Calnexin, Calreticulin and the Folding of Glycoproteins

Total Page:16

File Type:pdf, Size:1020Kb

Calnexin, Calreticulin and the Folding of Glycoproteins Protein folding in living cells is a complex, error-prone Calnexin, process. Numerous mechanisms are in place to ensure that newly synthesized proteins reach their folded calreticulin and functional form. One of the strategies is the covalent attachment of oligosaccharides to asparagine residues of nascent polypeptide chains. Such N-linked glyco- the folding of sylation occurs for the majority of soluble and mem- brane-bound proteins that are synthesized in the endoplasmic reticulum (ER). The addition of oligo- glycoproteins saccharides can be beneficial during maturation by making folding intermediates more soluble. In ad- dition, it allows the newly synthesized polypeptides to bind to calnexin and calreticulin, unique lectins pres- ent in the ER, which serve as molecular chaperones. Several reviews have been published on cabrexin and calreticulin in recent years that provided descriptions of the discovery and molecular characterization of these resident ER chaperoneslA. Here, we outline what Calnexin and calreticulin are molecular chaperones in the is currently known about calnexin, calreticulin and ac- endoplasmic reticulum (ER). They are lectins that interact with cessory enzymes in the process of glycoprotein folding. newly synthesized glycoproteins that have undergone partial Calnexin and calreticulin are lectins trimming of their core N-linked oligosaccharides. Together with the Calnexin is a nonglycosylated type I membrane protein (65 kDa, 573 amino acids) with its substrate- enzymes responsible for glucose removal and a glucosyltransferase binding domain in the lumen of the ER. It has an 89-residue cytoplasmic tail that is phosphorylated that re-glucosylates already-trimmed glycoproteins, they provide a and carries a C-terminal RKPRRE sequence that serves novel mechanism for promoting folding, oligometic assembly and as an ER-localization signalz. Calreticulin, the soluble homologue (46 kDa, 400 amino acids), has both a quality control in the ER. KDEL retrieval sequence and a highly negatively charged region responsible for Ca2+ binding and ER retention at its C-terminus4,5. The primary amino acid sequences of calreticulm and the lumenal domain of calnexln show extensive stretches of homology. by the oligosaccharyltransferase associated with the Although reported to be localized in several cell translocation machinery” (Fig. 1). They are attached compartments, calreticulin is clearly more abundant to the side chain of asparagine residues in the in the lumen of the ER, where it is one of the major consensus sequence Asn-X-Ser/Thr. Transfer of the proteins. A variety of functions have been ascribed to oligosaccharide generally occurs co-translationally as calreticulin, among them gene regulation, Ca2+ se- soon as the acceptor site enters the lumen of the ER. questration and RNA bindin&. It is now clear that, The original core glycans contain a string of three like calnexin, it is a molecular chaperone that binds glucose residues. Their removal begins on the grow- transiently to many glycoproteins in the ERGy. Both ing nascent chain. Glucosidase I removes the termi- seem to function as monomers, although they may nal oll,2-linked glucose, followed by elimination of be part of a larger dynamic network of proteins that the two remaining al,3-linked glucoses by glucosi- includes other ER chaperones and folding enzymes*. dase II (Fig. 1). Compared with other oligosaccharide- Initial experiments in tissue culture cells treated modification reactions in the secretory pathway, glu- with glycosylation inhibitors showed that calnexin cose trimming is exceptionally efficient; nearly all selectively associated with folding intermediates of N-linked chains are completely de-glucosylated. The glycoproteinsiO. Further studies using glucosidase Golgi complex of some cell types contains an endo- inhibitors demonstrated that calnexin bound to par- mannosidase that eliminates any residual glucose tially glucose-trimmed glycoproteins” . Subsequently, residues that may have been missed in the ER18. it was shown that calnexin1214 and calreticulin6,7 The monoglucosylated glycans that bind to calnexin