Pubag Copy: Download

Total Page:16

File Type:pdf, Size:1020Kb

Pubag Copy: Download PHYSIOLOGICAL A.c'lD CHEMICAL ECOLOGY Structure Activity Relationships of Phenyl Alkyl Alcohols, Phenyl Alkyl Amines, and Cinnamyl Alcohol Derivatives as Attractants for Adult Corn Rootworm (Coleoptera: Chrysomelidae: Diabrotica spp.) l 2 RICHARD J. PETROSKI AND LESLIE HAMMACK Environ. Entomol. 27(3): 688-694 (1998) ABSTRACT In field trapping tests, phenyl alkyl amines and phenyl alkyl alcohols with 2-carbon side chains attracted significantly more adult females of the northern com rootworm, Diabrotica barberi Smith & Lawrence, than did phenyl alkyl amines or phenyl alkyl alcohols with 1-, 3-, or 4-carbon side chains. Both sexes ofnorthern com rootworm were attracted to 2-phenyl-l-ethylamine in greater numbers than to 2-phenyl-l-ethanol, whereas the latter was the better attractant in the case of female western com rootworm, Diabrotica virgifera virgifera LeConte. Differences in attractancy between the 2 compounds were attributed to differences in atomic charge; electrostatic charge was calculated to be -1.10 on the nitrogen atom in 2-phenyl-l-ethylamine but only -0.70 on the oxygen atom in 2-phenyl-l-ethanol. Northern com rootworms responded in Significantly greater numbers when the 2 compounds were blended than when a dose of either compound was increased 10-fold. This observation does not support the idea that 2-phenyl-l-ethylamine substitutes for 2-phenyl-l-ethanol at a phenyl alkyl alcohol recognition site. In the case of cinnamyl alcohol derivatives, cinnamyl alcohol attracted the most northern corn rootworms, but cinnamaldehyde attracted the most western corn rootworms ofboth sexes. Male western corn rootworms responded to only cinnamaldehyde. KEY WORDS northern corn rootworm, western corn rootworm, 2-phenyl-l-ethylamine, phen­ ethylamine, 2-phenyl-l-ethanol, phenethylalcohol NORTHERN A.c'ID WESTERN corn rootworms, Diabrotica especially cinnamyl alcohol were attractive to adult barberi Smith & Lawrence and D. virgifera virgifera northern corn rootworms (Metcalf and Lampman LeConte, respectively, are the important diabroticite 1989a, c; 1991). Northern corn rootworm beetles also pests of corn, Zea Mays L., in the U.S. corn belt. Corn found the parakairomone, 3-phenyl-1-propanol, rootworms have been estimated to cause about 81 nearly as attractive as cinnamyl alcohol and signifi­ billion annually in U.S. crop losses and control costs cantly more attractive than 2-phenyl-1-ethanol, (Metcalf 1986) and to account for =20% of the pes­ whereas phenyl alkyl alcohols with 1 or 4 carbons in ticide applied to major U.S. field crops (Suguiyama the side chain were ineffective (Metcalf and Lamp­ and Carlson 1985, Delvo 1993). Several types ofsernio­ man 1989a, 1991). chemicals show promise as tools to manage corn root­ Phenyl alkyl amines in a series analogous to the worm populations, including floral volatiles attractive above phenyl alkyl alcohols were all at least marginally to adult beetles (Sutter and Lance 1991, Metcalf and attractive, and those with 2- and 3-carbon side chains Metcalf 1992, Metcalf 1994) . produced captures ofnorthern corn rootworm adults Diabroticite beetles are attracted to blossoms of higher than those obtained with cinnamyl alcohol, Cucurbita spp., where feeding occurs on nectar and although not significantly so (Metcalf and Lampman pollen (Fronk and Slater 1956, Fisher et al. 1984, 1991). Cinnamyl alcohol is among the most effective Andersen and Metcalf1987). Cucurbit blossoms con­ tain and release a series ofvolatile alcohols including attractants described for northern corn rootworm benzyl alcohol, 2-phenyl-1-ethanol, and cinnamyl al­ beetles (Metcalfand Lampman 1989a) and is the most cohol (Andersen 1987, Andersen and Metcalf 1987), effective in South Dakota, where 4-methoxyphen­ common constituents offloral aromas (Knudsen et al. ethanol performs relatively poorly (Hesleret al.1994). 