On the Location of Aziris, the Earliest Greek Settle- Ment on the Libyan Mainland

Total Page:16

File Type:pdf, Size:1020Kb

On the Location of Aziris, the Earliest Greek Settle- Ment on the Libyan Mainland BABESCH 90 (2015), 1-11. doi: 10.2143/BAB.90.0.3089910 On the location of Aziris, the earliest Greek settle- ment on the Libyan mainland Edwin de Vries Abstract Herodotus records that prior to the foundation of Cyrene, Greek settlers first claimed the island Plateia, and later settled at Aziris on the Libyan mainland. The exact locations of these sites are uncertain. In this paper the available archaeological, geological, and literary evidence is reappraised and used to contextualize Herodotus’ narrative. Through this contextualization the most likely location of Aziris becomes apparent, as well as the pivotal role of this site in the development of Greek settlement in Libya.* INTRODUCTION settlement is not successful. After struggling for two years the settlers once again turn to the Traditional scholarship has it that Greek settlers Pythia for guidance. By now Apollo is becoming from Thera founded the settlement of Cyrene in vexed and urges them to settle on the Libyan main- Libya in 631 BC. The settlement was to become land.4 The settlers then move into a territory on the most prominent in the region, so that the the mainland, called Aziris, a location that is entire region became known as the ‘Cyrenaian enclosed by verdant vales and has a river run- territory’, or Cyrenaica. Cyrene is sometimes con- ning alongside it. Here they dwell for six years, sidered to be the metropolis of many other Greek until in the seventh year a delegation of Libyans settlements in Cyrenaica. Principal among these comes and urges them to move to a better place. are Taucheira, Apollonia, Euhesperides, and Barce. The Libyans explain that they know of a place Together with Cyrene these cities are sometimes where there is a ‘hole in the sky’, which would known as the Pentapolis, which is an alternative therefore be particularly well suited for Greeks. name for the region in the late Roman period.1 With the Libyans as their guides, the settlers find The foundation of Cyrene is recorded by the Cyre, a spring sacred to Apollo, and found historian Herodotus in the 5th century BC. The Cyrene.5 narrative is largely mythological in nature and In Herodotus’ narrative the foundation of Cyrene seems, among other things, to retroactively is preceded by the foundation of settlements on the explain 5th century BC realities.2 For instance, the island Plateia and at Aziris. The two preceding leader of the Theran settlers is a certain Battos, settlements appear to fulfill an intermediary role. who is also the dynastic founder of the Battiad At Plateia the settlers fail to fulfill the command kings of Cyrene.3 The myth also explains how of Apollo to settle in Libya, while at Aziris they Greek settlers, who generally settled in coastal finally comply. It is worth noting that the drought areas, ended up settling some 10 km inland. at Thera, which was brought about by disobedi- The story begins with a visit of the king of ence to the will of Apollo, lasts into a seventh Thera, a certain Grinnos, to the oracle at Delphi, year, matching the number of years the settlers where the king is unexpectedly charged to found dwell in Aziris. It appears that Aziris serves as a a settlement in Libya. Grinnos decides to disregard place of atonement for the settlers before being the will of Apollo, explaining that he is too old allowed to reap the final reward: Cyrene.6 Despite and does not know where Libya is located. After- the important role of Plateia, and especially wards, the command is forgotten, and Thera suf- Aziris within Herodotus’ narrative, the two sites fers a severe drought. In the seventh year of the have received relatively little historical and drought the Therans turn to the oracle at Delphi archaeological interest. The location of either site for council. The Pythia explains that the Therans is uncertain.7 have an obligation to found a settlement in Libya. In this paper we will consider the available The Therans first find a guide on Crete, who evidence on the location of Aziris, and use this to shows the way to an island offshore from Libya, put Herodotus’ mythological narrative in a wider called Plateia. They settle on the island, but the context. The evidence will comprise geological and 1 998228_Babesch_90(2015).indd8228_Babesch_90(2015).indd 1 331/08/151/08/15 113:183:18 archaeological evidence, and ancient texts. Given that surround it, but also because it has a coast- that archaeological and geological investigations line that is generally difficult to approach from in the region are limited, the textual evidence will the sea. Since much of northeastern Libya is part outweigh the other evidence in both quantity and of the Barce plateau, most of its shores consist of quality. We will find that Herodotus’ narrative steep cliffs.10 contains much more