Network Operating Systems Tutor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1: Introduction What Is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments Operating System Concepts 1.1 Silberschatz, Galvin and Gagne 2002 What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware. Operating system goals: ) Execute user programs and make solving user problems easier. ) Make the computer system convenient to use. Use the computer hardware in an efficient manner. Operating System Concepts 1.2 Silberschatz, Galvin and Gagne 2002 1 Computer System Components 1. Hardware – provides basic computing resources (CPU, memory, I/O devices). 2. Operating system – controls and coordinates the use of the hardware among the various application programs for the various users. 3. Applications programs – define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs). 4. Users (people, machines, other computers). Operating System Concepts 1.3 Silberschatz, Galvin and Gagne 2002 Abstract View of System Components Operating System Concepts 1.4 Silberschatz, Galvin and Gagne 2002 2 Operating System Definitions Resource allocator – manages and allocates resources. Control program – controls the execution of user programs and operations of I/O devices . Kernel – the one program running at all times (all else being application programs). -
KUNCI JAWABAN CHAPTER 2 CCNA-RS-ITN-SIM-1 Configuring a Network Operating System Chapter 2 Exam
KUNCI JAWABAN CHAPTER 2 CCNA-RS-ITN-SIM-1 Configuring a Network Operating System Chapter 2 Exam Mandar 3 Oktober 2016 CCNA-RS-ITN-SIM-Ganjil-2016 MANDAR 3 OKTOBER 2016 KUNCI JAWABAN CHAPTER 2 1. Which two features are characteristics of flash memory? (Choose two.) Flash provides nonvolatile storage. The contents of flash may be overwritten. 2. A network administrator is planning an IOS upgrade on several of the head office routers and switches. Which three questions must be answered before continuing with the IOS selection and upgrade? (Choose three.) What models of routers and switches require upgrades? Do the routers and switches have enough RAM and flash memory for the proposed IOS versions? What features are required for the devices? 3. Which procedure is used to access a Cisco 2960 switch when performing an initial configuration in a secure environment? Use the console port to locally access the switch from a serial or USB interface of the PC. 4. A network administrator needs to keep the user ID, password, and session contents private when establishing remote CLI connectivity with a switch to manage it. Which access method should be chosen? SSH 5. A router has a valid operating system and a configuration stored in NVRAM. When the router boots up, which mode will display? user EXEC mode 6. Which two functions are provided to users by the context-sensitive help feature of the Cisco IOS CLI? (Choose two.) displaying a list of all available commands within the current mode determining which option, keyword, or argument is available for the entered command 7. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
The Arcos Network Operating System
AT-A-GLANCE The ArcOS TM Network Operating System History has repeatedly proven that large industries transition from The ArcOS Advantage vertical integration to best-in-class horizontal segmentation as the urgent business need for innovation outstrips the ability/intent of the incumbents to deliver. The networking industry is in exactly such Agile situation, but it lags the compute and, to a large extent, the storage tiers in terms of this transition. Network operations teams are hampered by inflexible, proprietary systems that are expensive to build, operate, Automated processes accelerate and manage. This model does not fit well into today’s digital business and streamline network expectations of a more agile and innovation-friendly smart infrastructure. provisioning, operations, and deployment. Built-in YANG/ Recently, there has been an explosion of networking merchant silicon OpenConfig support simplifies options in the market that continue to redefine what is possible. integration into existing Additionally, the networking hardware ecosystem continues to evolve frameworks. with a proliferation of readily available leading-edge network platforms from multiple ODMs. But the fundamental problem has been the lack of a modern, scalable, and viable software network operating system that enables the transition from a proprietary, closed approach to an open integration approach. Elastic Arrcus addresses this problem by delivering ArcOS, an independent, open, Linux-based network operating system, as a high-quality alternative Modular software on white box/ to vertically integrated OEMs, to meet and exceed the modern smart brite box network hardware network infrastructure requirements. maximizes flexibility in building a scale-out architecture for a variety of network environments A Modern Network Operating System for the Data Center, (physical, virtual, cloud). -
