Contents VFLUIDMECHANICS ii 13 Foundations of Fluid Dynamics 1 13.1Overview...................................... 1 13.2 The Macroscopic Nature of a Fluid: Density, Pressure, Flow velocity; Fluids vs.Gases...................................... 3 13.3Hydrostatics.................................... 7 13.3.1 Archimedes’Law ............................. 9 13.3.2 Stars and Planets . 10 13.3.3 Hydrostatics of Rotating Fluids . 11 13.4 Conservation Laws . 15 13.5 Conservation Laws for an Ideal Fluid . 19 13.5.1 Mass Conservation . 19 13.5.2 Momentum Conservation . 20 13.5.3 Euler Equation . 20 13.5.4 Bernoulli’s Theorem; Expansion, Vorticity and Shear ......... 21 13.5.5 Conservation of Energy . 23 13.6IncompressibleFlows ............................... 26 13.7ViscousFlows-PipeFlow ............................ 32 13.7.1 Decomposition of the Velocity Gradient . 32 13.7.2 Navier-Stokes Equation . 32 13.7.3 Energy conservation and entropy production . 34 13.7.4 Molecular Origin of Viscosity . 35 13.7.5 Reynolds’ Number . 35 13.7.6 Blood Flow . 36 i Part V FLUID MECHANICS ii Chapter 13 Foundations of Fluid Dynamics Version 1013.1.K, 21 January 2009 Please send comments, suggestions, and errata via email to
[email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 13.1 Reader’s Guide This chapter relies heavily on the geometric view of Newtonian physics (including • vector and tensor analysis) laid out in the sections of Chap. 1 labeled “[N]”. This chapter also relies on the concepts of strain and its irreducible tensorial parts • (the expansion, shear and rotation) introduced in Chap. 11. Chapters 13–18 (fluid mechanics and magnetohydrodynamics) are extensions of • this chapter; to understand them, this chapter must be mastered.