information than is evident Natural harbors are rare in Cyrenaica, since at a first glance, but that much of this information these generally require coastal flatlands and a is presented within an allegorical framework. beach. Outside Cyrenaica, this difficulty is probably More importantly, this contextualization of Hero- compounded by the fact that places where potable dotus will underline the important role of Aziris water can be found become increasingly rare. Some in the process of Greek settlement in northeastern coastal flatlands do occur, and are formed from Libya, and our understanding of this process. We natural saltpans, or sabkhas. Generally these are will begin with an examination of the geological confined to narrow beachheads at the mouths of context. This will be followed by a discussion of wadis (natural drainage channels), though more modern archaeological investigations. Finally, we extensive flatlands can occur where multiple will examine the available textual evidence, start- wadis terminate and/or the coast does not suffer ing in the late Roman period and tracing our from maritime erosion. In addition, wadis are the steps back in time to Herodotus, where this paper most likely places to find potable water in the more started. arid regions. Wadis can function as conduits for groundwater, so that even if there is only very GEOLOGICAL CONTEXT little water, that water is likely to be closest to the surface in the beds of the wadis. This feature of Cyrenaica comprises a narrow sliver of fertile wadis sometimes makes them suitable for small- land, stretching from roughly Benghazi (ancient scale agriculture as well.11 Euhesperides) to Dernah (ancient Darnis). The Libyan coast includes only few islands. A Beyond Dernah the landscape becomes increas- set of two small islands, and a peninsula that ingly more arid, up to the Bay of Bombah, from may have been an island in antiquity, are located where the arid steppes and deserts of ancient in the Bay of Bombah. It is generally assumed Marmarica stretch out. The dramatic difference that one of these is likely to be ancient Plateia. There between Cyrenaica and the surrounding regions is, however, some confusion in modern literature can be explained geologically. Much of northeast- about the names of the islands. The name of the ern Libya is part of a raised limestone massif, peninsula is Bombah, but is sometimes referred to called the Barce plateau. The plateau is bisected as Bumbah. The larger of the islands is known as by numerous parallel vaults, and tectonic pres- Jazirat al-Ulbah, though it is often referred to as sure has raised the formations between these Bomba in modern literature. The final island, the vaults, creating a string of stepped mountains one located furthest offshore, is named Jazirat al- known as the Jebel al-Akhdar, which translates to Barda’ah, though it is alo referred to as Jazirat al- ‘the Green Mountains’. The mountains are aptly Marakab. Opposite the islands lie coastal flatlands named, since they are the key element in the where numerous wadis terminate and numerous mechanism that ensures the fertility of Cyrenaica: sabkhas have formed. Today the small town of at- water that evaporates over the Mediterranean is Tamimi is located on these flatlands.12 forced to precipitate on its northern faces, water- ing Cyrenaica. Consequently, this mechanism MODERN SCOLARSHIP deprives the surrounding territories of much water. The Jebel al-Akhdar also form the physical From a landscape perspective, the Bay of Bombah boundary between Cyrenaica and the more arid seems a textbook example of a region preferred surrounding territories (fig. 1).8 by Greek settlers. Greek settlers often sought out The relative isolation of Cyrenaica probably places that offered some degree of protection, allowed unique species of flora and fauna to such as an island or a headland, preferably with develop there. At least one unique plant from the a reliable source of potable water, and natural region is known to have existed in antiquity: sil- harbor(s) close at hand. In other words, Greek phium. The plant is believed to have been a sub- settlement overseas tends to have a strong mari- species of the genus ferula, to which medicinal time focus. This is perhaps best exemplified by qualities were attributed in antiquity.9 Cyrenaica Syracuse, where the original settlement was lim- is not only isolated because of the arid regions ited to the island Ortygia with its natural spring 2 998228_Babesch_90(2015).indd8228_Babesch_90(2015).indd 2 331/08/151/08/15 113:183:18 Fig. 1. Map image of Northeastern Libya and Crete with locations mentioned in the text (map by author). Arethousa.13 As settlements grew, they generally argument relies on his personal observations, became increasingly dependent upon the agricul- accompanied by sporadic information gathered tural potential of their hinterland, into which from local inhabitants, and a familiarity with ancient they tended to expand.
