Comparative Analysis of a Teleost Skeleton Transcriptome Provides Insight Into Its Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generation and Characterization of a Novel Mouse Line, Keratocan-Rtta (Kerart), for Corneal Stroma and Tendon Research
Cornea Generation and Characterization of a Novel Mouse Line, Keratocan-rtTA (KeraRT), for Corneal Stroma and Tendon Research Yujin Zhang,1 Winston W.-Y. Kao,2 Yasuhito Hayashi,3 Lingling Zhang,1 Mindy Call,2 Fei Dong,2 Yong Yuan,2 Jianhua Zhang,2 Yen-Chiao Wang,1 Okada Yuka,1,4 Atsushi Shiraishi,3 and Chia-Yang Liu1 1School of Optometry, Indiana University, Bloomington, Indiana, United States 2Edith J. Crawley Vision Research Center/Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States 3Department of Ophthalmology, School of Medicine, Ehime University, Ehime, Japan 4Department of Ophthalmology, School of Medicine, Wakayama Medical University, Wakayama, Japan RT Correspondence: Yujin Zhang, Indi- PURPOSE. We created a novel inducible mouse line Keratocan-rtTA (Kera ) that allows ana University School of Optometry, specific genetic modification in corneal keratocytes and tenocytes during development and in 800 Atwater Avenue, Bloomington, adults. IN 47405, USA; [email protected]. METHODS. A gene-targeting vector (Kera- IRES2-rtTA3) was constructed and inserted right after Chia-Yang Liu, Indiana University the termination codon of the mouse Kera allele via gene targeting techniques. The resulting RT RT School of Optometry, 800 Atwater Kera mouse was crossed to tet-O-Hist1H2B-EGFP (TH2B-EGFP) to obtain Kera /TH2B-EGFP Avenue, Bloomington, IN 47405, compound transgenic mice, in which cells expressing Kera are labeled with green USA; fluorescence protein (GFP) by doxycycline (Dox) induction. The expression patterns of [email protected]. RT RT GFP and endogenous Kera were examined in Kera /TH2B-EGFP. Moreover, Kera was bred Submitted: July 21, 2017 with tet-O-TGF-a to generate a double transgenic mouse, KeraRT/tet-O-TGF-a, to overexpress Accepted: August 16, 2017 TGF-a in corneal keratocytes upon Dox induction. -
Calreticulin Controlling the Membrane Translocation of Immunogenicity Of
ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin This information is current as of September 25, 2021. Michel Obeid J Immunol 2008; 181:2533-2543; ; doi: 10.4049/jimmunol.181.4.2533 http://www.jimmunol.org/content/181/4/2533 Downloaded from References This article cites 26 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/181/4/2533.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin1 Michel Obeid2 Several pieces of experimental evidence indicate the following: 1) the most efficient antitumor treatments (this principle applies on both chemotherapy and radiotherapy) are those that induce immunogenic cell death and are able to trigger a specific antitumor immune response; and 2) the immunogenicity of cell death depends very closely on the plasma membrane quantity of calreticulin (CRT), an endoplasmic reticulum (ER) stress protein exposed to the cell membrane after immunogenic treatment. -
The Atf6β-Calreticulin Axis Promotes Neuronal Survival Under Endoplasmic Reticulum Stress and Excitotoxicity
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 The ATF6β-calreticulin axis promotes neuronal survival under 2 endoplasmic reticulum stress and excitotoxicity 3 4 Dinh Thi Nguyen1, Thuong Manh Le1, Tsuyoshi Hattori1, Mika Takarada-Iemata1, 5 Hiroshi Ishii1, Jureepon Roboon1, Takashi Tamatani1, Takayuki Kannon2, 6 Kazuyoshi Hosomichi2, Atsushi Tajima2, Shusuke Taniuchi3, Masato Miyake3, Seiichi 7 Oyadomari3, Shunsuke Saito4, Kazutoshi Mori4, Osamu Hori1* 8 9 10 1.Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa 11 University, Kanazawa, Japan 12 2.Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive 13 Medical Sciences, Kanazawa University, Kanazawa, Japan 14 3.Division of Molecular Biology, Institute for Genome Research, Institute of Advanced 15 Medical Sciences, Tokushima University, Tokushima, Japan 16 4.Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan 17 18 19 Running title: Neuroprotective role of the ATF6β-calreticulin axis 20 21 22 23 24 25 26 * Corresponding author: 27 Dr. Osamu Hori 28 Department of Neuroanatomy, Kanazawa University Graduate School of Medical 29 Sciences, 30 13-1 Takara-Machi, Kanazawa City, 31 Ishikawa 920-8640, Japan 32 Tel: +81-76-265-2162 33 Fax: +81-76-234-4222 34 E-mail: [email protected] 35 36 37 38 39 Key words: neurodegeneration, Ca2+ homeostasis, ER stress 40 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021. -
Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients. -
Molecular Mechanisms Regulating Mammalian Forebrain Development