1993). In field trapping tests, 2-phenyl-1-ethanol and Efficacy ofphenyl alkyl amines has been provisionally attributed to ability of the amine moiety to interact with the OR-receptor site (Metcalf and Lampman This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recom­ 1991). This explanation has not been tested, however, mendation by USDA for its use. and the amines may represent a new class of highly I National Center for Agricultural Utilization Research, Bioactive effective corn rootworm attractants that merits fur­ Agents Research, USDA-ARS, 1815 N. University Street, Peoria, II. ther study. We used field trapping tests and compu­ 61604. 2 Northern Grain Insects Research Laboratory, USDA-ARS, 2913 tional chemistry techniques to examine these alter­ Medary Avenue, Broo]"ings, SD 57006. natives. June 1998 PETROSKI A.'lD HAMMACK: CORe'l ROOTWORe\l ATTRACfA.'lTS 689 The first of 2 field trapping tests compared attrac­ imposable were kept. Geometry was further opti­ tiveness of cinnamyl alcohol, cinnamyl amine, and mized with a 6-31 G wavefunction and the atomic phenyl alkyl amines and alcohols with side chains charges were calculated from an electrostatic poten­ varying in length from 1 to 4 carbons. Cinnamyl ace­ tial fit. Electrostatic charge was similarly calculated for tate and (E) -cinnamaldehyde were also included in benzylamine, benzyl alcohol, 3-phenyl-1-pro­ the comparison. Although all ofthese compounds ex­ pylamine, 3-phenyl-1-propanol as well as cin­ cepting cinnamyl amine have been previously field namylamine, cinnamyl alcohol, and (E) -cinnamalde­ tested for attractiveness to northern corn rootworm hyde. beetles, simultaneously conducted comparisons are Insect Field Trapping. Attractant efficacy was de­ not available for all of the test compounds, including termined from the capture offeral northern and west­ 2-phenyl-1-ethylamine and 2-phenyl-1-ethanoI. In ern corn rootworm adults on traps baited "lith test studying structure activity relationships, simultaneous compounds and placed in field corn in Brookings testing is required for valid comparison among attract­ County, SD. For the 1st test, individual compounds ants for a number ofreasons, including variation in the (100 mg) were applied to cotton dental rolls (3.8 cm size ofbeetle field populations with time, in attractant long by 1 cm diameter [Patterson Dental, Minneap­ efficiency with crop phenology, and in trapping meth­ olis, MN 1) that were treated with 2.0 ml of a 1:4 odology among studies. A 2nd test examined olfactory mixture of olive oil in hexane to sustain volatilization interaction between OH and NH2 functional groups (Guss 1976). The rolls were then affixed to yellow by testing attractiveness of 2-phenyl-1-ethanol and Pherocon A.M. sticky traps (Trece, Salinas, CAl that 2-phenyl-1-ethylamine dispensed individually and in were wrapped around plants at about corn ear height. combination. The field trapping tests were designed Control traps were baited \vith dental rolls that were for the northern corn rootworm, but western corn treated only with the oil-hexane mixture. Procedures rootworms were also trapped. were modified slightly in the 2nd test when alcohol Computational chemistry techniques enable chem­ and amine were volatilized from the same traps. In this ists to simulate the structure and behavior of mole­ case, each chemical was placed on a separate half of cules. We used these techniques to examine similar­ a dental roll that had first been treated with 1.0 ml of ities and differences in atomic charge between the test the 1:4 mixture of olive oil in hexane. Each half was molecules to achieve a better understanding of how then fastened