Recommended publications
  • Theon of Alexandria and Hypatia
    CREATIVE MATH. 12 (2003), 111 - 115 Theon of Alexandria and Hypatia Michael Lambrou Abstract. In this paper we present the story of the most famous ancient female math- ematician, Hypatia, and her father Theon of Alexandria. The mathematician and philosopher Hypatia flourished in Alexandria from the second part of the 4th century until her violent death incurred by a mob in 415. She was the daughter of Theon of Alexandria, a math- ematician and astronomer, who flourished in Alexandria during the second part of the fourth century. Information on Theon’s life is only brief, coming mainly from a note in the Suda (Suida’s Lexicon, written about 1000 AD) stating that he lived in Alexandria in the times of Theodosius I (who reigned AD 379-395) and taught at the Museum. He is, in fact, the Museum’s last attested member. Descriptions of two eclipses he observed in Alexandria included in his commentary to Ptolemy’s Mathematical Syntaxis (Almagest) and elsewhere have been dated as the eclipses that occurred in AD 364, which is consistent with Suda. Although originality in Theon’s works cannot be claimed, he was certainly immensely influential in the preservation, dissemination and editing of clas- sic texts of previous generations. Indeed, with the exception of Vaticanus Graecus 190 all surviving Greek manuscripts of Euclid’s Elements stem from Theon’s edition. A comparison to Vaticanus Graecus 190 reveals that Theon did not actually change the mathematical content of the Elements except in minor points, but rather re-wrote it in Koini and in a form more suitable for the students he taught (some manuscripts refer to Theon’s sinousiai).
    [Show full text]
  • Hypatia of Alexandria
    Hypathia of Alexandria Doina Ionescu Astronomical Institute of the Romanian Academy, E–mail: [email protected] Introduction - Born in 350-355/370; - Lived and learned in Alexandria, Roman Egypt; - The daughter of Theon, the last director of the Museum of Alexandria; - Trained by her father in physical education, mathematics, astronomy, philosophy, arts, literature, the principles of teaching, oratory; - Died in 415, killed by a Christian mob who blamed her for religious turmoil. The Musaeum of Alexandria - Founded in the 3rd century BCE by Ptolemy I Soter or his son Ptolemy II; - Comprised gardens, a room for shared dining, a reading room, lecture halls, meetings rooms and a library; - The Library of Alexandria: an acquisitions department and a cataloguing department; - The Mouseion (“The House of the Muses”) – an institution that brought together the best scholars of the Hellenistic world, a university; - Destruction of the Mouseion and Library of Alexandria: 1. Julius Caesar’s Fire in the Alexandrian War, 48 BC; 2. The attack of Aurelian in the 3rd century AD; 3. The decree of Theophilus in AD 391; 4. The Muslim conquest in AD 642 and thereafter. Theon (b: 335 – d. early 5th century) - Most of the references on him and on Hypathia : Suda, the 10th century Byzantine encyclopedia; - Highly educated scholar, mathematician and astronomer; - A member and possibly the last director of the Alexandrian Museion, on public payroll. - Devoted his scholarship to the study of his predecessors Euclid and Ptolemy; his recensions were designed for students; - Euclid’s Elements; - Thirteen books of Ptolemy’ Almagest ; Handy Tables : The Great Commentary, in five books, and The Little Commentary , in one; - He worked together with scholar and student associates and with his daughter, Hypathia - A treatise “On the Small Astrolabe” ; - On Signs and the examination of Birds and the Croaking of Ravens: two essays on the function of the star Syrius and the influence of the planetary spheres on the Nile; - 364 AD: predicted eclipses of the Sun and Moon in Alexandria.