1. Introduction
Network Operating Systems Partha Dasgupta Department of Computer Science and Engineering Arizona State University Tempe AZ 85287-5406 USA [email protected] [Note: Written in 1997, Appeared in Encyclopedia of Electrical Engineering] 1. Introduction Network Operating Systems extend the facilities and services provided by computer operating systems to support a set of computers, connected by a network. The environment managed by a network operating system consists of an interconnected group of machines that are loosely connected. By loosely connected, we mean that such computers possess no hardware connections at the CPU – memory bus level, but are connected by external interfaces that run under the control of software. Each computer in this group run an autonomous operating system, yet cooperate with each other to allow a variety of facilities including file sharing, data sharing, peripheral sharing, remote execution and cooperative computation. Network operating systems are autonomous operating systems that support such cooperation. The group of machines comprising the management domain of the network operating system is called a distributed system. A close cousin of the network operating system is the distributed operating system. A distributed operating system is an extension of the network operating system that supports even higher levels of cooperation and integration of the machines on the network (features include task migration, dynamic resource location, and so on) (1,2). An operating system is low-level software controlling the inner workings of a machine. Typical functions performed by an operating system include managing the CPU among many concurrently executing tasks, managing memory allocation to the tasks, handling of input and output and controlling all the peripherals. -
Personal-Computer Systems • Parallel Systems • Distributed Systems • Real -Time Systems
Module 1: Introduction • What is an operating system? • Simple Batch Systems • Multiprogramming Batched Systems • Time-Sharing Systems • Personal-Computer Systems • Parallel Systems • Distributed Systems • Real -Time Systems Applied Operating System Concepts 1.1 Silberschatz, Galvin, and Gagne Ď 1999 What is an Operating System? • A program that acts as an intermediary between a user of a computer and the computer hardware. • Operating system goals: – Execute user programs and make solving user problems easier. – Make the computer system convenient to use. • Use the computer hardware in an efficient manner. Applied Operating System Concepts 1.2 Silberschatz, Galvin, and Gagne Ď 1999 Computer System Components 1. Hardware – provides basic computing resources (CPU, memory, I/O devices). 2. Operating system – controls and coordinates the use of the hardware among the various application programs for the various users. 3. Applications programs – define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs). 4. Users (people, machines, other computers). Applied Operating System Concepts 1.3 Silberschatz, Galvin, and Gagne Ď 1999 Abstract View of System Components Applied Operating System Concepts 1.4 Silberschatz, Galvin, and Gagne Ď 1999 Operating System Definitions • Resource allocator – manages and allocates resources. • Control program – controls the execution of user programs and operations of I/O devices . • Kernel – the one program running at all times (all else being application programs). Applied Operating System Concepts 1.5 Silberschatz, Galvin, and Gagne Ď 1999 Memory Layout for a Simple Batch System Applied Operating System Concepts 1.7 Silberschatz, Galvin, and Gagne Ď 1999 Multiprogrammed Batch Systems Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them. -
System Software
PowerPoint Presentation to Accompany Chapter 5 System Software Visualizing Technology Copyright © 2014 Pearson Educaon, Inc. Publishing as Pren=ce Hall Objectives 1. Explain what an operating system does. 2. Compare the most common stand-alone operating systems. 3. Compare specialized operating systems. 4. Compare the most common network operating systems. 5. List and explain important disk utility software. 