Applications

Total Page:16

File Type:pdf, Size:1020Kb

Applications TN-1171 APPLICATIONS Characterization of Capsaicinoids and Related Pungent Agents in Chili Peppers by LC/MS/MS Seyed Sadjadi, J. Preston, Zeshan Aqeel, and Brian Rivera Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA Introduction Experimental Conditions Capsaicin and related compounds are responsible for pungency, the burning sensation associated with chili peppers and other Extraction Procedures spicy foods. In high concentrations, all capsaicinoids produce 250 or 500 g of chili peppers (depending on pepper size) were burning sensations throughout the mouth, throat and mucous blended for an extended period of time (approximately 5 mins membrane; in low concentrations they affect only specific areas of or until all seeds were crushed) with Ethanol to contain appro- the mouth and throat. As a result, low level pungent compounds ximately 60-70% of alcohol. An aliquot of the puree was remo- can enhance the food flavor1-4. Additionally, capsaicin may have ved and filtered using a Phenex™ PTFE Membrane with pore size clinical applications, including antioxidant properties5 and is used of 0.45 µm, 25 mm syringe filter, Part No. AF0-1102-12 prior as the main ingredient in several over-the-counter topical oint- to analysis with LC/MS/MS. The rest of the puree was retai- ments for the treatment of pain and inflammation. ned to prepare purified capsaicinoids by Prep Chromatography. Because the amount of capsaicin produced by chili peppers can LC/MS/MS Conditions vary due to environmental and weather conditions6, it is critically important for the food industry to effectively quantitate capsa- Column: Kinetex® 5 µm C18 Dimensions: 100 x 2.1 mm icinoids. Traditionally, subjective methods were used in this pro- Part No.: 00D-4601-AN cess. In 1912, Wilber Scoville established a scale to demonstrate Mobile Phase: A: 0.1 % Formic acid in Water the pungency of chili peppers based on taste-test1. B: 0.1 % Formic acid in methanol Flow Rate: 0.6 mL/min To more accurately quantitate pungency, concentration values of Gradient: Time (min) B (%) three major capsaicinoids (capsaicin, dihydrocapsaicin, and nor- 0.0 30 7.0 90 dihydrocapsaicin) are determined by HPLC. The concentration 9.0 90 (in ppm) is then multiplied by a pungency factor for each species 9.1 30 and added together to arrive at a corresponding Scoville Heat Unit 12.0 30 value.2 Injection Volume:: 2 µL Temperature: Ambient In this technical note, capsaicinoids were extracted from chili pep- Detection: API 4000™ triple quadrupole LC/MS/MS pers and analyzed by a triple quadrupole LC/MS/MS system to Electrospray ionization (ESI) analyzed in positive mode System: Agilent® 1200SL LC system (Agilent Technologies, identify each capsaicinoid. Ion intensities for different chili pepper Palo Alto, CA, USA), equipped with a binary pump, extracts were then reviewed and evaluated. Autosampler Reconstitute: Reconstitute in 500 µL of mobile phase Materials and Methods Reagents and Chemicals Precursor Method • Capsaicin, dihydrocapsaicin, and nonivaimide were Precursor mass: 136.9 amu ® purchased from ChromaDex , Irvine, CA. Q1 Mass Range: 150 to 350 amu • Methanol, Ethanol and Acetonitrile were purchased from Scan Time: 2 sec Sigma-Aldrich, St. Louis, MO. • Thai, Habanero, Serrano and Jalapeno peppers were Scan mode: Profile @ 0.25 amu step size purchased from various local grocery stores Collision Energy: 25 V Jalapeno Habanero Results and Discussion Capsaicins Fragmentation Profile Capsaicin and dihydrocapsaicin were analyzed by infusion to Thai Chili determine