UNIX Operating System Porting Experiences*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1: Introduction What Is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments Operating System Concepts 1.1 Silberschatz, Galvin and Gagne 2002 What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware. Operating system goals: ) Execute user programs and make solving user problems easier. ) Make the computer system convenient to use. Use the computer hardware in an efficient manner. Operating System Concepts 1.2 Silberschatz, Galvin and Gagne 2002 1 Computer System Components 1. Hardware – provides basic computing resources (CPU, memory, I/O devices). 2. Operating system – controls and coordinates the use of the hardware among the various application programs for the various users. 3. Applications programs – define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs). 4. Users (people, machines, other computers). Operating System Concepts 1.3 Silberschatz, Galvin and Gagne 2002 Abstract View of System Components Operating System Concepts 1.4 Silberschatz, Galvin and Gagne 2002 2 Operating System Definitions Resource allocator – manages and allocates resources. Control program – controls the execution of user programs and operations of I/O devices . Kernel – the one program running at all times (all else being application programs). -
UNIVAC I Computer System
Saved from the Internet on 3/9/2010 Created by Allan Reiter UNIVAC I Computer System After you look at this yellow page go to the blue page to find out how UNIVAC I really worked. My name is Allan Reiter and in 1954 began my career with a company in St Paul, Minnesota called Engineering Research Associates (ERA) that was part of the Remington Rand Corporation. I was hired with 3 friends, Paul S. Lawson, Vernon Sandoz, and Robert Kress. We were buddies who met in the USAF where we were trained and worked on airborne radar on B-50 airplanes. In a way this was the start of our computer career because the radar was controlled by an analog computer known as the Q- 24. After discharge from the USAF Paul from Indiana and Vernon from Texas drove up to Minnesota to visit me. They said they were looking for jobs. We picked up a newspaper and noticed an ad that sounded interesting and decided to check it out. The ad said they wanted people with military experience in electronics. All three of us were hired at 1902 West Minnehaha in St. Paul. We then looked up Robert Kress (from Iowa) and he was hired a few days later. The four of us then left for Philadelphia with three cars and one wife. Robert took his wife Brenda along. This was where the UNIVAC I was being built. Parts of the production facilities were on an upper floor of a Pep Boys building. Another building on Allegheny Avenue had a hydraulic elevator operated with water pressure. -
A Java Implementation of a Portable Desktop Manager Scott .J Griswold University of North Florida
UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 1998 A Java Implementation of a Portable Desktop Manager Scott .J Griswold University of North Florida Suggested Citation Griswold, Scott .,J "A Java Implementation of a Portable Desktop Manager" (1998). UNF Graduate Theses and Dissertations. 95. https://digitalcommons.unf.edu/etd/95 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 1998 All Rights Reserved A JAVA IMPLEMENTATION OF A PORTABLE DESKTOP MANAGER by Scott J. Griswold A thesis submitted to the Department of Computer and Information Sciences in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences UNIVERSITY OF NORTH FLORIDA DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES April, 1998 The thesis "A Java Implementation of a Portable Desktop Manager" submitted by Scott J. Griswold in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences has been ee Date APpr Signature Deleted Dr. Ralph Butler Thesis Advisor and Committee Chairperson Signature Deleted Dr. Yap S. Chua Signature Deleted Accepted for the Department of Computer and Information Sciences Signature Deleted i/2-{/1~ Dr. Charles N. Winton Chairperson of the Department Accepted for the College of Computing Sciences and E Signature Deleted Dr. Charles N. Winton Acting Dean of the College Accepted for the University: Signature Deleted Dr. -
Moxa Nport Real TTY Driver for Arm-Based Platform Porting Guide
Moxa NPort Real TTY Driver for Arm-based Platform Porting Guide Moxa Technical Support Team [email protected] Contents 1 Introduction ...................................................................................2 2 Porting to the Moxa UC-Series—Arm-based Computer ....................2 2.1 Build binaries on a general Arm platform ...................................................... 2 2.2 Cross-compiler and the Real TTY driver ........................................................ 3 2.3 Moxa cross-compiling interactive script......................................................... 4 2.4 Manually build the Real TTY driver with a cross-compiler ................................ 5 2.5 Deploy cross-compiled binary to target......................................................... 