    [Show full text]
  • A Vector Approach to Ptolemy's Theorem a Vector Approach To
    386 MATHEMATICSMAGAZINE In the revolutionof a graphy = f(xl) aboutthe y-axis, we let F(l X2, X3) = f (x + X2 + X) . Using sphericalcoordinates the integralbecomes I jlv/1 + (f/(p))2 p2 sin 0 dpdqds= 47rp2 + ( (p))2p dO O a a Formula(4) follows. For revolution aboutthe x-axis, the surface y2 + y2 + y2 = f2(X) can be parame- terizedusing sphericalcoordinates as x = t, Y = f(t) sin cos , Y2 = f(t) sin sin0, 3 = f(t) cos for a < t < b, 0 < 0 < r, 0 < 0 < 2r. Formula(4) follows aftera straightforward calculationof the determinantin (5). Epilogue Now thatwe have extendedthe resultsto fourdimensions, we mightcon- sider extendingthem furtherto n dimensions.In fact, in higherdimensions there are otherways to revolvegraphs about axes. For example,in four dimensionswe could considerthe doublerotation, where the graphis firstrevolved about the y-axis in three dimensionsand thenthe resultingsurface is revolvedabout the x-axis in four dimen- sions. REFERENCES 1. E. A. Abbott,Flatland, Harperand Row Publishers,NY, 1983. 2. D. Davis, TheNature and Power of Mathematics,Princeton University Press, Princeton,NJ, 1993. 3. J. H. Hubbardand B. B. Hubbard,Vector Calculus, Linear Algebra, and Differential Forms, Prentice Hall, Upper Saddle River,NJ, 1999. 4. G. J. Porter,k-volume in ln and the GeneralizedPythagorean Theorem, Amer. Math. Monthly 103 (1996), 252-256. A VectorApproach to Ptolemy'sTheorem ERWIN JUST NORMAN SCHAUMBERGER Bronx Community College of the City University of New York Bronx, NY 10453 [email protected] Ptolemy'sTheorem [1] statesthat the productof the diagonalsof a cyclic quadrilateral (a quadrilateralthat can be inscribedin a circle) is equalto the sum of the productsof its oppositesides.
    [Show full text]
  • Two Applications of the Generalized Ptolemy Theorem
    Two Applications of the Generalized Ptolemy Theorem Shay Gueron 1. INTRODUCTION. The classical theorem of Ptolemy (used for computations by Claudius Ptolemaeus of Alexandria, 2nd century AD, but probably known even be- fore him [7, pp. 123-1241) states that if A, B, C, D are, in this order, four points on the circle 0, then IABI x lCDI + lADl x lBCl = lACl x IBDl. This result in- cludes Pythagoras' Theorem when applied to a rectangle, and yields other important trigonometric identities when applied to special cyclic quadrilaterals A BCD. For ex- ample, if the diagonal AC is a diameter, lACl = 1, iDAC = a, and iBAC = P, then Ptolemy's Theorem gives sin(a + P) = sin a cos /3 + sin /3 cos a. In a more gen- eral context, Ptolemy's Theorem is the inequality lABl x lCDl + lADl x I BCI > lACl x I BDI, where equality occurs if and only if A, B, C, D lie (in this order) on a circle or on a line. This formulation of the theorem can be viewed as the "image under inversion7' of the triangle inequality [ll, p. 891. Ptolemy's Theorem can be generalized to the situation where the points A, B, C, D are replaced by four circles that touch 0. Our goal is to show how the Generalized Ptolemy Theorem can be used to prove two results in plane geometry. The first result, Theorem 1, is a generalization of a theorem that was originally pro- posed in 1938, as a MONTHLYproblem, by the French geometer Victor ThCbault [15].
    [Show full text]
  • Adobe Acrobat
    A ANCIENT GREECE Background Information 9: Astronomy General Introduction: • Astronomy is considered to be the first science • The term astronomy comes from 2 Greek words; astron – ‘star,’ and nemein – ‘to name.’ • Humans observed the stars for thousands of years before the Greeks – but many of the names of stars come directly from the Ancient Greeks because they were the first astronomers to make a systematic catalogue of the stars. Heritage: • The Babylonians believed that the sun, moon, planets and stars were placed there by the gods. They observed that the stars travelled in a certain band of sky – which they divided into 12, recognizable patterns or constellations – now known as the zodiac. They named the constellations after animals / characters they recognized. • The Egyptians used astronomy for timekeeping only. They developed a calendar based on the solar year. • The Greeks combined this knowledge adding a Greek twist to some elements (see signs of the zodiac) and extending it. Historically Significant Individuals / Developments • 6th C BC Greeks realise the earth is a sphere. Made first accurate measurements of earth’s circumference and moon’s size and distance from earth. • 6th C Thales: the earth rests on water • 6th C Anaximander: the earth doesn’t rest on anything • 540-480 BC Heraclitus: universe behaves in a periodic fashion. The sun is a foot wide and is new every day. – 1 – www.ancientgreece.co.uk | © The British Museum 2005 • 500-428 BC Anaxagoras: the mind controls the universe, comets are formed by planets colliding, eclipses are explained by shadows, and the earth is flat and solid, supported in the air.