their ionization properties and fragmentation patterns. Serrano The product ion scan revealed similarities in the fragmentati- on pattern of the two compounds. More specifically, the bond breakage between the amine group and the benzene ring appears to be predominant and common. The most abundant fragment (136.9 m/z) is displayed (Figure 1) and was used in the precursor scan analysis. For additional technical notes, visit www.phenomenex.com Page 1 of 4 TN-1171 APPLICATIONS Figure 1. Fragmentation Comparison of Capsaicin and Dihydrocapsaicin Figure 3. Comparison of Chili Pepper Extracts Using a Precursor Ion at CE of 15 V Scan, Mass Assignments: 181.9 1. Octanoic Acid vanillylamide isomers (280.2 m/z) HO 136.9 100% CH3 2. Nordihydrocapsaicin (294.2 m/z) H C NH 80% 3 Capsaicin 3. Capsaicin (306.2 m/z) O CH3 60% 136.9 O 4. Dihydrocapsaisin (308.2 m/z) 40% 5. Homocapsaicin (320.2 m/z) Rel. Int (%) 306.1 20% 181.9 6. Homodihydrocapsaicin (322.2 m/z)z 170.0 138.3 151.0 153.1 0% 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 183.9 136.9 100% HO 3 CH3 100% 4.5 80% 2 Thai H3C NH Dihydrocapsaicin O CH3 50% 60% 6 136.9 O 1 40% 0% Rel. Int (%) 308.1 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 min 20% 183.9 155.0 172.0 309.2 App ID 21863 0% 3 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 100% 4.5 mz/, Da Habanero 50% 2 1 6 0% Analysis of Chili Pepper Extract Comparison 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 min Extracts from Habanero, Serrano, Jalapeno and Thai chili peppers 3 100% 4.5 were analyzed by a precursor scan method. In this scan function, Serrano the first quadrupole scans a predetermined mass range, in this 50% 2 6 0% 1 case, 50-350 m/z. The selected ions enter the collision cell and 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 min undergo fragmentation at a specific energy or rolling energy, in 3 this case, 20 V. The resulting ion fragments enter the last qua- 100% drupole stage and scanned for a specific ion mass, in this case 4.5 Jalapeno 50% 2 136.90 m/z. The detected ions will be reported as corresponding 1 6 App ID 21859 0% to the mass of the ions that were selected by the first quadrupole. 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 min A secondary dynamic product ion scan was collected as further confirmation of capsaicinoid compounds Figure( 2). All common- ly referenced capsaicinoids are listed in Table 1. Surprisingly, Table 1. Identified Capsaicinoids in Chili Peppers based on ion intensities, in our sample set, Thai chili pepper had the highest overall concentration of capsaicinoids. In addition, Monoisotopic Prec. Mass Compound MW, Da (M+H+)+, m/z Structure nordihydrocapsaicon ratio to capsaicin was highest in the Thai chili pepper sample (Figure 3.) HO CH3 Capsaicin 305.2 306.2 H3C NH O CH3 Figure 2. Precursor Scan of Nordihydrocapsaicin in Serrano Chili Pepper O HO and MS/MS Spectrum of Nordihydrocapsaicin at CE = 20 V H3C NH CH Homocapsaicin 319.2 320.2 O 3 O H3C 5.74 5.3e7 6.22 HO CH 4.0e7 3 H3C NH O CH 2.0e7 Dihydrocapsaicin 307.2 308.2 3 6.69 O 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 min HO 27 56 85 114 142 168 196 225 254 284 313 342 H3C NH CH Homodihydrocapsaicin 321.2 322.2 O 3 294.3 9.5e4 O H3C HO 5.0e4 H3C NH CH3 0.0 Nordihydrocapsaicin 293.2 294.2 O 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 O CH3 HO 137.0 HO 2.3e5 Nonivamide 293.2 294.2 H3C NH 2.0e5 O CH3 H3C NH CH 3 O 1.5e5 O HO 1.0e5 CH3 O H3C H3C NH O 5.0e4 CH3 170.0 141.0 158.0 247.5 262.0 276.8 294.0 App ID 21864 O 0.0 The presence of multiple peaks for some of these compounds, 100 120 140 160 180 