separately to the trap to minimize the chemical structure relates to biological activity. possibility ofchemical reactions between compounds volatilized from the same trap. Test doses were also reduced in the 2nd test; the amine and alcohol were Materials and Methods each tested at 3.0 and 30.0 mg per trap. Test Compounds. Cinnamylamine was synthesized The experiments were laid out in a randomized as described below; 3-phenyl-1-propanol was ob­ complete block design with 6 (1st test) or8 replicates. tained from Fluka Chemical (Ronkonkoma, NY); all Traps within blocks were placed simultaneously in othertest chemicals were obtained from Aldrich (Mil­ spatial proximity, generally \vithin a corn row, and waukee, WI). Purity of all compounds tested was at separated by 2:30 m. Blocks were at least 30 m from least 98%. one another and from the edge ofthe field. Traps were Cinnamyl amine was preparedbyreacting cinnamyl placed in the field on 6 September 1995 (1st test) and bromide (25 g, 0.127 mole) with hexamethylenetet­ 27 August 1996. Number ofnorthern and western corn ramine (19.6 g, 0.140 mole) in refluxing chloroform to rootworm beetles per corn plant and corn develop­ yield cinnamyl hexamethylene bromine salt (34 g, mental stage (Ritchie et aI. 1992) were determined 8 0.100 mole, 79% yield). The salt (10 g, 0.030 mole) was September 1995 and 29 August 1996 from samples of hydrolyzed with aqueous ethanolic HCL (Baumgar­ 40 plants situated throughout test areas at positions in ten 1973) to give the product (3.66 g, 0.28 mole, 93% trap rows about equidistant between traps. After 48 h yield). in the field, the traps were returned to the laboratory, Computational Chemistry. Molecular modeling where adult corn rootworms were counted by sex and was performed using the Spartan version 4.0 program species. (Wavefunction 1996) running on a Silicon Graphics Trap capture data were transformed [In (x + 1) 1 Indigo 2 Extreme workstation. Structures of2-phenyl­ to normalize variances and were then analyzed by 1-ethylamine and 2-phenyl-1-ethanol were built and analysis of variance (AJ.'\JOVA) procedure of the SAS the initial geometry was optimized with the Tripos Institute (1989). Student-Newman-Keuls test was molecular mechanics force field (Clark et aI. 1989) used to separate multiple means after a significant within Spartan. A systematic conformational search ANOVA (P < 0.05). Means and standard errors in was conducted with the AMI Hamiltonian using the tables are untransformed values.
Recommended publications
  • The Reductive Amination of Ethanol Using Supported Metal Catalysts
    The Reductive Amination of Ethanol using Supported Metal Catalysts By Gary Stanton Sewell- BSc (Chern. Eng.) Submitted to the University of Cape Town in fulfilment of the requirements for the degree of '• DOCTOR OF PHILOSOPHY University of Cape Town Department of Chemi~al Engineering 14 August 1996 University of Cape Town Rondebosch Cape Town South Africa ---"----""_______ " __ The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Acknowledgements Acknowledgements I would like to thank my supervisors Dr Eric van Steen and Professor Cyril O'Connor for their guidance and encouragement without which this thesis would not have been possible. My thanks also go to Dr Klaus Moller for the fruitful discussions and to Professor Mark Dry for his help with aspects of metal catalysis. I would like to thank Rob for the great times, Tony for his friendship, Jannie for his cool hairstyle and Rein for having a comfortable couch. Thanks to Dave for introducing me to the finer intricacies of toolboxes, to Ashley for his unending optimism and to Peter for always losing at pool. To the II Young Ones II, Chappie, St. John, Frank, Andrew, Mary and Frans, thanks for the great parties and may the department survive you.