8 3 Porting to Raspberry Pi OS .............................................................9 4 Porting to the Yocto Project on Raspberry Pi ................................ 10 4.1 Prerequisite............................................................................................... 10 4.2 Create a Moxa layer for the Yocto Project..................................................... 11 4.3 Install a Moxa layer into the Yocto Project.................................................... 17 4.4 Deploy the Yocto image in Raspberry Pi ....................................................... 17 4.5 Start the Real TTY driver in Raspberry Pi ..................................................... 18 4.6 Set the default tty mapping to the Real TTY configuration ............................ -
Personal-Computer Systems • Parallel Systems • Distributed Systems • Real -Time Systems
Module 1: Introduction • What is an operating system? • Simple Batch Systems • Multiprogramming Batched Systems • Time-Sharing Systems • Personal-Computer Systems • Parallel Systems • Distributed Systems • Real -Time Systems Applied Operating System Concepts 1.1 Silberschatz, Galvin, and Gagne Ď 1999 What is an Operating System? • A program that acts as an intermediary between a user of a computer and the computer hardware. • Operating system goals: – Execute user programs and make solving user problems easier. – Make the computer system convenient to use. • Use the computer hardware in an efficient manner. Applied Operating System Concepts 1.2 Silberschatz, Galvin, and Gagne Ď 1999 Computer System Components 1. Hardware – provides basic computing resources (CPU, memory, I/O devices). 2. Operating system – controls and coordinates the use of the hardware among the various application programs for the various users. 3. Applications programs – define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs). 4. Users (people, machines, other computers). Applied Operating System Concepts 1.3 Silberschatz, Galvin, and Gagne Ď 1999 Abstract View of System Components Applied Operating System Concepts 1.4 Silberschatz, Galvin, and Gagne Ď 1999 Operating System Definitions • Resource allocator – manages and allocates resources. • Control program – controls the execution of user programs and operations of I/O devices . • Kernel – the one program running at all times (all else being application programs). Applied Operating System Concepts 1.5 Silberschatz, Galvin, and Gagne Ď 1999 Memory Layout for a Simple Batch System Applied Operating System Concepts 1.7 Silberschatz, Galvin, and Gagne Ď 1999 Multiprogrammed Batch Systems Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them. -
Gnu Compiler Collection Backend Port for the Integral Parallel Architecture
U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 3, 2012 ISSN 1454-234x GNU COMPILER COLLECTION BACKEND PORT FOR THE INTEGRAL PARALLEL ARCHITECTURE Radu HOBINCU1, Valeriu CODREANU2, Lucian PETRICĂ3 Lucrarea de față prezintă procesul de portare a compilatorului GCC oferit de către Free Software Foundation pentru arhitectura hibridă Integral Parallel Architecture, constituită dintr-un controller multithreading și o mașina vectorială SIMD. Este bine cunoscut faptul că motivul principal pentru care mașinile hibride ca și cele vectoriale sunt dificil de utilizat eficient, este programabilitatea. În această lucrare vom demonstra că folosind un compilator open-source și facilitățile de care acesta dispune, putem ușura procesul de dezvoltare software pentru aplicații complexe. This paper presents the process of porting the GCC compiler offered by the Free Software Foundation, for the hybrid Integral Parallel Architecture composed of an interleaved multithreading controller and a vectorial SIMD machine. It is well known that the main reason for which hybrid and vectorial machines are difficult to use efficiently, is programmability. In this paper we well show that by using an open-source compiler and the features it provides, we can ease the software developing process for complex applications. Keywords: integral parallel architecture, multithreading, interleaved multithreading, bubble-free embedded architecture for multithreading, compiler, GCC, backend port 1. Introduction The development of hardware technology in the last decades has required the programmers to offer support for the new features and performances of the last generation processors. This support comes as more complex compilers that have to use the machines' capabilities at their best, and more complex operating systems that need to meet the users' demand for speed, flexibility and accessibility. -
Operating System