200 220 240 260 280 300 320 340 mz/, Da most notably nordihydrocapsaicin, suggest the presence of iso- mers, possibly on the fatty acid tail side. The presence of branched (e.g. isopropyl tail) and straight chain acid could possibly be one isomeric form (Figure 4). Further confirmation will require addi- tional techniques such as H-NMR data. Such an endeavor will be pursued in future work. Page 2 of 4 TN-1171 Figure 4. Isomeric Forms of Nordihydrocapsaicin and Octanoic Acid References Vanillylamide21861 Isomers in Thai Chili Pepper Extract 1. Capsaicin. Wikipedia. 28 Mar. 2014. Wikimedia Foundation. 29 Mar. 2014 6.0e7 http://en.wikipedia.org/wiki/Capsaicin. 5.0e7 4.0e7 2. Krajewsska, Anna M., and John J. Powers. “Sensory Properties of Naturally 3.0e7 Occurring Capsaicinoids.” Journal of Food Science 53 (1988): 902-05. Intensity, cps Intensity, 2.0e7 3. Reilly, Christopher A., Dennis J. Crouch, Garold S. Yost, and Alim A. Fatah. 1.0e7 “Determination of capsaicin, dihydrocapsaicin, and nonivamide in self- 0.0 defense weapons by liquid chromatography–mass spectrometry and liquid 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 min chromatography–tandem mass spectrometry.” Journal of Chromatography A 5.8e6 912 (2001): 259-67. 5.0e6 Nordihydrocapsaicin 4.0e6 4. Choi, SH, Suh, BS, Kozukue, E, Kozukue, N, Levin, CE, Friedman, M, Analysis of contents of pungent compounds in fresh korean peppers and in 3.0e6 pepper-containing foods, Journal of Agricultural and Food Chemistry, 2006, Intensity, cps Intensity, 2.0e6 54, pp 9024-9031 1.0e6 Octanoic acid App ID 21861 vanillylamide isomers Nonivamide 0.0 5.
Recommended publications
  • Capsicum Oleoresin and Homocapsaicin
    Printed on: Wed Jan 06 2021, 02:44:36 AM Official Status: Currently Official on 06-Jan-2021 DocId: 1_GUID-1560FD9B-BE0F-495E-9994-C5718733DB4C_2_en-US (EST) Printed by: Jinjiang Yang Official Date: Official as of 01-May-2019 Document Type: USP @2021 USPC 1 nordihydrocapsaicin, nonivamide, decanylvanillinamide, Capsicum Oleoresin and homocapsaicin. DEFINITION ASSAY Capsicum Oleoresin is an alcoholic extract of the dried ripe · CONTENT OF TOTAL CAPSAICINOIDS fruits of Capsicum. It contains NLT 6.5% of total Mobile phase: A mixture of acetonitrile and diluted capsaicinoids, calculated as the sum of capsaicin, phosphoric acid (1 in 1000) (2:3) dihydrocapsaicin, nordihydrocapsaicin, nonivamide, Standard solution A: 0.2 mg/mL of USP Capsaicin RS in decanylvanillinamide, and homocapsaicin, all calculated on methanol the anhydrous basis. The nonivamide content is NMT 5% of Standard solution B: 0.1 mg/mL of USP the total capsaicinoids, calculated on the anhydrous basis. Dihydrocapsaicin RS in methanol [CAUTIONÐCapsicum Oleoresin is a powerful irritant, and Sample solution: 5 mg/mL of Capsicum Oleoresin in even in minute quantities produces an intense burning methanol. Pass a portion of this solution through a filter of sensation when it comes in contact with the eyes and 0.2-µm pore size, and use the filtrate as the Sample solution. tender parts of the skin. Care should be taken to protect Chromatographic system the eyes and to prevent contact of the skin with (See Chromatography á621ñ, System Suitability.) Capsicum Oleoresin.] Mode: LC IDENTIFICATION
    [Show full text]
  • Product Nutritional Analysis