Molecular Mechanisms Regulating Mammalian Forebrain Development By David Chun Cheong Tsui A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by David Chun Cheong Tsui (2013) Title: Molecular Mechanisms Regulating Mammalian Forebrain Development Name: David Chun Cheong Tsui Degree: Doctor of Philosophy, 2013 Department: Institute of Medical Sciences, University of Toronto ABSTRACT While the extrinsic factors regulating neurogenesis in the developing forebrain have been widely studied, the mechanisms downstream of the various signaling pathways are relatively ill-defined. In particular, we focused on proteins that have been implicated in cognitive dysfunction. Here, we ask what role two cell intrinsic factors play in the development of two different neurogenic compartments in the forebrain. In the first part of the thesis, the transcription factor FoxP2, which is mutated in individuals who have specific language deficits, was identified to regulate neurogenesis in the developing cortex, in part by regulating the transition from the radial precursors to the transit amplifying intermediate progenitors. Moreover, we found that ectopic expression of the human homologue of the protein promotes neurogenesis in the murine cortex, thereby acting as a gain-of-function isoform. In the second part of the thesis, the histone acetyltransferase CREB-binding protein (CBP) was identified as regulating the generation of neurons from medial ganglionic eminence precursors, similar to its role in the developing cortex. But CBP also plays a more substantial role in the expression of late interneuron markers, suggesting that it is continuously required for the various stages of neurogenesis at least in the ventral neurogenic niche. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment
cells Article Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment, through Interaction with the Formyl-Peptide Receptors Nunzia Novizio 1, Raffaella Belvedere 1 , Emanuela Pessolano 1,2 , Alessandra Tosco 1 , Amalia Porta 1 , Mauro Perretti 2, Pietro Campiglia 1 , Amelia Filippelli 3 and Antonello Petrella 1,* 1 Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; [email protected] (N.N.); [email protected] (R.B.); [email protected] (E.P.); [email protected] (A.T.); [email protected] (A.P.); [email protected] (P.C.) 2 The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] 3 Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy; afi[email protected] * Correspondence: [email protected]; Tel.: +39-089-969-762; Fax: +39-089-969-602 Received: 17 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: Pancreatic cancer (PC) is one of the most aggressive cancers in the world. Several extracellular factors are involved in its development and metastasis to distant organs. In PC, the protein Annexin A1 (ANXA1) appears to be overexpressed and may be identified as an oncogenic factor, also because it is a component in tumor-deriving extracellular vesicles (EVs). Indeed, these microvesicles are known to nourish the tumor microenvironment. Once we evaluated the autocrine role of ANXA1-containing EVs on PC MIA PaCa-2 cells and their pro-angiogenic action, we investigated the ANXA1 paracrine effect on stromal cells like fibroblasts and endothelial ones. -
Transcriptomic Landscape of Breast Cancers Through Mrna Sequencing Jeyanthy Eswaran George Washington University
Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Biochemistry and Molecular Medicine Faculty Biochemistry and Molecular Medicine Publications 2-14-2012 Transcriptomic landscape of breast cancers through mRNA sequencing Jeyanthy Eswaran George Washington University Dinesh Cyanam George Washington University Prakriti Mudvari George Washington University Sirigiri Divijendra Natha Reddy George Washington University Suresh Pakala George Washington University See next page for additional authors Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_biochem_facpubs Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Eswaran, J., Cyanam, D., Mudvari, P., Reddy, S., Pakala, S., Nair, S., Florea, L., & Fuqua, S. (2012). Transcriptomic landscape of breast cancers through mrna sequencing. Scientific Reports, 2, 264. This Journal Article is brought to you for free and open access by the Biochemistry and Molecular Medicine at Health Sciences Research Commons. It has been accepted for inclusion in Biochemistry and Molecular Medicine Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Authors Jeyanthy Eswaran, Dinesh Cyanam, Prakriti Mudvari, Sirigiri Divijendra Natha Reddy, Suresh Pakala, Sujit S. Nair, Liliana Florea, Suzanne A.W. Fuqua, Sucheta Godbole, and Rakesh Kumar This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_biochem_facpubs/3 -
Changes in the Cytosolic Proteome of Aedes Malpighian Tubules
329 The Journal of Experimental Biology 212, 329-340 Published by The Company of Biologists 2009 doi:10.1242/jeb.024646 Research article Signaling to the apical membrane and to the paracellular pathway: changes in the cytosolic proteome of Aedes Malpighian tubules Klaus W. Beyenbach1,*, Sabine Baumgart2, Kenneth Lau1, Peter M. Piermarini1 and Sheng Zhang2 1Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA and 2Proteomics and Mass Spectrometry Core Facility, 143 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA *Author for correspondence (e-mail: [email protected]) Accepted 6 November 2008 Summary Using a proteomics approach, we examined the post-translational changes in cytosolic proteins when isolated Malpighian tubules of Aedes aegypti were stimulated for 1 min with the diuretic peptide aedeskinin-III (AK-III, 10–7 mol l–1). The cytosols of control (C) and aedeskinin-treated (T) tubules were extracted from several