The authors are in specifically associated with monoglucosylated glyco- and calreticulin arise in the ER as an intermediate dur- the Dept of proteins. Biochemical analysis using isolated oligo- ing the stepwise removal of glucoses. However, the same Cell Biology, saccharides has confirmed that they are a new type structure is also formed by re-glucosylation of fully Yale University of lectin and that they bind monoglucosylated core glucose-trimmed oligosaccharides. This occurs through School of glycans (Glc,Man,-,GlcNAc2), whereas they do not the action of a lumenal enzyme, the UDP-Glc:glyco- Medicine, bind glycans with two or three or no glucose resi- protein glucosyltransferase1y*20 (Fig. 1). This enzyme 333 Cedar Street, duesi5,16. Both the affinity for the oligosaccharides counteracts the function of glucosidase II by adding New Haven, and the number of binding sites are unknown. glucose residues back to the oligosaccharides, thus re- CT 06520-8002, generating monoglucosylated glycans2i. The existence USA. Generating the oligosaccharide ligands of de- and re-glucosylation reactions introduces the possi- E-mail: N-linked glycans are added to growing polypeptide bility of a cycle that involves association with, and dis- ari.helenius@ chains as 14resIdue oIigosaccharides (Glc,Mar+GlcNAc,) sociation from, calnexin and calreticulin (see below). yale.edu trends in CELL BIOLOGY (Vol. 7) May 1997 Copyright 0 1997 Elsevier Science Ltd. All rights reserved. 0962-8924/97/$17.00 193 PII: 50962-8924(97)01032-5 Glucosyl- transferase E Glucosidase II -Asn- -Asn- -Asn- T-Asn- A Glucose 0 Mannose 0 N-acetylglucosamine FIGURE 1 N-glycosylation and glucose trimming in the endoplasmic reticulum (ER). The core oligosaccharide (Glc,Man,GlcNAc,) is synthesized in the ER membrane and transferred to the consensus N-glycosylation sites (Am-X-Ser/lhr) on nascent polypeptide chains. Immediately after transfer, the glucose residues are removed by the sequential action of glucosidases I and II. Clucosidase I removes the terminal al-24inked glucose, whereas glucosidase II removes the two remaining al-3-linked residues17. Fully glucose-trimmed high-mannose glycans can be re-glucosylated by UDP-glucose:glycoprotein glucosyltransferase if present on incompletely folded or assembled proteinslg. The enzymes that generate the monoglucosylated A model for transient glycoprotein binding to glycoproteins have been known for many years, but calnexin and calreticulin their genes have been cloned only recently (Table 1). Binding of glycoproteins to calnexin and calreticu- Glucosidase I is a type-11 membrane glycoprotein lin is a transient step during early maturation. Depend- (92 kDa). Glucosidase II, by contrast, is soluble and ing on the distribution of glycans in the polypeptide does not share any primary sequence homology with chain, associationcan begin with the growing nascent glucosidase I. In mammalian cells, it is a heterodimer chain30. It continues posttranslationally for variable in which the cx subunit (104 kDa) contains the active periods of time-ranging from a few minutes to hours. site, and the B subunit (58 kDa) carries retrieval and With permanently misfolded proteins, or unassembled retention sequences for ER localization. subunits of oligomers, the association usually con- UDP-Glc:glycoprotein glucosyltransferase is a sol- tinues until the protein is degraded9J*J2J3,31-33.Final uble enzyme of 170 kDa. It and glucosidase II are the releasefrom calnexin and calreticulin occurs when only soluble enzymes involved in the processing of the polypeptides have reached a fully folded confor- N-linked carbohydrates in the secretory pathway. Its mation or when they have undergone oligomeric C-terminal 500 amino acids share homology between assembly (for reviews, seeRefs 2, 34 and 35). different species and with other known glucosyl- According to one model (Fig. 2a; Ref. 36), glyco- transferases, suggesting that it probably contains the protein folding intermediates are retained in the ER catalytic domain. by a cycle of glucose removal and addition coupled The glucosyltransferase only recognizes non-native to chaperone binding and release.Glucosidase II per- glycoproteins as substratesz2J3. Among the proteins forms a dual role: it is needed to uncover the