    Product Nutritional Analysis CA Nutri Chemical Analysis Analysis Unit Price (ex VAT) SANAS Accredited? Lead Time Energy by Calculation kJ or kcal No charge if part of Full Nutri Carbohydrate by Calculation g/100g No charge if part of Full Nutri Moisture g/100g R 193 2 Ash g/100g R 193 3 Protein g/100g R 355 3 Glycaemic Carbohydrates g/100g R 1 649 5 Total Sugars g/100g R 1 088 5 (Glucose, Fructose, Sucrose, Lactose and Maltose) Total Fat by AOAC 996.06 g/100g R 950 7 Full Nutritional Fatty acid Composition by AOAC 996.06 g/100g R 1 087 Yes Label of which Saturated g/100g of which Monounsaturated g/100g of which Polyunsaturated g/100g Included as part of Fatty Acid 7 of which Trans Fatty Acids g/100g Composition Omega 3 mg/100g Omega 6 mg/100g Cholesterol mg/100g R 842 7 Total Dietary Fibre by AOAC 985.29 g/100g R 1 636 8 to 12 Sodium mg/100g R 529 5 Salt calculated from Sodium results g/100g No charge if Sodium requested Yes Salt Salt by chloride titration g/100g R 662 Yes 5 Acid Insoluble Ash g/100g R 390 5 to 7 Crude Fibre g/100g R 1 374 Yes 5 to 7 Water Activity - R 527 7 Other pH - R 150 2 Density g/ml R 133 Yes 3 Caffeine mg/100g R 705 Yes 5 Total Capsaicinoids mg/kg R 665 5 (Capsaicin, dihydrocapsaicin, nordihydrocapsaicin and Scoville Heat Value) Antimony (Sb) mg/kg R 813 Arsenic (As) mg/kg R 813 Subc to SGS 10 Calcium (Ca) mg/100g R 529 Chromium (Cr) mg/kg R 813 Copper (Cu) mg/kg R 529 Yes 5 to 7 Iron (Fe) mg/kg R 529 Yes 5 Inorganic Food Testing Potassium (K) mg/100g R 529 Yes 5 Phosphorus (P) mg/kg R 813 Subc 10 Selenium (Se)
    [Show full text]
  • TRP Channel Transient Receptor Potential Channels
    TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Inhibitors, Antagonists, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: >98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat.
    [Show full text]
  • Determination of Capsaicinoid Profile of Some Peppers Sold in Nigerian Markets
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):648-654 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Determination of capsaicinoid profile of some peppers sold in Nigerian markets 1N. C. Nwokem *, 2C. O. Nwokem, 2Y. O. Usman, 1O. J. Ocholi, 2M. L. Batari and 3A. A. Osunlaja 1Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria 2National Research Institute for Chemical Technology, Zaria, Nigeria 3Umar Suleiman College of Education, Gashua, Nigeria ____________________________________________________________________________________________ ABSTRACT The capsaicinoid profile of six different peppers sold in Nigerian markets was determined by Gas Chromatography- Mass Spectrometry. The capsaicinoids were extracted from the peppers using methanol as extractant and analyzed without need for derivatization. A total of eight (8) capsaicinoids were identified and quantitated: Capsaicin, Dihydrocapsaicin Dihydrocapsaicin 1, Dihydrocapsaicin 2, Norcapsaicin, Nordihydrocapsaicin 1, Nordihydrocapsaicin 2 and Nornordihydrocapsaicin though, not fully present in all the varieties. Dihydrocapsaicin 1, Dihydrocapsaicin 2, Nordihydrocapsaicin 1, Nordihydrocapsaicin 2 and Nornordihydrocapsaicin are isomers. Seven were identified in the Cameroun pepper variety, six in “Zaria atarugu” and Miango, and five in each of the remaining varieties. In all the peppers analyzed, capsaicin had the highest relative concentration, which ranged from 27.3% in the Cameroun variety to 49.38% in the “Zaria atarugu” variety. The sum of the relative concentrations of capsaicin and dihydrocapsaicin ranged from 47.03% in the “Miango” variety to 87.3% in the “Zaria atarugu” variety. Keywords: Capsaicinoids, Gas Chromatography-Mass Spectrometry, Methanol, Pepper ____________________________________________________________________________________________ INTRODUCTION Peppers are widely used in many parts of the world as a result of their valued sensory attributes; colour, purgency and aroma.