OPERATING SYSTEM INDEX LESSON 1: INTRODUCTION TO OPERATING SYSTEM LESSON 2: FILE SYSTEM – I LESSON 3: FILE SYSTEM – II LESSON 4: CPU SCHEDULING LESSON 5: MEMORY MANAGEMENT – I LESSON 6: MEMORY MANAGEMENT – II LESSON 7: DISK SCHEDULING LESSON 8: PROCESS MANAGEMENT LESSON 9: DEADLOCKS LESSON 10: CASE STUDY OF UNIX LESSON 11: CASE STUDY OF MS-DOS LESSON 12: CASE STUDY OF MS-WINDOWS NT Lesson No. 1 Intro. to Operating System 1 Lesson Number: 1 Writer: Dr. Rakesh Kumar Introduction to Operating System Vetter: Prof. Dharminder Kr. 1.0 OBJECTIVE The objective of this lesson is to make the students familiar with the basics of operating system. After studying this lesson they will be familiar with: 1. What is an operating system? 2. Important functions performed by an operating system. 3. Different types of operating systems. 1. 1 INTRODUCTION Operating system (OS) is a program or set of programs, which acts as an interface between a user of the computer & the computer hardware. The main purpose of an OS is to provide an environment in which we can execute programs. The main goals of the OS are (i) To make the computer system convenient to use, (ii) To make the use of computer hardware in efficient way. Operating System is system software, which may be viewed as collection of software consisting of procedures for operating the computer & providing an environment for execution of programs. It’s an interface between user & computer. So an OS makes everything in the computer to work together smoothly & efficiently. Figure 1: The relationship between application & system software Lesson No. -
The UNIVAC System, 1948
5 - The WHAT*S YOUR PROBLEM? Is it the tedious record-keepin% and the arduous figure-work of commerce and industry? Or is it the intricate mathematics of science? Perhaps yoy problem is now considered im ossible because of prohibitive costs asso- ciated with co b methods of solution.- The UNIVAC* SYSTEM has been developed by the Eckert-Mauchly Computer to solve such problems. Within its scope come %fm%s as diverse as air trarfic control, census tabu- lakions, market research studies, insurance records, aerody- namic desisn, oil prospecting, searching chemical literature and economic planning. The UNIVAC COMPUTER and its auxiliary equipment are pictured on the cover and schematically pre- sented on the opposite page. ELECTRONS WORK FASTER.---- thousands of times faster ---- than re- lavs and mechanical parts. The mmuses the in- he&ently high speed *of the electron tube to obtain maximum roductivity with minimum equipment. Electrons workfaster %an ever before in the newly designed UNIVAC CO~UTER, in which little more than one-millionth of a second is needed to deal with a decimal d'igit. Coupled with this computer are magnetic tape records which can be read and classified while new records are generated at a rate of ten thousand decimal- digits per second. f AUTOMATIC OPERATION is the key to greater economies in the 'hand- ling of all sorts of information, both numerical and alpha- betic. For routine tasks only a small operating staff is re- -qured. Changing from one job to another is only a matter of a few minutes. Flexibilit and versatilit are inherent in the UNIVAC methoM o e ectronic *contro ma in9 use of an ex- tremely large storage facility for ttmemorizi@ instructions~S LOW MAINTENANCE AND HIGH RELIABILITY are assured by a design which draws on the technical skill of a group of engineers who have specialized in electronic computing techniques. -
Porting C/C++ Applications to the Web PROJECT P1 Fundamental Research Group
Porting C/C++ applications to the web PROJECT P1 Fundamental Research Group Mentors Nagesh Karmali Rajesh Kushalkar Interns Ajit Kumar Akash Soni Sarthak Mishra Shikhar Suman Yasasvi V Peruvemba List of Contents Project Description Simavr Understanding the Problem Overall Problems Emscripten References Vim.wasm Tetris PNGCrush.js Project Description Lots of educational tools like electronic simulators, emulators, IDEs, etc. are written mostly as a native C/C++ applications. This project is focussed on making these applications run on the web as a service in the cloud. It is focused on porting these desktop applications into their JavaScript counterparts. Understanding the problem 1. Converting the underlying logic written in C/C++ into it’s analogous Javascript file 2. Making sure minimum performance loss occurs during porting. Emscripten 1. Emscripten is an Open Source LLVM to JavaScript compiler. 2. Compile any other code that can be translated into LLVM bitcode into JavaScript. https://emscripten.org/docs/introducing_emscrip ten/about_emscripten.html Installing Emscripten # Get the emsdk repo git clone https://github.com/emscripten-core/emsdk.git # Enter that directory cd emsdk # Fetch the latest version of the emsdk (not needed the first time you clone) git pull # Download and install the latest SDK tools. ./emsdk install latest # Make the "latest" SDK "active" for the current user. (writes ~/.emscripten file) ./emsdk activate latest # Activate PATH and other environment variables in the current terminal source ./emsdk_env.sh Porting of Vim Github Repository https://github.com/rhysd/vim.wasm Source files of Vim that are slightly modified can be found here - https://github.com/rhysd/vim.wasm/compare/a9604e61451707b38fdcb088fbfaeea 2b922fef6...f375d042138c824e3e149e0994b791248f2ecf41#files The Vim Editor is completely written in C. -
Porting the QEMU Virtualization Software to MINIX 3