mono- capable of distinguishing native from non-native poly- glucosylated glycans for initial binding and afterwards peptides, it is the only one known to modify its sub- to de-glucosylate them completely, thus releasing strates covalently. As long as glycoproteins are incom- the glycoproteins from the chaperones.The glucosyl- pletely folded or misfolded, they are re-glucosylated transferase allows reassociation by re-glucosylating by the transferase and continue to be bound to cal- unbound non-native proteins. The glycoprotein nexin and calreticulin. This is illustrated by the ts045 exits the cycle when it has reached its native form vesicular stomatitis virus (VSV) G protein, which has and becomes ‘invisible’ to the glucosyltransferase. a thermoreversible folding defect. At the nonpermiss- Consistent with the need for glucose removal for ive temperature, the G protein undergoes continu- substrate release, inhibition of glucosidaseII activ- ous de- and re-glucosylation in the ER of infected ity inhibits release of substrates from calnexin and cells2* and it remains calnexin associatedz4. The ma- calreticulin9,13,28,37*38.It
Recommended publications
  • Calreticulin Controlling the Membrane Translocation of Immunogenicity Of
    ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin This information is current as of September 25, 2021. Michel Obeid J Immunol 2008; 181:2533-2543; ; doi: 10.4049/jimmunol.181.4.2533 http://www.jimmunol.org/content/181/4/2533 Downloaded from References This article cites 26 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/181/4/2533.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin1 Michel Obeid2 Several pieces of experimental evidence indicate the following: 1) the most efficient antitumor treatments (this principle applies on both chemotherapy and radiotherapy) are those that induce immunogenic cell death and are able to trigger a specific antitumor immune response; and 2) the immunogenicity of cell death depends very closely on the plasma membrane quantity of calreticulin (CRT), an endoplasmic reticulum (ER) stress protein exposed to the cell membrane after immunogenic treatment.
    [Show full text]
  • Profiling of Transcripts and Proteins Modulated by the E7 Oncogene in the Lung Tissue of E7-Tg Mice by the Omics Approach
    MOLECULAR MEDICINE REPORTS 2: 129-137, 2009 129 Profiling of transcripts and proteins modulated by the E7 oncogene in the lung tissue of E7-Tg mice by the omics approach EUNJIN KIM1*, JEONGWOO KANG1,3*, MINCHUL CHO1, SOJUNG LEE1, EUNHEE SEO1, HEESOOK CHOI1, YUMI KIM1, JUNGHEE KIM1, KUM YONG KANG2, KWANG PYO KIM2, JAEYONG HAN3, YHUNYHONG SHEEN4, YOUNG NA YUM5, SUE-NIE PARK5 and DO-YOUNG YOON1 Departments of 1Bioscience and Biotechnology, and 2Molecular Biotechnology, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul 143-701; 3Laboratory of Animal Genetic Engineering, Department of Food and Animal Biotechnology, Seoul National University, Seoul 151-742; 4School of Pharmacy, Ewha Womans University, Seoul 120-750; 5Korea Food and Drug Administration, #194 Tongil-ro, Eunpyung-gu, Seoul 122-704, Korea Received August 18, 2008; Accepted November 10, 2008 DOI: 10.3892/mmr_00000073 Abstract. The E6 and E7 oncoproteins of human papilloma suggest that the E7 oncogene modulates the expression levels virus (HPV) type 16 have been known to cooperatively induce of cell cycle-related (cyclin B1, cyclin E2) and cell adhesion- the immortalization and transformation of primary keratino- and migration-related (actinin ·1, CD166) factors, which may cytes. We established an E7 transgenic mouse model to play important roles in cellular transformation in cancer. In screen HPV-related biomakers using the omics approach. addition, the solubilization of the rigid intermediate filament The methods used to identify HPV-modulated factors were network by specific proteolysis mediated via up-regulating genomics analysis by microarray using the Affymetrix 430 gelsolin and down-regulating cofilin-1, as well as increased 2.0 array to screen E7-modulated genes, and proteomics levels of endoplasmic reticulum protein calnexin with chap- analysis using nano-LC-ESI-MS/MS to screen E7-modulated erone functions, might also be involved in E7-lung epithelial proteins with the lung tissue of E7 transgenic mice.