    [Show full text]
  • The Adaptation of Babylonian Methods in Greek Numerical Astronomy
    FIgure 1. A Babylonian tablet (B.M. 37236) listing undated phases of Mars according to the System A scheme. By permission of the Trustees of the British Museum. This content downloaded from 128.122.149.96 on Thu, 04 Jul 2019 12:50:19 UTC All use subject to https://about.jstor.org/terms The Adaptation of Babylonian Methods in Greek Numerical Astronomy By Alexander Jones* THE DISTINCTION CUSTOMARILY MADE between the two chief astro- nomical traditions of antiquity is that Greek astronomy was geometrical, whereas Babylonian astronomy was arithmetical. That is to say, the Babylonian astronomers of the last five centuries B.C. devised elaborate combinations of arithmetical sequences to predict the apparent motions of the heavenly bodies, while the Greeks persistently tried to explain the same phenomena by hypothe- sizing kinematic models compounded out of circular motions. This description is substantially correct so far as it goes, but it conceals a great difference on the Greek side between the methods of, say, Eudoxus in the fourth century B.C. and those of Ptolemy in the second century of our era. Both tried to account for the observed behavior of the stars, sun, moon, and planets by means of combinations of circular motions. But Eudoxus seems to have studied the properties of his models purely through the resources of geometry. The only numerical parameters associated with his concentric spheres in our ancient sources are crude periods of synodic and longitudinal revolution, that is to say, data imposed on the models rather than deduced from them.1 By contrast, Ptolemy's approach in the Alma- 2 gest is thoroughly numerical.
    [Show full text]
  • Pythagoras Theorem Is an Alternate Form of Ptolemy's Theorem
    1 Pythagoras theorem is an alternate form of Ptolemy’s theorem Radhakrishnamurty Padyal A-102, Cedar, Brigade Orchards, Devanahalli, Bengaluru – 562110, India. Email: padyala1941@yahoo. Com Abstract Generally, the proofs given to demonstrate Ptolemy’s theorem prove Pythagoras theorem as a special case of Ptolemy’s theorem when certain special conditions are imposed. We prove in this article, that Pythagoras theorem follows from Ptolemy’s theorem in all cases. Therefore, we may say that Pythagoras rediscovered Ptolemy’s theorem. Key words Ptolemy’s theorem, geometry, Pythagoras theorem, cyclic quadrilateral, mean proportional Ptolemy’s theorem is a well-known theorem in geometry. Many different methods of proof are available in literature1-4. In a recent article1 we gave a geometrical proof of Ptolemy’s theorem. Therein we showed that the products of pairs of opposite sides of a cyclic quadrilateral can be geometrically represented by rectangles. Similarly the product of the diagonals of the same quadrilateral can be represented by another rectangle. Then we showed that the sum of the areas of the rectangles obtained from the products of sides is equal to the area of the rectangle obtained from the product of the diagonals. In this article we show the areas products of pairs of opposite sides as well as the product of the diagonals of a cyclic quadrilateral can be geometrically represented by circles. Then we show that the sum of the areas of the circles obtained from the products of sides is equal to the area of the circle obtained from the product of the diagonals. To obtain the radii of these circles we take the mean proportional of the pairs of opposite sides of the cyclic quadrilateral and the mean proportional of the pair of its diagonals.
