AMERICAN MUSEUM Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

AMERICAN MUSEUM Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2742, pp. 1-45, figs. 1-33, table 1 August 2, 1982 Systematics of the New World Nectar-Feeding Bats (Mammalia, Phyllostomidae), Based on the Morphology of the Hyoid and Lingual Regions THOMAS ALAN GRIFFITHS' ABSTRACT Dissection and histological examination of the vory observed. The other group, comprising the hyoid and lingual regions of the New World nec- remaining 10 glossophagine genera (Glossopha- tar-feeding bats reveal marked modification ofthe ginae, sensu stricto), plus Phyllonycteris, Ero- tongue retractor musculature (Mm. sternohyoi- phylla, and perhaps Brachyphylla form a mono- deus, geniohyoideus, hyoglossus, styloglossus, and phyletic group. Within the newly restricted genioglossus) and modification ofthe internal and subfamily Glossophaginae there are two major external tongue structure from the conditions clades. One clade is composed of Glossophaga, found in non-nectar-feeding bats. Use of these Monophyllus, and surprisingly, Lichonycteris. The derived characters in a cladistic analysis leads to other is composed of the more derived nectar- the phylogenetic hypothesis that nectivory evolved feeding genera: Leptonycteris, Anoura, Hylonyc- twice independently in the family Phyllostomidae. teris, Choeroniscus, Choeronycteris, and probably One group of nectar-feeding phyllostomids, com- Scleronycteris and Musonycteris. Interestingly, prising the genera Lonchophylla, Lionycteris, and both karyotypic evidence, and evidence from den- Platalina (traditionally considered glossopha- tal and basicranial studies, can be interpreted to gines) deserves separate subfamilial status based support the phylogeny presented here. on the markedly different adaptations for necti- INTRODUCTION For almost 15 years the systematic status 1973; Baker and Lopez, 1970; Gerber and of the New World nectar-feeding bats Leone, 1971; Phillips, 1971; Stock, 1975; (subfamily Glossophaginae) has been dis- Gardner, 1977; Baker and Bass, 1979; Baker puted. Baker (1967) first suggested that the et al., 1981) have continued to examine this subfamily Glossophaginae might not be a question, but while many investigators agree monophyletic group on the basis ofhis karyo- that the group is probably not monophyletic, typic studies of several genera of the group. there is little agreement as to exactly how the Since then Baker and others (see Baker, 1970, group should be properly divided. ' Assistant Professor of Biology, Illinois Wesleyan University, Bloomington, IL 61701. Copyright © American Museum of Natural History 1982 ISSN 0003-0082 / Price $3.20 2 AMERICAN MUSEUM NOVITATES NO. 2742 In addition to the comparatively large Within the Phyllostominae, he recognized subfamily Glossophaginae, there is a smaller four "groups": the Vampyri, the Glossopha- group of endemic Antillean genera that are gae, the Stenodermata, and the Desmo- at least partly nectivorous. These genera have dontes. The Glossophagae contained 10 been traditionally placed in a separate species in seven genera. These genera were subfamily, the Brachyphyllinae (=Phyllo- Glossophaga, Phyllonycteris, Monophyllus, nycterinae, Miller, 1907). However, recent Ischnoglossus (=Leptonycteris), Loncho- karyological work (Baker and Bass, 1979) and glossa (=Anoura), Glossonycteris (=Anoura), immunological work (Baker et al., 1981) in- and Choeronycteris. dicated that the Brachyphyllinae may be The "group" Glossophagae was considered closely related to Glossophaga and Mono- distinct from all other phyllostomids on the phyllus (both glossophagines). This finding basis of: (1) the long, narrow muzzle; (2) the led Baker and Bass (1979) to question the long, extensible tongue "clothed with filiform validity of the subfamily Brachyphyllinae, papillae"; and (3) the deep groove in the and to once again suggest that the Glosso- lower lip. Except for the inclusion of Phyl- phaginae might not be a monophyletic group. lonycteris, today considered to be grouped The hyoid and lingual regions of the glos- with Brachyphylla and Erophylla in a sepa- sophagine bats are highly modified (Sprague, rate, endemic Antillean subfamily, the 1943; Wille, 1954; Winkelmann, 1971; "group" Glossophagae includes all the bats Greenbaum and Phillips, 1974; Howell