Porting the QEMU virtualization software to MINIX 3 Master's thesis in Computer Science Erik van der Kouwe Student number 1397273 [email protected] Vrije Universiteit Amsterdam Faculty of Sciences Department of Mathematics and Computer Science Supervised by dr. Andrew S. Tanenbaum Second reader: dr. Herbert Bos 12 August 2009 Abstract The MINIX 3 operating system aims to make computers more reliable and more secure by keeping privileged code small and simple. Unfortunately, at the moment only few major programs have been ported to MINIX. In particular, no virtualization software is available. By isolating software environments from each other, virtualization aids in software development and provides an additional way to achieve reliability and security. It is unclear whether virtualization software can run efficiently within the constraints of MINIX' microkernel design. To determine whether MINIX is capable of running virtualization software, I have ported QEMU to it. QEMU provides full system virtualization, aiming in particular at portability and speed. I find that QEMU can be ported to MINIX, but that this requires a number of changes to be made to both programs. Allowing QEMU to run mainly involves adding standardized POSIX functions that were previously missing in MINIX. These additions do not conflict with MINIX' design principles and their availability makes porting other software easier. A list of recommendations is provided that could further simplify porting software to MINIX. Besides just porting QEMU, I also investigate what performance bottlenecks it experiences on MINIX. Several areas are found where MINIX does not perform as well as Linux. The causes for these differences are investigated. -
COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous Multi-Threading and Multi-Core Processors Edgar Gabriel Spring 2011
COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous multi-threading and multi-core processors Edgar Gabriel Spring 2011 Edgar Gabriel Moore’s Law • Long-term trend on the number of transistor per integrated circuit • Number of transistors double every ~18 month Source: http://en.wikipedia.org/wki/Images:Moores_law.svg COSC 6385 – Computer Architecture Edgar Gabriel 1 What do we do with that many transistors? • Optimizing the execution of a single instruction stream through – Pipelining • Overlap the execution of multiple instructions • Example: all RISC architectures; Intel x86 underneath the hood – Out-of-order execution: • Allow instructions to overtake each other in accordance with code dependencies (RAW, WAW, WAR) • Example: all commercial processors (Intel, AMD, IBM, SUN) – Branch prediction and speculative execution: • Reduce the number of stall cycles due to unresolved branches • Example: (nearly) all commercial processors COSC 6385 – Computer Architecture Edgar Gabriel What do we do with that many transistors? (II) – Multi-issue processors: • Allow multiple instructions to start execution per clock cycle • Superscalar (Intel x86, AMD, …) vs. VLIW architectures – VLIW/EPIC architectures: • Allow compilers to indicate independent instructions per issue packet • Example: Intel Itanium series – Vector units: • Allow for the efficient expression and execution of vector operations • Example: SSE, SSE2, SSE3, SSE4 instructions COSC 6385 – Computer Architecture Edgar Gabriel 2 Limitations of optimizing a single instruction -
Sperry Rand's Third-Generation Computers 1964–1980
Sperry Rand’s Third-Generation Computers 1964–1980 George T. Gray and Ronald Q. Smith The change from transistors to integrated circuits in the mid-1960s marked the beginning of third-generation computers. A late entrant (1962) in the general-purpose, transistor computer market, Sperry Rand Corporation moved quickly to produce computers using ICs. The Univac 1108’s success (1965) reversed the company’s declining fortunes in the large-scale arena, while the 9000 series upheld its market share in smaller computers. Sperry Rand failed to develop a successful minicomputer and, faced with IBM’s dominant market position by the end of the 1970s, struggled to maintain its position in the computer industry. A latecomer to the general-purpose, transistor would be suitable for all types of processing. computer market, Sperry Rand first shipped its With its top management having accepted the large-scale Univac 1107 and Univac III comput- recommendation, IBM began work on the ers to customers in the second half of 1962, System/360, so named because of the intention more than two years later than such key com- to cover the full range of computing tasks. petitors as IBM and Control Data. While this The IBM 360 did not rely exclusively on lateness enabled Sperry Rand to produce rela- integrated circuitry but instead employed a tively sophisticated products in the 1107 and combination of separate transistors and chips, III, it also meant that they did not attain signif- called Solid Logic Technology (SLT). IBM made icant market shares. Fortunately, Sperry’s mili- a big event of the System/360 announcement tary computers and the smaller Univac 1004, on 7 April 1964, holding press conferences in 1005, and 1050 computers developed early in 62 US cities and 14 foreign countries.