    [Show full text]
  • The Atf6β-Calreticulin Axis Promotes Neuronal Survival Under Endoplasmic Reticulum Stress and Excitotoxicity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 The ATF6β-calreticulin axis promotes neuronal survival under 2 endoplasmic reticulum stress and excitotoxicity 3 4 Dinh Thi Nguyen1, Thuong Manh Le1, Tsuyoshi Hattori1, Mika Takarada-Iemata1, 5 Hiroshi Ishii1, Jureepon Roboon1, Takashi Tamatani1, Takayuki Kannon2, 6 Kazuyoshi Hosomichi2, Atsushi Tajima2, Shusuke Taniuchi3, Masato Miyake3, Seiichi 7 Oyadomari3, Shunsuke Saito4, Kazutoshi Mori4, Osamu Hori1* 8 9 10 1.Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa 11 University, Kanazawa, Japan 12 2.Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive 13 Medical Sciences, Kanazawa University, Kanazawa, Japan 14 3.Division of Molecular Biology, Institute for Genome Research, Institute of Advanced 15 Medical Sciences, Tokushima University, Tokushima, Japan 16 4.Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan 17 18 19 Running title: Neuroprotective role of the ATF6β-calreticulin axis 20 21 22 23 24 25 26 * Corresponding author: 27 Dr. Osamu Hori 28 Department of Neuroanatomy, Kanazawa University Graduate School of Medical 29 Sciences, 30 13-1 Takara-Machi, Kanazawa City, 31 Ishikawa 920-8640, Japan 32 Tel: +81-76-265-2162 33 Fax: +81-76-234-4222 34 E-mail: [email protected] 35 36 37 38 39 Key words: neurodegeneration, Ca2+ homeostasis, ER stress 40 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021.
    [Show full text]
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • Comparative Analysis of a Teleost Skeleton Transcriptome Provides Insight Into Its Regulation
    Accepted Manuscript Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation Florbela A. Vieira, M.A.S. Thorne, K. Stueber, M. Darias, R. Reinhardt, M.S. Clark, E. Gisbert, D.M. Power PII: S0016-6480(13)00264-5 DOI: http://dx.doi.org/10.1016/j.ygcen.2013.05.025 Reference: YGCEN 11541 To appear in: General and Comparative Endocrinology Please cite this article as: Vieira, F.A., Thorne, M.A.S., Stueber, K., Darias, M., Reinhardt, R., Clark, M.S., Gisbert, E., Power, D.M., Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation, General and Comparative Endocrinology (2013), doi: http://dx.doi.org/10.1016/j.ygcen.2013.05.025 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Comparative analysis of a teleost skeleton transcriptome 2 provides insight into its regulation 3 4 Florbela A. Vieira1§, M. A. S. Thorne2, K. Stueber3, M. Darias4,5, R. Reinhardt3, M. 5 S. Clark2, E. Gisbert4 and D. M. Power1 6 7 1Center of Marine Sciences, Universidade do Algarve, Faro, Portugal. 8 2British Antarctic Survey – Natural Environment Research Council, High Cross, 9 Madingley Road, Cambridge, CB3 0ET, UK.
    [Show full text]
  • Binding and the Effect of the Red Kidney Bean Lectin, Phytohaemagglutinin, In
    Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2006), 95, 105–115 DOI: 10.1079/BJN20051612 q The Authors 2006 Binding and the effect of the red kidney bean lectin, phytohaemagglutinin, in . IP address: the gastrointestinal tract of suckling rats 170.106.202.58 Ann Linderoth1*, Olena Prykhod’ko1, Bo Ahre´n2, Frida Fa˚k1, Stefan G. Pierzynowski1 and Bjo¨rn R. Westro¨m1 1Department of Cell and Organism Biology, Lund University, Helgonava¨gen 3B, SE-223 62 Lund, Sweden , on 2Department of Medicine, University Hospital, Lund University, Lund, Sweden 29 Sep 2021 at 02:15:37 (Received 7 April 2005 – Revised 8 July 2005 – Accepted 17 July 2005) Enteral exposure of suckling rats to phytohaemagglutinin (PHA) has been shown to induce growth and precocious functional maturation of the gastrointestinal tract. The aim of the present study was to explore the mechanism of this action. Suckling rats, 14 d old, were fed a single dose , subject to the Cambridge Core terms of use, available at of PHA (0·05 mg/g body weight) or saline. The binding of PHA to the gut epithelium and its effect on the morphology and functional properties of the gut and pancreas were studied up to 3 d after treatment. Initially, at 1–24 h, the PHA bound along the gut mucosal lining, resulting in dis- turbed gut morphology with villi shortening and rapid decreases in disaccharidase activities and macromolecular absorption capacity. During a later phase, between 1 and 3 d, the PHA binding had declined, and an uptake by enterocytes was observed.