and then known that are today considered to be- Hodgkin, 1976; Griffiths, 1978a) presumably long to the subfamily Glossophaginae. to permit the hyperextension of the tongue Miller (1907) reexamined the species required for nectar-feeding. These modifi- known to Dobson, plus specimens in the cations are complex and extensive, and thus United States National Museum and mu- are ideal for use as derived characters (apo- seums in Paris, Leiden, and Berlin. Basing morphies, Hennig, 1966) in a cladistic study. his classification on the structure ofthe wing, The main purpose ofthis paper is to attempt sternum, shoulder girdle, and tooth cusps, to resolve the question of the monophyly of Miller divided the Chiroptera into two sub- the subfamily Glossophaginae via dissection orders, 17 families, and 19 subfamilies. All of the hyoid region and histological exami- subsequent classifications of the Chiroptera nation of the tongue. Secondary purposes are based on Miller's work, including Simp- include resolving the exact systematic rela- son (1945), Hall and Kelson (1959), Koop- tionship of the three genera of the other man and Cockrum (1967), Koopman and nectar-feeding subfamily (Brachyphyllinae) Jones (1970), Smith (1976), and Hall (1981). to the Glossophaginae, and determining the Miller (1907) divided the family Phyllostom- relationships of the genera within each idae into seven subfamilies: the Chilonycter- subfamily to one another. To accomplish inae (=family Mormoopidae, Smith, 1972), these goals, representative species of each Phyllostominae, Stenoderminae, Phyllonyc- genus of glossophagine (except Musonycteris terinae (=Brachyphyllinae, Baker, 1979), and Scleronycteris, which were unavailable) Hemiderminae, Sturnirinae, and Glosso- were dissected and compared with represen- phaginae. Miller (1907) recognized that Phyl- tative species ofeach genus ofbrachyphylline lonycteris, "Reithronycteris" (=Phyllonyc- bat, and with a variety of species ofnon-nec- teris, Koopman, 1952), and Erophylla tar-feeding phyllostomid bats. deserved separate subfamilial status on the basis of the "peculiar" tooth structure and HISTORY OF THE PROBLEM the modified noseleaf. Miller also added the The first attempt at a unified classification genera Lonchophylla, Hylonycteris, and Li- of a large number of New World bats was chonycteris to the subfamily Glossophaginae, that of Dobson (1878). Dobson recognized and recognized Dobson's "Ischnoglossa" and two subfamilies within the family Phyllo- "Glossonycteris" as Leptonycteris and An- stomidae: the Lobostominae (=Mormoopi- oura, respectively. With the addition of five dae, Smith, 1972) and the Phyllostominae. more genera (Scleronycteris, Thomas, 1912; 1 982 GRIFFITHS: NECTAR-FEEDING BATS 3 Lionycteris, Thomas, 1913; Choeroniscus, immunologic reactions of sera of glossoph- Thomas, 1928; Platalina, Thomas, 1928; agine bats, also suggested that the Glosso- and Musonycteris, Schaldach and Mc- phaginae were an artificial grouping ofnectar- Laughlin, 1960), the subfamily Glossophag- feeders. They too suggested that there was a inae was generically complete as it is tradi- distinct Glossophaga group and a distinct tionally recognized today. Choeronycteris group. However, relation- However, recent investigations in the areas ships of these groups to non-glossophagines ofchromosome morphology, immunological were directly opposite to those suggested by reactions ofblood sera, and hard morphology Baker (1967). Glossophaga soricina and of the basicranial skull and teeth have given Glossophaga commissarisi were immunolog- rise to speculation that the classic "Glosso- ically more closely related to Carollia than phaginae" may not be a monophyletic group. to Choeronycteris; Choeronycteris mexicana Baker (1967, 1970), on the basis of chro- was most closely related to Phyllostomus, mosome morphology, suggested that Lepto- Chrotopterus (both phyllostomines), and sur- nycteris sanborni, Glossophaga soricina, G. prisingly, to Desmodus, the vampire bat. alticola, and G. commissarisi form a distinct Recent electrophoretic and albumin immu- group which may be more closely related to nological work by Baker et al. (1981) seem Phyllostomus hastatus, Macrotus water- to contradict the karyotypic studies further. housii, and Trachops cirrhosus (all subfamily Baker et al. (1981) presented evidence that