Agents This Page Intentionally Left Blank Nematodes As Biocontrol Agents
    Nematodes as Biocontrol Agents This page intentionally left blank Nematodes as Biocontrol Agents Edited by Parwinder S. Grewal Department of Entomology Ohio State University, Wooster, Ohio USA Ralf-Udo Ehlers Department of Biotechnology and Biological Control Institute for Phytopathology Christian-Albrechts-University Kiel, Raisdorf Germany David I. Shapiro-Ilan United States Department of Agriculture Agriculture Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, Georgia USA CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: þ44 (0)1491 832111 Tel: þ1 617 395 4056 Fax: þ44 (0)1491 833508 Fax: þ1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org ßCAB International 2005. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mech- anically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Nematodes as biocontrol agents / edited by Parwinder S. Grewal, Ralf- Udo Ehlers, David I. Shapiro-Ilan. p. cm. Includes bibliographical references and index. ISBN 0-85199-017-7 (alk. paper) 1. Nematoda as biological pest control agents. I. Grewal, Parwinder S. II. Ehlers, Ralf-Udo. III. Shaprio-Ilan, David I. SB976.N46N46 2005 632’.96–dc22 2004030022 ISBN 0 85199 0177 Typeset by SPI Publisher Services, Pondicherry, India Printed and bound in the UK by Biddles Ltd., King’s Lynn This volume is dedicated to Dr Harry K.
    [Show full text]
  • Wax Structures of Scymnus Louisianae Attenuate Aggression from Aphid-Tending Ants
    CHEMICAL ECOLOGY Wax Structures of Scymnus louisianae Attenuate Aggression From Aphid-Tending Ants EZRA G. SCHWARTZBERG,1,2 KENNETH F. HAYNES,1 DOUGLAS W. JOHNSON,1 1 AND GRAYSON C. BROWN Environ. Entomol. 39(4): 1309Ð1314 (2010); DOI: 10.1603/EN09372 ABSTRACT The cuticular wax structures of Scymnus louisianae J. Chapin larvae were investigated as a defense against ant aggression by Lasius neoniger Emery. The presence of wax structures provided signiÞcant defense against ant aggression compared with denuded larvae in that these structures attenuated the aggressive behavior of foraging ants. Furthermore, reapplication of wax dissolved in hexane partially restored defenses associated with intact structures, showing an attenuation of aggression based in part on cuticular wax components rather than solely on physical obstruction to ant mouthparts. KEY WORDS Scymnus louisianae, Aphis glycines, Lasius neoniger, ant-tending Many ants tend aphids and use the collected honeydew wax in promoting physical obstruction to the mouthparts as a sugar source. In return, the aphids beneÞt from the of aphid-tending ants, little has been done to elucidate tending ants (Way 1963, Ho¨lldobler and Wilson 1990). In the role that wax plays in eliciting avoidance behavior or these systems, aphids can beneÞt through reduced pre- in attenuating aggression. SpeciÞcally, physical or chem- dation (Banks 1962) and increased Þtness (Flatt and ical mimicry, camoußage, or repellency has not been Weisser 2000). The relationship between ants and aphids looked at as a potential means of avoidance of ant ag- is often a mutualistic one but ranges from obligatory to gression in the Scymnus beetles. It has been suggested facultative (Dixon 1998).
    [Show full text]
  • Turf Insect Diagnostics -Required Knowledge/Skills
    Turf Insect IPM Kyle Wickings Assistant Professor Department of Entomology Cornell University New York State Agricultural Experiment Station Diversity of arthropods that are pests Scarabaeidae Curculionidae (scarabs/white (weevils) grubs) Coleoptera (beetles) Diptera (flies) Lepidoptera (moths/caterpillars) Hymenoptera Hemiptera (ants) (bugs) Turf insect diagnostics -required knowledge/skills- • Basic Biology – Feeding – Movement (habitat range/dispersal) – Seasonality – Reproduction • Insect identification • Recognition of damage symptoms • Field collection skills – scouting -annual white grubs- • One generation per year • Seasonal activity varies among species (e.g. European chafer) • Feeding preference – detritus to live roots – varies by development and among spp. • Adult activity – feeding vs. non-feeding (JB, AGB vs. EC) soil organic matter roots MSU-ANR Green June Beetle Oriental Beetle Japanese Beetle Why identify scarabs in turf? • white grubs vary in Product Type susceptibility by life stage OrtheneWhite grub treatmentacephate thresholds. • decreases with age GrubGuard chlorpyrifos Number of grubs per 1 Species sq. ft. core DyloxAsiatic garden beetletrichlorfon 18-20 2 • variable efficacy among Black turfgrass ataenius 30-50 3-5 different insecticides Acelepryn chlorantraniliprole European chafer 5-8 Any Safari dinotefuran Green June beetle 5 Any Merit imidacloprid • damage thresholds differ Japanese beetle 8-10 Any AllectusOriental beetle bifenthrin 8 Any OrnazinNorthern maskedazadirachtin chafer 8-12 Any May and June beetle
    [Show full text]
  • Newly Sprouted Turf Insect Pests
    Newly Sprouted Turf Insect Pests Source: www.TurfMagazine.com Staying one step ahead of dynamic pest populations Click image to enlarge. Two species of European crane flies have now been identified in the U.S. Northeast since its first sighting there in 2004. Photo courtesy David Cappaert, Michigan State University, www.bugwood.org. Pests, including insect pests that destroy turfgrass, continually change, whether in number, kind or status. If they weren’t in constant sway to the rhythm of shifting environments (like all living organisms), we would have them figured out by now. We would know precisely when and how to manage them. However, insect pests represent moving targets. Tracking that dynamism remains a challenge for pest management practitioners. As our action, tolerance and economic thresholds are pushed lower and lower the status of pests can change. Elevated standards and risk adversity call new challenges to the forefront, among them insect pests. Another reason for change is pesticide release. This can come about from the collateral damage posed to non-target organisms. These include the predators and parasitoids that would have helped to suppress pest populations in their own right. Also, pesticide release may occur through a shift from broad- spectrum insecticides to products with a narrower spectrum, wherein secondary pests that might have been controlled along with the target pest, are no longer kept in check, with outbreaks as one possible outcome. Ecological release is another way pests change. This can occur when shifting cultural and agronomic practices end up making the habitat more favorable for the growth of insect populations.