    [Show full text]
  • A Selective ER-Phagy Exerts Procollagen Quality Control Via a Calnexin-FAM134B Complex
    Article A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex Alison Forrester1,†, Chiara De Leonibus1,†, Paolo Grumati2,†, Elisa Fasana3,†, Marilina Piemontese1, Leopoldo Staiano1, Ilaria Fregno3,4, Andrea Raimondi5, Alessandro Marazza3,6, Gemma Bruno1, Maria Iavazzo1, Daniela Intartaglia1, Marta Seczynska2, Eelco van Anken7, Ivan Conte1, Maria Antonietta De Matteis1,8, Ivan Dikic2,9,* , Maurizio Molinari3,10,** & Carmine Settembre1,11,*** Abstract The EMBO Journal (2019) 38:e99847 Autophagy is a cytosolic quality control process that recognizes substrates through receptor-mediated mechanisms. Procollagens, Introduction the most abundant gene products in Metazoa, are synthesized in the endoplasmic reticulum (ER), and a fraction that fails to attain Macroautophagy (hereafter referred to as autophagy) is a homeostatic the native structure is cleared by autophagy. However, how auto- catabolic process devoted to the sequestration of cytoplasmic material phagy selectively recognizes misfolded procollagens in the ER in double-membrane vesicles (autophagic vesicles, AVs) that eventu- lumen is still unknown. We performed siRNA interference, CRISPR- ally fuse with lysosomes where cargo is degraded (Mizushima, 2011). Cas9 or knockout-mediated gene deletion of candidate autophagy Autophagy is essential to maintain tissue homeostasis and counter- and ER proteins in collagen producing cells. We found that the ER- acts both the onset and progression of many disease conditions, such resident lectin chaperone Calnexin (CANX) and the ER-phagy as ageing, neurodegeneration and cancer (Levine et al, 2015). receptor FAM134B are required for autophagy-mediated quality Substrates can be selectively delivered to AVs through receptor- control of endogenous procollagens. Mechanistically, CANX acts as mediated processes. Autophagy receptors harbour a LC3 or GABARAP co-receptor that recognizes ER luminal misfolded procollagens and interaction motif (LIR or GIM, respectively) that facilitate binding of interacts with the ER-phagy receptor FAM134B.
    [Show full text]
  • The Essential Role of Anxa2 in Langerhans Cell Birbeck Granules Formation
    cells Article The Essential Role of anxA2 in Langerhans Cell Birbeck Granules Formation Shantae M. Thornton 1, Varsha D. Samararatne 1, Joseph G. Skeate 1 , Christopher Buser 2, Kim P. Lühen 3, Julia R. Taylor 1, Diane M. Da Silva 3,4 and W. Martin Kast 1,3,4,* 1 Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; [email protected] (S.M.T.); [email protected] (V.D.S.); [email protected] (J.G.S.); [email protected] (J.R.T.) 2 Oak Crest Institute of Science, Monrovia, CA 91016, USA; [email protected] 3 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; [email protected] (K.P.L.); [email protected] (D.M.D.S.) 4 Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA 90033, USA * Correspondence: [email protected]; Tel.: +1-323-442-3870 Received: 5 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Langerhans cells (LC) are the resident antigen presenting cells of the mucosal epithelium and play an essential role in initiating immune responses. LC are the only cells in the body to contain Birbeck granules (BG), which are unique cytoplasmic organelles comprised of c-type lectin langerin. Studies of BG have historically focused on morphological characterizations, but BG have also been implicated in viral antigen processing which suggests that they can serve a function in antiviral immunity. This study focused on investigating proteins that could be involved in BG formation to further characterize their structure using transmission electron microscopy (TEM).