    [Show full text]
  • Utilizing LC/UV and LC/MS for the Characterization, Isolation, And
    Utilizing LC/UV and LC/MS for the Characterization, Isolation, and Quantitation of Capsaicinoids in Chili Peppers and Hot Sauces J Preston, Seyed Sadjadi, Zeshan Aqeel, and Sky Countryman Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO19040114_W_2 PO14400613_W_2 Abstract Hot and spicy food has dramatically increased in popu- al different chili peppers and commercially available hot larity over the past 10-20 years. Capsaicin is the most sauces. Prep HPLC is then used to isolate individual cap- abundant compound found in chili peppers giving them saicinoids from the pepper extracts. Finally, a triple qua- their fiery flavor. Capsaicin is formed when vanillylamine druple MS system is employed to identify and quantitate is coupled to a 10 carbon fatty acid through an amide link- the observed capsaicinoids. age. However, there are other related compounds often called capsaicinoids. These compounds have the same Capsaicin was found to be the most prevalent capsaicinoid vanillylamine group but differ by the associated fatty acid species in all of the studied matrices. Significant amounts chain and are responsible for the perception of different of Nordihydrocapsaicin were found in a cayenne hot sauce heat profiles for different chili peppers. Some peppers are and in Thai chili pepper extract. Dihydrocapsaicin and Ho- described as having a high initial flash of heat while other modihydrocapsaicin were also identified in many of the in- peppers are described by a long and late burning profile. vestigated chili extracts and hot sauces but at lower levels. The typical concentration of these compounds were found The work presented here, initially uses HPLC with UV to be in the µg/g range but varied widely among the differ- detection to profile capsaicinoids extracted from sever- ent chili peppers and hot sauces.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Capsicum Annum L.) in Southern USA
    ACTA AGRÍCOLA Y PECUARIA 6: E0061006 SCIENTIFIC ARTICLE https://doi.org/10.30973/aap/2020.6.0061006 (April 27, 2020) Effect of water stress on functional and marketable properties of roasted Big Jim chili pepper (Capsicum annum L.) in Southern USA Efecto del estrés hídrico en las propiedades funcionales y comerciales del chile rostizado Big Jim (Capsicum annum L.) en el sur de Estados Unidos Nancy Flores¹, Efrén Delgado¹, Stephanie Walker¹, Juan Rojas-Contreras², Gerardo Pámanes-Carrasco³* 1College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, 1780 E University Ave, 88003, Las Cruces, New Mexico, United States of America. 2Instituto Tecnológico de Durango, Tecnológico Nacional de México, Boulevard Felipe Pescador #1830 Oriente, 34080, Durango, Durango, México. 3CONACYT-UJED, Instituto de Silvivultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Boulevard Guadiana #501, Ciudad Universitaria, 34120, Durango, Durango, México. *Corresponding author: [email protected] Reception date: abstract January 19, 2020 This study aimed to evaluate the effect of water stress on spiciness, fatty acids, and aroma compound profile of roasted Big Jim chili. A flooded furrow irrigation system for chili Acceptance date: peppers production was utilized with 4 irrigation treatments: every 7, 9, 11, and 13 days March 18, 2020 for W1, W2, W3, and W4, respectively, in a completely randomized block design. Capsai- Online publication date: cinoid content was increased (~160%) by increasing water stress (P<0.05). However, the April 27, 2020 roasting process reduced the capsaicinoids content (P<0.05). Contents of linoleic, palmitic, and arachidonic acids were not affected. Water stress reduced hexanal and linalool content by approximately 64 and 72%, respectively (P<0.05), whereas 2-isobutyl-3-methoxypyrazi- ne content increased (P<0.05).
    [Show full text]
  • Biomolecules