    [Show full text]
  • Archimedes (~250BCE) (~250BCE) Computed the Ideas of Calculus Perimeter of a Regular BD : CD = BA : AC
    Archimedes Created a number system to deal (~250BCE) with arbitrary large numbers Archimedes wrote an essay on the number of grains of sand that would fill a sphere whose diameter was equal to the distance from earth to the fixes stars. Since he had to work with numbers larger than in myriad MAT 336 Hellenic myriads, he imagined a “doubled class” of numbers of eight numerals (instead of the four the the Greek ciphered Mathematics system) After Euclid 1. 1 to 99,999,999 2. 100,000,000 to 1016-1 3. etc Archimedes Approximation of π Archimedes (~250BCE) (~250BCE) Computed the Ideas of calculus perimeter of a regular BD : CD = BA : AC. Derived and proved Infinitesimals polygon of 96 formulae for Method of exhaustion sides!!!!!! Area of the circle Dealt with infinity!!! Surface area and volume 3 10/71< π < 3 1/7 of the sphere Approximation of π Area of an ellipse. Created a number system to deal with Throughout this proof, Archimedes uses Area under a parabola arbitrary large several rational approximations to numbers various square roots. Nowhere does he Applied mathematics to say how he got those approximations. physics Explanation of principle of ? Images and text from: the lever https://itech.fgcu.edu/faculty/clindsey/mhf4404/archimedes/archimedes.html Innovative machines Archimedes (~250BCE) Archimedes Archimedes (~250BCE) (~250BCE) http://abel.math.harvard.edu/~knill//3dprinter/documents/paper.pdf Proposition 33: The surface of any sphere is equal to four times the circle in it. Proposition 34: Any sphere is equal to four times the cone
    [Show full text]
  • Ancient Greek Mathematics
    Ancient Greek Mathematics The Greek Empire • Ancient Greek civilization generally accepted to date from around 800 BC. Primarily centered on the Aegean Sea (between modern-day Greece and Turkey) containing hundreds of islands and loosely affiliated city-states. • Many wars between city-states other empires (e.g. Persians). • By 500 BC covered much of modern Greece, the Aegean and southern Italy. As a trading/sea- faring culture, built/captured city-states (colonies/trading-outposts)all around the north and east coast of the Mediterranean from Spain round the Black Sea and Anatolia (modern Turkey) to Egypt. • Alexander the Great (356–323 BC) extended empire around the eastern Mediterranean inland capturing mainland Egypt and then east to western India and Babylon where he died. • Eventually becomes part of the Roman Empire c.146 BC though Romans left Greek largely essentially intact apart from crushing several rebellions. • Greek civilization flourished even as the Rome collapsed, continuing as part of the Byzantine Empire. Map of Greek Empire c.500 BC from timemaps.com Ancient Greece is important for far more than just mathematics and one course cannot begin to do justice to it. Much of modern western thought and culture including philosophy, art logic and science has roots in Ancient Greece. While undeniably important, western culture has often over- emphasized the role of the Greeks and downplayed the contribution of other cultures to our inherited knowledge. Mathematics and Philosophical Development • Inquiry into natural phenomena encouraged through the personification of nature (sky = man, earth = woman) which pervaded early religion. • By 600 BC ‘philosophers’ were attempting to describe such phenomena in terms of natural causes rather than being at the whim of the gods.
    [Show full text]
  • Euclid of Alexandria the Writer of the Elements
    Euclid of Alexandria The Writer of the Elements OLLI Summer 2014 1 BIO • Little is known of Euclid's life. According to Proclus (410-485 A.D.) in his Commentary on the First Book of Euclid's Elements , he came after the first pupils of Plato and lived during the reign of Ptolemy I (306-283 B.C.). Pappus of Alexandria (fl. c. 320 A.D.) in his Collection states that Apollonius of Perga (262-190 B.C.) studied for a long while in that city under the pupils of Euclid. Thus it is generally accepted that Euclid flourished at Alexandria in around 300 B.C. and established a mathematical school there. 2 Ptolemy I (323 – 285 BC) • Upon the death of Alexander the Great in 323 BC, the throne of Egypt fell to Ptolemy one of Alexander’s trusted commanders • It is said that Ptolemy once asked Euclid if there was in geometry any shorter way than that of the Elements. Euclid replied that there was no royal road to geometry. • From the time of Archimedes onwards, the Greeks referred to Euclid as the writer of the Elements instead of using his name. 3 Euclid’s Elements (300 BC) The greatest mathematical textbook of all time • Book I. The fundamentals of geometry: theories of triangles, parallels, and area. • Book II. Geometric algebra. • Book III. Theory of circles. • Book IV. Constructions for inscribed and circumscribed figures. • Book V. Theory of abstract proportions. • Book VI. Similar figures and proportions in geometry. • Book VII. Fundamentals of number theory. • Book VIII. Continued proportions in number theory.