    [Show full text]
  • Title Several Reactions of Isocyanide and Related Compounds( Dissertation 全文 ) Author(S) Kobayashi, Shiro Citation
    Several Reactions of Isocyanide and Related Compounds( Title Dissertation_全文 ) Author(s) Kobayashi, Shiro Citation 京都大学 Issue Date 1969-07-23 URL https://doi.org/10.14989/doctor.k916 Right Type Thesis or Dissertation Textversion author Kyoto University IN ISOCYANIDE AND COMPOUNDS 6 IR B s SEVERAL REACTIONS OF ISOCYANIDE AND RELATED COMPOUNDS 1 9 6 9 SHIRO KOBA Y ASHI PREFACE In the present thesis are collected the author's studies which have been carried out under the direction of Profossor Takeo Saegusa at Kyoto University during 1966 -- 1969. The studies include new organic reactions of isocyanide, carbon monoxide and carbene, which are characterized by a carbon atom carry­ ing lone-pair electrons. Reactions catalyzed by copper compounds as well as other Groups IB and IIB metal compounds constitute the central featl1re of tIl':' present studies. New organic reactions of isocyanidE' without catalysts are also presented. The author expresses his deep gratitude to Professor Takeo Saes'Usa for his constant guidance and encouragement throughout the work. Grateful acknowledgement is also made to Dr. Yoshihiko Ito for his valuable advice an? dis cussions during the course of studies. The author wishes to express his deep appreciation to Messrs. Kiwami Hirota, Nobuyuki Takeda, Toyoji Shimizu, Hiroshi Yoshioka, Yoshiharu Okumura. and Ikuo Morino for their active collaborations in carrying out the experiments. Shiro Kobayashi Department of Synthetic Chemistry Kyoto University March, 1969. (i) CON TEN TS Page INTRODUCTION ............................ .. 1 SYNOPSES .............................. .. 7 PART I. INSERTION REACTIONS OF ISOCYNJIDE CATALYZED BY COPPER COMPOUNDS 15 Chapter 1. Reaction of Isocyanide with Amine Catalyzed by Groups IB and IIB Metal Compounds, main ly by Copper Compounds.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Protonation Effect on C-N Bond Length of Alkylamines Studied by Molecular Orbital Calculations
    Protonation Effect on C-N Bond Length of Alkylamines Studied by Molecular Orbital Calculations Hiroyuki Ishida Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan Reprint requests to Dr. H. I.; Fax +81-86-251-8497; E-mail: [email protected] Z. Naturforsch. 55 a, 769-771 (2000); received August 8, 2000 Molecular orbital calculations were performed for the six saturated alkylamines (CH3NH2, (CH3)2NH, (CH3)3N, CH3CH2NH2, (CH3)2CHNH2, (CH3)3CNH2), their protonated cations + + + + + + (CH3NH3 , (CH3)2NH2 , (CH3)3NH , CH3CH2NH3 , (CH3)2CHNH3 , (CH3)3CNH3 ), and + (CH3)4N using the Hartree-Fock, second-order M0ller-Plesset, and density functional theory methods with the 6-311+G(d,p) basis set. Protonation lengthens the C-N bonds of the amines by 0.05 - 0.08 A and shortens the C-C bonds of CH3CH2NH2, (CH3)2CHNH2, and (CH3)3CNH2 by ca. 0.01 A. Key words: Protonation; Amine; HF; DFT. Protonation of the nitrogen atom of the primary troscopy. But that of the corresponding cations is amines XNH2 (X = CH3, OH, F, CN, CHO, and N02) difficult to determine experimentally, and thus its was investigated by Hopkinson and Csizmadia us- structure is usually deduced from data obtained in ing ab initio molecular orbital calculations [1]. They the liquid and solid phase where inter molecular in- found that the protonation results in an increase in the teractions are believed to affect the geometry con- N-X bond length with changes of 0.132, 0.193, and siderably. Thus, the molecule orbital calculation is a 0.212 A occurring for X = CN, HCO, and N02, re- suitable method to estimate the geometry of isolated spectively.