    biomolecules Article Inhibitory Activity of Flavonoids, Chrysoeriol and Luteolin-7-O-Glucopyranoside, on Soluble Epoxide Hydrolase from Capsicum chinense Jang Hoon Kim and Chang Hyun Jin * Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do 56212, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-63-570-3162; Fax: +82-63-570-3159 Received: 5 December 2019; Accepted: 22 January 2020; Published: 24 January 2020 Abstract: Three flavonoids derived from the leaves of Capsicum chinense Jacq. were identified as chrysoeriol (1), luteolin-7-O-glucopyranoside (2), and isorhamnetin-7-O-glucopyranoside (3). They had IC values of 11.6 2.9, 14.4 1.5, and 42.7 3.5 µg/mL against soluble epoxide hydrolase 50 ± ± ± (sEH), respectively. The three inhibitors (1–3) were found to non-competitively bind into the allosteric site of the enzyme with K values of 10.5 3.2, 11.9 2.8 and 38.0 4.1 µg/mL, respectively. The i ± ± ± potential inhibitors 1 and 2 were located at the left edge ofa U-tube shape that contained the enzyme active site. Additionally, we observed changes in several factors involved in the binding of these complexes under 300 K and 1 bar. Finally, it was confirmed that each inhibitor, 1 and 2, could be complexed with sEH by the “induced fit” and “lock-and-key” models. Keywords: flavonoids; soluble epoxide hydrolase; non-competitive mode; induced fit; lock-and-key 1. Introduction Arachidonic acid is converted to epoxyeicosatrienoic acids (EETs) by cytochrome P450 epoxygenase [1]. EETs exist as four regioisomeric metabolites; 5,6-, 8,9-, 11,12- and 14,15-EETs [1].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0053319 A1 Perry (43) Pub
    US 2009.0053319A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0053319 A1 Perry (43) Pub. Date: Feb. 26, 2009 (54) SORE THROAT RELIEF COMPOSITION AND Publication Classification METHOD OF PRODUCING SAME (51) Int. Cl. A6II 3/165. (2006.01) (76) Inventor: Wye Jeffrey Perry, Albany, NY A6IPA6II 35/64II/00 (2006.01) (52) U.S. Cl. .......................... 424/537; 514/625; 514/627 Correspondence Address: (57)57 ABSTRACT AMIN HALLIHAN, LLC The present invention provides a sore throat relief composi 444 NORTHORLEANS STREET, SUITE 400 tion and a method of producing the composition comprising CHICAGO, IL 60654 (US) oleoresin capsicum containing capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and homocap saicin as active ingredients, combined with vegetable glyc (21) Appl. No.: 11/842,458 erin, purified water, spearmint oil, wild cherry bark, clove honey, and ascorbic acid for fully relieving and preventing chronic and occasional Sore throat symptoms, including pain, (22) Filed: Aug. 21, 2007 dryness, and inflammation. US 2009/00533 19 A1 Feb. 26, 2009 SORE THROAT RELEF COMPOSITION AND drocapsaicin is an irritant and has a similar pungency to METHOD OF PRODUCING SAME capsaicin. Nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicinare also irritants and have a pungency of about FIELD OF THE INVENTION 8,600,000-9,100,000 Scoville units. 0001. The present invention relates to a sore throat relief 0003. Each capsaicinoid and its corresponding chemical composition containing natural capsaicinoids for relieving structure is shown below. Capsaicin H O Dihydrocapsaicin O Nordihydrocapsaicin O Homodihydrocapsaicin O N O Homocapsaicin H O Sore throat pain, dryness, and inflammation along with pro 0004 Capsaicinoids are irritants and produce a sensation viding antimicrobial properties.
    [Show full text]
  • Fast Method for Capsaicinoids Analysis from Capsicum Chinense Fruits
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Research International 64 (2014) 718–725 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Fast method for capsaicinoids analysis from Capsicum chinense fruits Marla Sganzerla a, Janclei Pereira Coutinho a, Arlete Marchi Tavares de Melo b, Helena Teixeira Godoy a,⁎ a Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil b Horticultural Center, Agronomic Institute of Campinas (IAC), P.O. Box 28, 13012-970 Campinas, SP, Brazil article info abstract Article history: Chili peppers are widely utilized in the world as savory food additives due the pungency induced by the Received 28 January 2014 capsaicinoids. Also, these compounds have functional properties as antimutagenic, antitumoral, antioxidant Accepted 14 August 2014 and analgesic. These characteristics increase the interest in this compound class, hence the capsaicinoid analysis Available online 21 August 2014 must be reproducible and accurate. This study aimed to develop and validate a fast, efficient and reproducible method to analyze capsaicinoids in Brazilian Capsicum chinense fruits. The extracts were obtained after an opti- Keywords: Chili pepper mization step that indicated the condition 100% of methanol and 10 min on ultrasound assisted extraction. The Method development analyses were carried out in an ultra high performance liquid chromatographic system with detection by Ultrasound assisted extraction a photo diode array and mass spectrometer. The analytical method developed permits the separation of Ultra high performance liquid chromatography 8 capsaicinoids in 4 min of time analysis expending only 2 mL of solvent as mobile phase.