6. Identify the certifications and careers related to system software. Visualizing Technology Copyright © 2014 Pearson Educaon, Inc. Publishing as Pren=ce Hall Objective 1: Overview Who’s Being Bossy Now? 1. Discuss the job of the operating system 2. Discuss how the OS manages and controls hardware 3. Discuss how the OS interacts with software Key Terms § API (application § OS (operating system) programming interface) § PnP (Plug and Play) § Device driver § System software § GUI (graphical user interface) § Multitasking Visualizing Technology Copyright © 2014 Pearson Educaon, Inc. Publishing as Pren=ce Hall Operating System (OS) § System software § Interface to communicate with the hardware and software § A computer cannot run without an operating system installed Windows 8 interface Visualizing Technology Copyright © 2014 Pearson Educaon, Inc. Publishing as Pren=ce Hall Operating System Provides graphical user interface (GUI) Manages resources (mul=tasKing) Manage and controls hardware (PnP) Interacts with soMware (API) Visualizing Technology Copyright © 2014 Pearson Educaon, Inc. Publishing as Pren=ce Hall Which operating system is on your computer? Is it the latest version? If you have not upgraded, why not? If you could change the OS, would you? Which OS would you use instead? Visualizing Technology Copyright © 2014 Pearson Educaon, Inc. Publishing as Pren=ce Hall Objective 2: Overview Running the Show on Personal Computers 1. -
Operating System
OPERATING SYSTEM INDEX LESSON 1: INTRODUCTION TO OPERATING SYSTEM LESSON 2: FILE SYSTEM – I LESSON 3: FILE SYSTEM – II LESSON 4: CPU SCHEDULING LESSON 5: MEMORY MANAGEMENT – I LESSON 6: MEMORY MANAGEMENT – II LESSON 7: DISK SCHEDULING LESSON 8: PROCESS MANAGEMENT LESSON 9: DEADLOCKS LESSON 10: CASE STUDY OF UNIX LESSON 11: CASE STUDY OF MS-DOS LESSON 12: CASE STUDY OF MS-WINDOWS NT Lesson No. 1 Intro. to Operating System 1 Lesson Number: 1 Writer: Dr. Rakesh Kumar Introduction to Operating System Vetter: Prof. Dharminder Kr. 1.0 OBJECTIVE The objective of this lesson is to make the students familiar with the basics of operating system. After studying this lesson they will be familiar with: 1. What is an operating system? 2. Important functions performed by an operating system. 3. Different types of operating systems. 1. 1 INTRODUCTION Operating system (OS) is a program or set of programs, which acts as an interface between a user of the computer & the computer hardware. The main purpose of an OS is to provide an environment in which we can execute programs. The main goals of the OS are (i) To make the computer system convenient to use, (ii) To make the use of computer hardware in efficient way. Operating System is system software, which may be viewed as collection of software consisting of procedures for operating the computer & providing an environment for execution of programs. It’s an interface between user & computer. So an OS makes everything in the computer to work together smoothly & efficiently. Figure 1: The relationship between application & system software Lesson No. -
COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous Multi-Threading and Multi-Core Processors Edgar Gabriel Spring 2011
COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous multi-threading and multi-core processors Edgar Gabriel Spring 2011 Edgar Gabriel Moore’s Law • Long-term trend on the number of transistor per integrated circuit • Number of transistors double every ~18 month Source: http://en.wikipedia.org/wki/Images:Moores_law.svg COSC 6385 – Computer Architecture Edgar Gabriel 1 What do we do with that many transistors? • Optimizing the execution of a single instruction stream through – Pipelining • Overlap the execution of multiple instructions • Example: all RISC architectures; Intel x86 underneath the hood – Out-of-order execution: • Allow instructions to overtake each other in accordance with code dependencies (RAW, WAW, WAR) • Example: all commercial processors (Intel, AMD, IBM, SUN) – Branch prediction and speculative execution: • Reduce the number of stall cycles due to unresolved branches • Example: (nearly) all commercial processors COSC 6385 – Computer Architecture Edgar Gabriel What do we do with that many transistors? (II) – Multi-issue processors: • Allow multiple instructions to start execution per clock cycle • Superscalar (Intel x86, AMD, …) vs. VLIW architectures – VLIW/EPIC architectures: • Allow compilers to indicate independent instructions per issue packet • Example: Intel Itanium series – Vector units: • Allow for the efficient expression and execution of vector operations • Example: SSE, SSE2, SSE3, SSE4 instructions COSC 6385 – Computer Architecture Edgar Gabriel 2 Limitations of optimizing a single instruction -
Linux Networking 101