    [Show full text]
  • Ruthenium Catalysed Aerobic Dehydrogenation of Ethylamine
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 An alternative pathway for production of acetonitrile: ruthenium catalysed aerobic dehydrogenation of ethylamine Corker, Emily; Mentzel, Uffe Vie; Mielby, Jerrik Jørgen; Riisager, Anders; Fehrmann, Rasmus Published in: Green Chemistry Link to article, DOI: 10.1039/c3gc36513a Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Corker, E., Mentzel, U. V., Mielby, J. J., Riisager, A., & Fehrmann, R. (2013). An alternative pathway for production of acetonitrile: ruthenium catalysed aerobic dehydrogenation of ethylamine. Green Chemistry, 15(4), 928-933. https://doi.org/10.1039/c3gc36513a General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Green Chemistry PAPER An alternative pathway for production of acetonitrile: Cite this: Green Chem., 2013, 15, 928 ruthenium catalysed aerobic dehydrogenation of ethylamine Emily C. Corker,a Uffe V. Mentzel,a,b Jerrik Mielby,a Anders Riisagera and Rasmus Fehrmann*a The oxidative synthesis of acetonitrile from ethylamine was studied using a supported ruthenium catalyst.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • United States Patent Office
    Patented Apr. 7, 1953 2,634,292 UNITED STATES PATENT OFFICE 2,634,292 CYCLOHEXENYLETHYL AMINE AND PROC ESS FOR HE MANUFACTURE THEREOF Joseph Hellerbach, Basel, Switzerland, assignor to Hoffmann-La Roche Inc., Nutley, N.J., a cor poration of New Jersey No. Drawing. Original application May 27, 1950, Serial No. 164,849. Divided and this applica tion October 3, 1951, Serial No. 249,631. In Switzerland July 29, 1949 2 Claims. (Cl. 260-563) 1. 2 This invention relates to derivatives of mor- It has been found, according to this invention, phinane and4. salts -thereof - - - - - - if and. also to. intermes. : that morphinane and the derivatives thereof can anddiates salts used thereof, in the manufactureas well as to ofprocesses said derivatives for the be prepared according- to a process which may. be. ) manufacture of these compounds. 5 represented by the following formulae Scheme: 2,684,292 3 4 in which R, and R' are the same or different and effected. Free hydroxy groups (of the hydroxy are each a hydrogen atom or an OH, OCH3 or Or the dihydroxy-N-methyl-morphinane respec OCOCH3 group, and R'' and R'' are the same or tively) can be methylated or acetylated. different and are each a hydrogen atom or an The compounds or the Salts thereof, which are OCH3 group. obtained according to the present process, are The compounds of the general formulae I, III, effective as analgesics, IV, V, VI and VIII shown above are all new com In the following examples "parts' means pounds, Whilst the compound "parts by Weight' uniess otherwise stated.
    [Show full text]
  • Selective Synthesis of Acetonitrile by Reaction of Ethanol with Ammonia Over Ni/Al2o3 Catalyst 1053
    Korean J. Chem. Eng., 36(7), 1051-1056 (2019) pISSN: 0256-1115 DOI: 10.1007/s11814-019-0294-y eISSN: 1975-7220 INVITED REVIEW PAPER INVITED REVIEW PAPER Selective synthesis of acetonitrile by reaction of ethanol with ammonia over Ni/Al2O3 catalyst Ye-Seul Jeong, Sang Hee An, and Chae-Ho Shin† Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea (Received 28 March 2019 • accepted 7 May 2019) AbstractA highly selective synthesis of acetonitrile was carried out by the reaction of ethanol with ammonia on a 10 wt% Ni/Al2O3 catalyst. The conversion of ethanol and selectivity to acetonitrile, ethylene, and monoethylamine were examined by varying experimental parameters such as ammonia partial pressure, reaction temperature, and space time. The increase in the ammonia partial pressure led to a considerable decrease in the conversion and small increase in the acetonitrile selectivity up to a molar ratio of NH3/ethanol of 3, followed by almost constant values. The partial reaction order of ethanol obtained by controlling the space time was one, while that of ammonia was negative, 0.4. The deacti- vation behavior of the catalyst after 100 h on stream reaction at 230 oC was analyzed by X-ray photoelectron spectros- copy and temperature programmed oxidation of the catalyst used. The catalyst deactivation was attributed to the gradual formation of nickel carbonitride on the catalyst surface. Keywords: Acetonitrile, Nickel Catalyst, Ethanol, Carbonitride, Deactivation INTRODUCTION face in a metallic state, so that a gradual deactivation is observed. The development of a highly selective acetonitrile synthesis catalyst Acetonitrile is used mainly as a solvent of extractive distillation, by controlling these simple experimental parameters is important isolation of butadiene from C4 hydrocarbons, in battery applica- to guide the development of novel catalysts in the future.