thousand Malpighian tubules, subjected to 2-D electrophoresis and stained for total proteins and phosphoproteins. The comparison of C and T gels was performed by gel image analysis for the change of normalized spot volumes. Spots with volumes equal to or exceeding C/T ratios of ±1.5 were robotically picked for in- gel digestion with trypsin and submitted for protein identification by nanoLC/MS/MS analysis. Identified proteins covered a wide range of biological activity. As kinin peptides are known to rapidly stimulate transepithelial secretion of electrolytes and water by Malpighian tubules, we focused on those proteins that might mediate the increase in transepithelial secretion. We found that AK- III reduces the cytosolic presence of subunits A and B of the V-type H+ ATPase, endoplasmin, calreticulin, annexin, type II regulatory subunit of protein kinase A (PKA) and rab GDP dissociation inhibitor and increases the cytosolic presence of adducin, actin, Ca2+-binding protein regucalcin/SMP30 and actin-depolymerizing factor. -
Clonally Expanding Smooth Muscle Cells Promote Atherosclerosis by Escaping Efferocytosis and Activating the Complement Cascade
Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade Ying Wanga,b, Vivek Nandaa,b,c, Daniel Direnzoa, Jianqin Yea, Sophia Xiaoa, Yoko Kojimaa, Kathryn L. Howea, Kai-Uwe Jarra, Alyssa M. Floresa, Pavlos Tsantilasa, Noah Tsaoa, Abhiram Raob,d, Alexandra A. C. Newmane, Anne V. Eberharda, James R. Priestf, Arno Ruusaleppg, Gerard Pasterkamph,i, Lars Maegdefesselj,k, Clint L. Millerl,m,n, Lars Lindo, Simon Koplevp, Johan L. M. Björkegrenp, Gary K. Owense, Erik Ingelssonb,o,q, Irving L. Weissmanr,1, and Nicholas J. Leepera,b,1 aDivision of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305; bStanford Cardiovascular Institute, Stanford University, Stanford, CA 94305; cDepartment of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; eRobert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22904; fDivision of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305; gDepartment of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia 50406; hDepartment of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; iLaboratory of Clinical Chemistry, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; jDepartment for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University -
3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture
RESEARCH ARTICLE 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture Chiara E. Ghezzi1, Benedetto Marelli1, Fiorenzo G. Omenetto1, James L. Funderburgh2, David L. Kaplan1* 1 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America, 2 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells OPEN ACCESS (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison Citation: Ghezzi CE, Marelli B, Omenetto FG, to previously developed 2D approaches. Silk film contact guidance was used to control the Funderburgh JL, Kaplan DL (2017) 3D Functional alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were Corneal Stromal Tissue Equivalent Based on then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS ONE 12(1): e0169504. systems were compared similar systems generated with human corneal fibroblasts (hCFs). doi:10.1371/journal.pone.0169504 Both cell types were viable and preferentially aligned along the biomaterial patterns for up to Editor: Dimitrios Karamichos, Oklahoma State 9 weeks in culture. H&E histological sections showed that the systems seeded with the University Center for Health Sciences, UNITED hCSSCs displayed ECM production throughout the entire thickness of the constructs. -
Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues
REVIEW published: 26 August 2021 doi: 10.3389/fsurg.2021.639500 Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues Yihui Song 1†, Morgan Overmass 1†, Jiawen Fan 2, Chris Hodge 1,3,4, Gerard Sutton 1,3,4, Frank J. Lovicu 1,5 and Jingjing You 1,6* 1 Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia, 2 Key Laboratory of Myopia of State Health Ministry, Department of Ophthalmology and Vision Sciences, Eye and Ear, Nose, and Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 3 New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia, 4 Vision Eye Institute, Chatswood, NSW, Australia, 5 Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia, 6 School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia Collagens represent a major group of structural proteins expressed in different tissues and display distinct and variable properties. Whilst collagens are non-transparent in the skin, they confer transparency in the cornea and crystalline lens of the eye. There are 28 types of collagen that all share a common triple helix structure yet differ in the composition Edited by: of their α-chains leading to their different properties. The different organization of collagen Zhilian Yue, fibers also contributes to the variable tissue morphology. The important ability of collagen University of Wollongong, Australia to form different tissues has led to the exploration and application of collagen as a Reviewed by: biomaterial. Collagen type I (Col-I) and collagen type IV (Col-IV) are the two primary Tiago H.