The Gorilla ® Guide to… Linux Networking 101 Inside this Guide: • Discover how Linux continues its march toward world domination • Learn basic Linux administration tips • See how easy it can be to build your entire network on a Linux foundation • Find out how Cumulus Linux is your ticket to networking freedom David M. Davis ActualTech Media Helping You Navigate The Technology Jungle! In Partnership With www.actualtechmedia.com The Gorilla Guide To… Linux Networking 101 Author David M. Davis, ActualTech Media Editors Hilary Kirchner, Dream Write Creative, LLC Christina Guthrie, Guthrie Writing & Editorial, LLC Madison Emery, Cumulus Networks Layout and Design Scott D. Lowe, ActualTech Media Copyright © 2017 by ActualTech Media. All rights reserved. No portion of this book may be reproduced or used in any manner without the express written permission of the publisher except for the use of brief quotations. The information provided within this eBook is for general informational purposes only. While we try to keep the information up- to-date and correct, there are no representations or warranties, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information, products, services, or related graphics contained in this book for any purpose. Any use of this information is at your own risk. ActualTech Media Okatie Village Ste 103-157 Bluffton, SC 29909 www.actualtechmedia.com Entering the Jungle Introduction: Six Reasons You Need to Learn Linux ....................................................... 7 1. Linux is the future ........................................................................ 9 2. Linux is on everything .................................................................. 9 3. Linux is adaptable ....................................................................... 10 4. Linux has a strong community and ecosystem ........................... 10 5. -
The Era of Microsoft? Technological Innovation, Network Externalities, and the Seattle Factor in the US Software Industry
The Era of Microsoft? Technological Innovation, Network Externalities, and the Seattle Factor in the US Software Industry Edmund A. Egan Working Paper 87 January 1996 Edmund A. Egan is a Doctoral Candidate in the Department of City and Regional Planning at the University of California at Berkeley. - 1 - Abstract Microsoft Corporation, the largest company in the US software industry, has been under anti-trust scrutiny from the Department of Justice for most of the 1990s. In 1995, its planned acquisition of Intuit, Inc. prompted a Silicon Valley law firm, on behalf of unnamed complainants, to submit a White Paper to the DOJ, on the subject of Microsoft's long-term strategy. The White Paper, relying on the theoretical concepts of network externalities and lock- in effects, argues that Microsoft will use Intuit's products to attain monopolistic positions in network operating systems, on-line services, and electronic commerce, and will eventually be in a position to affect the content transmitted over electronic networks. This paper disputes that claim. First, an analysis of Microsoft's growth vs. the US packaged software industry a whole is presented, indicating that Microsoft actually has a fairly small share of total employment and sales. Secondly, a detailed review of the White Paper's argument is followed by a discussion of Microsoft's competitors, whose products also benefit from network externalities and lock-in effects. Ultimately, innovation will be more important than leverage for Microsoft. However, the paper argues that Microsoft's location in Seattle may prove to be a liability when it comes to rapid innovation; the corporation has grown much more rapidly than the Seattle software industry as a whole. -
Configure a Network Operating System
Instructor Materials Chapter 2: Configure a Network Operating System CCNA Routing and Switching Introduction to Networks v6.0 Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1 Chapter 2: Configure a Network Operating System Introduction to Networks v6.0 Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 3 Chapter 2 - Sections & Objectives . 2.1 IOS Bootcamp • Explain the purpose of Cisco IOS. • Explain how to access a Cisco IOS device for configuration purposes. • Explain how to navigate Cisco IOS to configure network devices. • Describe the command structure of Cisco IOS software. 2.2 Basic Device Configuration • Configure hostnames on a Cisco IOS device using the CLI. • Use Cisco IOS commands to limit access to device configurations. • Use IOS commands to save the running configuration. 2.3 Address Schemes • Explain how devices communicate across network media. • Configure a host device with an IP address. • Verify connectivity between two end devices. Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 4 2.1 IOS Bootcamp Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 5 IOS Bootcamp Cisco IOS . Operating Systems • Every computer requires an operating system to function, including computer-based network devices such as switches, routers, access points, and firewalls. These network devices use an operating system called a network operating system. • An operating system has two basic parts. Shell and Kernel • A shell providers user interface. • A kernel interacts with hardware. Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 6 IOS Bootcamp Cisco IOS . Operating Systems • Operating System interface could either be Command-Line-Interface (CLI) or Graphical-User-Interface (GUI) Presentation_ID © 2008 Cisco Systems, Inc.