    [Show full text]
  • Detection of Pro Angiogenic and Inflammatory Biomarkers in Patients With
    www.nature.com/scientificreports OPEN Detection of pro angiogenic and infammatory biomarkers in patients with CKD Diana Jalal1,2,3*, Bridget Sanford4, Brandon Renner5, Patrick Ten Eyck6, Jennifer Laskowski5, James Cooper5, Mingyao Sun1, Yousef Zakharia7, Douglas Spitz7,9, Ayotunde Dokun8, Massimo Attanasio1, Kenneth Jones10 & Joshua M. Thurman5 Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and infammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were signifcantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-infammatory proteins were signifcantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and infammation are activated in CKD patients’ plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD. Approximately one in 10 individuals has chronic kidney disease (CKD) rendering CKD one of the most common diseases worldwide1. CKD is associated with a high burden of morbidity in the form of end stage kidney disease (ESKD) requiring dialysis or transplantation 2. Furthermore, patients with CKD are at signifcantly increased risk of death from cardiovascular disease (CVD)3,4.
    [Show full text]
  • Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
    European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33.
    [Show full text]
  • Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment
    cells Article Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment, through Interaction with the Formyl-Peptide Receptors Nunzia Novizio 1, Raffaella Belvedere 1 , Emanuela Pessolano 1,2 , Alessandra Tosco 1 , Amalia Porta 1 , Mauro Perretti 2, Pietro Campiglia 1 , Amelia Filippelli 3 and Antonello Petrella 1,* 1 Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; [email protected] (N.N.); [email protected] (R.B.); [email protected] (E.P.); [email protected] (A.T.); [email protected] (A.P.); [email protected] (P.C.) 2 The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] 3 Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy; afi[email protected] * Correspondence: [email protected]; Tel.: +39-089-969-762; Fax: +39-089-969-602 Received: 17 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: Pancreatic cancer (PC) is one of the most aggressive cancers in the world. Several extracellular factors are involved in its development and metastasis to distant organs. In PC, the protein Annexin A1 (ANXA1) appears to be overexpressed and may be identified as an oncogenic factor, also because it is a component in tumor-deriving extracellular vesicles (EVs). Indeed, these microvesicles are known to nourish the tumor microenvironment. Once we evaluated the autocrine role of ANXA1-containing EVs on PC MIA PaCa-2 cells and their pro-angiogenic action, we investigated the ANXA1 paracrine effect on stromal cells like fibroblasts and endothelial ones.
    [Show full text]
  • Anoctamin 1 (Tmem16a) Ca -Activated Chloride Channel Stoichiometrically Interacts with an Ezrin–Radixin–Moesin Network
    Anoctamin 1 (Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin–radixin–moesin network Patricia Perez-Cornejoa,1, Avanti Gokhaleb,1, Charity Duranb,1, Yuanyuan Cuib, Qinghuan Xiaob, H. Criss Hartzellb,2, and Victor Faundezb,2 aPhysiology Department, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico; and bDepartment of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 Edited by David E. Clapham, Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA, and approved May 9, 2012 (received for review January 4, 2012) The newly discovered Ca2+-activated Cl− channel (CaCC), Anocta- approach to identify Ano1-interacting proteins. We find that min 1 (Ano1 or TMEM16A), has been implicated in vital physiolog- Ano1 forms a complex with two high stochiometry interactomes. ical functions including epithelial fluid secretion, gut motility, and One protein network is centered on the signaling/scaffolding smooth muscle tone. Overexpression of Ano1 in HEK cells or Xen- actin-binding regulatory proteins ezrin, radixin, moesin, and opus oocytes is sufficient to generate Ca2+-activated Cl− currents, RhoA. The ezrin–radixin–moesin (ERM) proteins organize the but the details of channel composition and the regulatory factors cortical cytoskeleton by linking actin to the plasma membrane that control channel biology are incompletely understood. We and coordinate cell signaling events by scaffolding signaling used a highly sensitive quantitative SILAC proteomics approach molecules (19). The other major interactome is centered on the to obtain insights into stoichiometric protein networks associated SNARE and SM proteins VAMP3, syntaxins 2 and -4, and the with the Ano1 channel.
    [Show full text]