    [Show full text]
  • Supporting Information Amine Assisted Top Down Delamination Of
    Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017 Supporting Information Amine Assisted Top Down Delamination of the Two-Dimensional Metal-Organic Framework Cu2(bdc)2 Christel Kutzscher, André Gelbert, Sebastian Ehrling, Claudia Schenk, Irena Senkovska, and Stefan Kaskel* Department of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany. E-mail: [email protected] 1. General methods, equipment and parameters Chemicals were purchased from Sigma Aldrich, TCI, Acros Organics, AppliChem, and Riedel-de Haën and used without further purification. Solvents were purchased from Sigma Aldrich, Fischer Chemicals or Acros Organics and stored under argon. Delamination tests were performed under argon atmosphere in Schlenk tubes. Powder X-ray diffraction (PXRD) patterns were collected using a Stoe StadiP system in transmission mode. Samples were prepared in flat base sample holders. 3° Step wide and 80 sec per step exposure time were used. For measurements Cu Kα1 radiation (λ=0.15405 nm) was applied. Scanning electron microscope (SEM) analysis was performed on the SU8020 scanning electron microscope (HITACHI, Japan) with an accelerating voltage of 1-2 kV. Dried materials were sputtered with gold. Average particle size was estimated from 10-20 measurements. For nitrogen physisorption experiments a Belsorp-max system from MicrotracBEL (Japan) was used. The samples were additionally activated at 150 °C for 18 hours prior to measurements. The analysis was performed at 77 K. Solid state infrared (IR) spectroscopy was performed using the Vertex 70 instrumentation of Bruker in DRIFT-IR mode. Samples were mixed with dry KBr (0.5 mg MOF + 100 mg KBr) directly before measurements.
    [Show full text]
  • Equilibrium Constants for the Formation of Silver
    EQUILIBRIUM CONSTANTS FOR THE FORMATION OF SILVER AMMINES IN ETHANOL-WATER MIXTURES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Charles Thomas Anderson, A.B ****** The Ohio State University Approved by* Adviser Department of Chemistry .•■--•.sia-ji • c--.\'--~t ' -.- ■?-..-_ _ _ _ _ __ ACKNOWLEDGMENT I -wish to express my deep appreciation to my preoeptor. Professor Prank Verhoek, for suggesting this problem, and for his advice and encouragement during the course of the work. 1 also wish to thank the Cincinnati Chemical Works for providing a fellowship under which much of this work was done. ii PREFACE This dissertation is & report of experimental studies on the equilibrium constants of a number of silver ammine complexes in ethanol-water solution, with the purpose of examining the relation­ ship between the stabilities of these complexes and the basio strengths and structures of the amines. Formation constants of the complex silver ions and dissociation constants of the amines were obtained at 25°C in 50 mole % ethanol-water mixtures from pH measurements of solutions containing known amounts of silver ion, acid, amine and neutral salt. The glass eleotrode used was calibrated on solutions for which the pH had been determined by potentiometric measurements with hydrogen electrodes and by spectrophotometric measurements using an indicator. - iii - TABLE OF CONTENTS ACKNOWLEDGMENT ....................................... ii PREFACE............................................... iii LIST OF T A B L E S ......................................... vi LIST OF ILLUSTRATIONS................................... ix LIST OF AMINES (ALPHABETICAL).......................... x LIST OF AMINES (BY NUMBER SYMBOL)........................ xi I.