    [Show full text]
  • Greeks in Ptolemaic Egypt: Inter-Cultural Influences in Naukratis
    GREEKS IN PTOLEMAIC EGYPT: INTER-CULTURAL INFLUENCES IN NAUKRATIS by Simon W. Payne Submitted to the Faculty of The Archaeological Studies Program Department of Sociology and Archaeology in partial fulfillment of the requirements for the degree of Bachelor of Arts University of Wisconsin-La Crosse 2012 Copyright © 2012 by Simon W. Payne All Rights Reserved ii GREEKS IN PTOLEMAIC EGYPT: INTER-CULTURAL INFLUENCES IN NAUKRATIS Simon W. Payne, B.A. University of Wisconsin-La Crosse, 2012 This study analyzes the interactions between Greek colonists and native Egyptians at the site of Naukratis through the material remains found there. Initial excavations by Petrie and Gardener are discussed as well as recent ones by Coulson and Leonard. This study aims to understand any change in material use of household goods by the Egyptians and Greeks living in the city by comparing them to a paradigm of typical Egyptian goods at the time. iii AKNOWLEDGEMENTS Thanks are due to the members of the University of Wisconsin-La Crosse faculty and student community who inspired me to become an archaeologist. I would like to thank Dr. David Anderson for his direction, knowledge, and his words of encouragement, not to, “fear the data.” Dr. Tim McAndrews deserves credit for teaching the first of many anthropology/archaeology courses I took. I thank Dr. Mark Chavalas for his assistance as a reader and help with possible Greek sites in the Delta to investigate, leading me to my chosen subject of Naukratis. iv INTRODUCTION Cultures in contact usually affect each other, even in miniscule ways. This becomes more overtly true when one culture conquers and colonizes another.
    [Show full text]
  • The Jews in Hellenistic and Roman Egypt
    Texte und Studien zum Antiken Judentum herausgegeben von Martin Hengel und Peter Schäfer 7 The Jews in Hellenistic and Roman Egypt The Struggle for Equal Rights by Aryeh Kasher J. C. B. Möhr (Paul Siebeck) Tübingen Revised and translated from the Hebrew original: rponm fl'taDij'jnn DnSQ HliT DDTlinsT 'jp Dpanaa (= Publications of the Diaspora Research Institute and the Haim Rosenberg School of Jewish Studies, edited by Shlomo Simonsohn, Book 23). Tel Aviv University 1978. CIP-Kurztitelaufnahme der Deutschen Bibliothek Kasher, Aryeh: The Jews in Hellenistic and Roman Egypt: the struggle for equal rights / Aryeh Kasher. - Tübingen: Mohr, 1985. (Texte und Studien zum antiken Judentum; 7) ISBN 3-16-144829-4 NE: GT First Hebrew edition 1978 Revised English edition 1985 © J. C. B. Möhr (Paul Siebeck) Tübingen 1985. Alle Rechte vorbehalten. / All rights reserved. Printed in Germany. Säurefreies Papier von Scheufeien, Lenningen. Typeset: Sam Boyd Enterprise, Singapore. Offsetdruck: Guide-Druck GmbH, Tübingen. Einband: Heinr. Koch, Tübingen. In memory of my parents Maniya and Joseph Kasher Preface The Jewish Diaspora has been part and parcel of Jewish history since its earliest days. The desire of the Jews to maintain their na- tional and religious identity, when scattered among the nations, finds its actual expression in self organization, which has served to a ram- part against external influence. The dispersion of the people in modern times has become one of its unique characteristics. Things were different in classical period, and especially in the Hellenistic period, following the conquests of Alexander the Great, when disper- sion and segregational organization were by no means an exceptional phenomenon, as revealed by a close examination of the history of other nations.
    [Show full text]