    [Show full text]
  • Things to Be Done
    DRAFT MAY 2003 ANNEX 1: CHEMICAL AGENTS 1. Introduction The large-scale use of toxic chemicals as weapons first became possible during the First World War (1914–1918) thanks to the growth of the chemical industry. More than 110 000 tonnes were disseminated over the battlefields, the greater part on the western front. Initially, the chemicals were used, not to cause casualties in the sense of putting enemy combatants out of action, but rather to harass. Though the sensory irritants used were powerful enough to disable those who were exposed to them, they served mainly to drive enemy combatants out of the trenches or other cover that protected them from conventional fire, or to disrupt enemy artillery or supplies. About 10% of the total tonnage of chemical warfare agents used during the war were chemicals of this type, namely lacrimators (tear gases), sternutators and vomiting agents. However, use of more lethal chemicals soon followed the introduction of disabling chemicals. In all, chemical agents caused some 1.3 million casualties, including 90 000 deaths. During the First World War, almost every known noxious chemical was screened for its potential as a weapon, and this process was repeated during the Second World War (1939–1945), when substantial stocks of chemical weapons were accumulated, although rarely used in military operations. Between the two world wars, a high proportion of all the new compounds that had been synthesized, or isolated from natural materials, were examined to determine their utility as lethal or disabling chemical weapons. After 1945, these systematic surveys continued, together with a search for novel agents based on advances in biochemistry, toxicology and pharmacology.
    [Show full text]
  • Comparison of Capsaicinoid Content, Scoville Heat Units and Total Sensory Value on Different Stages of Physiological Maturity in Chilli
    6 วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี ปีที 13 ฉบับที 2 เมษายน – มิถุนายน 2554 การเปรียบเทียบปริมาณแคปไซซินอยด์และค่าดัชนีความเผ็ดในพริก ตามระยะการสุกแก่ของผล Comparison of Capsaicinoid content, Scoville heat units and total sensory value on different stages of physiological maturity in chilli จารุวรรณ ธนวิรุฬห์ * และ สุดารัตน์ หอมหวล กลุ่มวิชาเภสัชเคมีและเทคโนโลยีเภสัชกรรม คณะเภสัชศาสตร ์ มหาวิทยาลัยอุบลราชธานี อ.วารินชําราบ จ.อุบลราชธานี 34190 * Email: [email protected] บทคัดยอ่ งานวิจัยนีDมีวัตถุประสงค์เพือวิเคราะห์และเปรียบเทียบปริมาณแคปไซซินอยด์ ค่าความเผ็ดรวมและค่าดัชนีความ เผ็ดตามระยะการสุกแก่ของผลพริก ได้แก่ พริกดิบ (สีเขียว) พริกสุก (สีแดง) และพริกแห้งในพริกสายพันธุ์ต่างๆ ทีนิยม ปลูกในจังหวัดอุบลราชธานี จํานวน 5 สายพันธุ์ ได้แก่ พันธุ์หัวเรือ พันธุ์ทองดํา พันธุ์ซุปเปอร์ฮอท พันธุ์พริกช่อ และพันธุ์ จินดา โดยทําการสกัดสารแคปไซซินอยด์โดยวิธี Solvent extraction และวิเคราะห์หาปริมาณด้วยเทคนิคโครมาโตกราฟฟี เหลวสมรรถนะสูง โดยใช้ N-vanillylnonamide เป็นสารมาตรฐาน คํานวณและเปรียบเทียบปริมาณสารแคปไซซินอยด์ ค่า ความเผ็ดรวม และค่าดัชนีความเผ็ดตามระยะการสุกแก่ของผลพริก โดยใช้สถิติ One Way ANOVA หรือ Kruskal-Wallis งานวิจัยนีDได้ทําการพัฒนาและตรวจสอบความถูกต้องของวิธีโครมาโตกราฟฟีเหลวสมรรถนะสูง เพือหาปริมาณสาร แคปไซซินอยด์ ทีความยาวคลืน 280 นาโนเมตร โดยใช้คอลัมน์รีเวอร์สเฟสชนิด C18 ระบบการวิเคราะห์เป็นแบบไอโซ เครติค ของ Acetonitrile : 1% Formic acid (45:55) ผลการศึกษาพบว่าพริกทุกสายพันธุ์และทุกระยะการสุกแก่ จะมีสาร แคปไซซินอยด์ชนิดแคปไซซินในปริมาณมากทีสุด ระยะการสุกแก่ของผลพริกมีผลต่อปริมาณแคปไซซินอยด์ พบว่า พริก ดิบและพริกสุกจะพบความแตกต่างของปริมาณแคปไซซินอยด์ระหว่างสายพันธุ์อย่างมีนัยสําคัญทางสถิติ
    [Show full text]