    [Show full text]
  • Clandestine Laboratory Seizures in Tile United States-1993
    If you have issues viewing or accessing this file contact us at NCJRS.gov. U.S. Department of Justice Drug Enforcement Administration Clandestine Laboratory Seizures in tIle United States-1993 Drug Intelligence Report Intelligence Division • December 1994 • DEA-94080 CAVEAT The information in this study is based on reporting from Drug Enforcement Administration (DEA) offices and regional laboratories that participated in the seizure of clandestine manufacturing sites used for the illicit production of dangerous drugs. Seizure data from State and local agencies also is included, when available. Although reporting from non-DEA sources is limited, this study accurately reflects illicit drug production trends from the perspective of DEA participation in clandestine laboratory seizures. Cover Photo: Agents wearing Saranex body suits and self-contained breathing apparatus (SCBA) assemble prior to entering a clandestine laboratory in the southwestern United States. The Attorney General has determined that publication of this periodical is necessary in the transaction of the public business required by law of the Department of Justice. • Drug Enforcement Administration Clandestine Laboratory Seizures in the United States-1993 • Drug Intelligence Report This report was prepared by the Domestic Unit of the Strategic Intelligence Section. Comments and requests for copies are welcome and may be directed to the Publications Unit, Intelligence Division, DBA Headquarters at (202) 307-8726. 153010 U.S. Department of Justice National Institute of Justice This document ilas been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice.
    [Show full text]
  • A Study of Certain Methods for the Preparation of Secondary Amines
    THE UNIVERSITY OF ILLINOIS LIBRARY ^^"ii'Ui^tlY Of I: A STUDY OF CERTATIV METHODS FOR THE PREPARATION OF SECONDARY AMINES BY ALWIN CLYDE EIDE THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CHEMICAL ENGINEERmG COLLEGE OF LIBERAL ARTS AND SCIENCES UNIVERSITY OF ILLINOIS 1915 Digitized by the Internet Archive in 2013 http://archive.org/details/studyofcertainmeOOeide UNIVERSITY OF ILLINOIS THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ALWIN CLYDE EIDE STUr)Y...OP IIT MT.HODS._.FO.R...T PREPARAT ION.. O.P ENTITLED A CERTA . SECONDARY AMINES IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE ...S.c DEGREE OF Bac.h.e.l or ... of.. ience in. Chemml ..Ert.gineer.ing* Instructor in Charge APPROVED: TABLE OP GOUTEHTS Pages niTBODUCTIOU 1 EXPEEIIvIElITAL ^ Dipropylaniline 4 Propyl Bromide 5 Dipropylaniline from the Alkylation of Aniline 6 Dipropylamine 7 Methylethylaniline 10 Methylethylamine 10 Butyramide 11 Propyl Amine 12 Preparation of Dipropylamine by the Action of Propyl Bromide Upon Propyl Amine 13 Dipropylamine by the Sulphonamide Method 14 318168 * UlUC A STUDY OF CERTAIII lOiTIIODS FOR THI^ PEEPAEATIOII OP SECOIJDARY A1.H1IE3 IIJTRODUCTIOIT The work described in this paper is a study of methods for the preparation of secondary amines with special reference to dipropylamine. Dipropylamine has been prepared * by heating under Vincent. Jahresber. 1886, 695. pressure one part of propyl iodide and one and one-half parts of alcohol saturated v/ith ammonia. This method gives a mixture of the primary, secondary and tertiary amines which are very difficult to separate.
    [Show full text]