    [Show full text]
  • Modern Methods of Estimating Biodiversity from Presence-Absence Surveys
    130 Modern Methods of Estimating Biodiversity from Presence-Absence Surveys Robert M. Dorazio1, Nicholas J. Gotelli2 and Aaron M. Ellison3 1U.S. Geological Survey, Southeast Ecological Science Center, Gainesville, Florida 2University of Vermont, Department of Biology, Burlington, Vermont 3Harvard University, Harvard Forest, Petersham, Massachusetts USA 1. Introduction Communities of species are often sampled using so-called “presence-absence” surveys, wherein the apparent presence or absence of each species is recorded. Whereas counts of individuals can be used to estimate species abundances, apparent presence-absence data are often easier to obtain in surveys of multiple species. Presence-absence surveys also may be more accurate than abundance surveys, particularly in communities that contain highly mobile species. A problem with presence-absence data is that observations are usually contaminated by zeros that stem from errors in detection of a species. That is, true zeros, which are associated with the absence of a species, cannot be distinguished from false zeros, which occur when species are present in the vicinity of sampling but not detected. Therefore, it is more accurate to describe apparent presence-absence data as detections and non-detections, but this terminology is seldom used in ecology. Estimates of biodiversity and other community-level attributes can be dramatically affected by errors in detection of each species, particularly since the magnitude of these detection errors generally varies among species (Boulinier et al. 1998). For example, bias in estimates of biodiversity arising from errors in detection is especially pronounced in communities that contain a preponderance of rare or difficult-to-detect species. To eliminate this source of bias, probabilities of species occurrence and detection must be estimated simultaneously using a statistical model of the presence-absence data.
    [Show full text]
  • 37 Lawn Maintenance
    CHAPTER 37 THE BEST CONTROL FOR CAREFREE YARD AND LAWN MAINTENANCE Of the 800,000 insects that live in a typical Florida lawn, less than 1% are pests of mankind and only about a tenth of 1% are pests to the lawn...the rest are beneficial insects! The U. S. EPA estimated in an August 1997 report that each U. S household spent about $20 in 1995 to purchase pesticide poisons for use in their own homes and gardens - this is about double the amount of poison each house bought about 20 years earlier. The American Crop Protection Association noted U. S. sales increased 5.5% from 1996 to 1997 reaching $8.79 billion and export sales of U. S. manufactured ag pesticides increased 10.7% the same year to $2.81 billion. Well maintained plants are less susceptible to disease and insect damage. Plants under stress emit xylene gas which seems to tell the insect pests that the plant is weak and in trouble. “The important thing is not to stop questioning.” The Albert Einstein Archives, The Hebrew University of Jerusalem, Israel 1387 CAREFREE YARD AND LAWN MAINTENANCE True IPM or Intelligent Pest Management® is the only logical way to safely control pests either inside or outside your building. If I told you to build a building and only allowed you to use one tool, you would think my request was absurd. One needs many different tools, e.g., plans, blueprints, surveys, tape measures, drills, planers, sandpaper, saws, hammers, wrenches, clamps, screwdrivers, pliers, crowbars, vice grips, levels, a plumb, squares, shovels, floats, trowels and many other tools to properly build a building.
    [Show full text]
  • Characterization of Ant Nesting Sites at Pierce Cedar Creek Institute And
    Comparison of Ant (Lasius neoniger and Prenolepis imparis) Nesting Sites at Pierce Cedar Creek Institute and the Influence of Temperature on L. neoniger Activity Kayla Berigan and Bernadette Poirier Mentored by Dr. Robb Bajema Department of Biology, Aquinas College October 28, 2011 Abstract Our study focuses on three objectives: surveying ant biodiversity on Pierce Cedar Creek Institute trails, comparing nesting site characteristics in P. imparis and L. neoniger, and testing the effect of soil surface temperature on activity levels of L. neoniger. We identified twenty-one species of ants on the trail system at PCCI, of which only four were previously documented in Barry County, MI, the site of our study. With regard to nest characteristics, we found that ant hole density in the nests of L. neoniger was significantly greater than in P. imparis. In addition, percent canopy cover in L. neoniger was significantly lower than in P. imparis. Finally, soil surface temperature was shown to have a significant influence on the number of ants excavating throughout the course of a day in one of two L. neoniger nesting sites studied. Introduction Ants are abundant. Ants and termites comprise 1/3 of the rainforest’s entire animal biomass in the Amazonian terra firme rainforest; there are 8 million ants and 1 million termites in each hectare of soil (Hölldobler and Wilson 1990). Closer to home, Mary Talbot found 87 ant species in 23 genera in 5.6 square kilometers of the Edwin S. George reserve in Livingston, Michigan (Talbot 1975, cited in Hölldobler, 1990). Because ants are abundant, they profoundly influence ecosystems; in one study, over half of the sampled seeds in a New York state beech-maple forest were dispersed by ants (Handel et al.
    [Show full text]