Phyllostominae) than to two other glossoph- Anoura, Glossophaga, Monophyllus, Lepto- agines: Choeronycteris mexicana and Choe- nycteris, Hylonycteris, and Choeroniscus form roniscus godmani. Baker (1967) hypothe- a clade. This suggestion directly contradicts sized that the Glossophaginae may actually the karyotypic studies (see Baker, 1967; be an artificial grouping of nectar-feeders, Baker and Bass, 1979) that suggest the Glos- evolved from two or more independent lines. sophaginae are not monophyletic. Choeronycteris and Choeroniscus karyotypi- Stock (1975) contributed to the Baker/Ger- cally showed great similarity to Carollia sub- ber and Leone controversy by reexamining rufa and Carollia perspicillata (subfamily chromosomes of Carollia and Choeroniscus Carolliinae), whereas another glossophagine, using G and C banding techniques. Stock Anoura
Recommended publications
  • Bat Echolocation Research a Handbook for Planning and Conducting Acoustic Studies Second Edition
    Bat Echolocation Research A handbook for planning and conducting acoustic studies Second Edition Erin E. Fraser, Alexander Silvis, R. Mark Brigham, and Zenon J. Czenze EDITORS Bat Echolocation Research A handbook for planning and conducting acoustic studies Second Edition Editors Erin E. Fraser, Alexander Silvis, R. Mark Brigham, and Zenon J. Czenze Citation Fraser et al., eds. 2020. Bat Echolocation Research: A handbook for planning and conducting acoustic studies. Second Edition. Bat Conservation International. Austin, Texas, USA. Tucson, Arizona 2020 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ii Table of Contents Table of Figures ....................................................................................................................................................................... vi Table of Tables ........................................................................................................................................................................ vii Contributing Authors .......................................................................................................................................................... viii Dedication…… .......................................................................................................................................................................... xi Foreword…….. ..........................................................................................................................................................................
    [Show full text]
  • Neoichnology of Bats: Morphological, Ecological, and Phylogenetic Influences on Terrestrial Behavior and Trackmaking Ability Within the Chiroptera
    NEOICHNOLOGY OF BATS: MORPHOLOGICAL, ECOLOGICAL, AND PHYLOGENETIC INFLUENCES ON TERRESTRIAL BEHAVIOR AND TRACKMAKING ABILITY WITHIN THE CHIROPTERA BY MATTHEW FRAZER JONES Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Advisory Committee: ______________________________ Chairperson Stephen T. Hasiotis ______________________________ Co-chair David A. Burnham ______________________________ Robert M. Timm Date Defended: April 8, 2016 The Thesis Committee for MATTHEW FRAZER JONES certifies that this is the approved version of the following thesis: NEOICHNOLOGY OF BATS: MORPHOLOGICAL, ECOLOGICAL, AND PHYLOGENETIC INFLUENCES ON TERRESTRIAL BEHAVIOR AND TRACKMAKING ABILITY WITHIN THE CHIROPTERA ______________________________ Chairperson: Stephen T. Hasiotis ______________________________ Co-chairperson: David A. Burnham Date Approved: April 8, 2016 ii ABSTRACT Among living mammals, bats (Chiroptera) are second only to rodents in total number of species with over 1100 currently known. Extant bat species occupy many trophic niches and feeding habits, including frugivores (fruit eaters), insectivores (insect eaters), nectarivores (nectar and pollen-eaters), carnivores (predators of small terrestrial vertebrates), piscivores (fish eaters), sanguinivores (blood eaters), and omnivores (eat animals and plant material). Modern bats also demonstrate a wide range of terrestrial abilities while feeding, including: (1) those that primarily feed at or near ground level, such as the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata); (2) those rarely observed to feed from or otherwise spend time on the ground; and (3) many intermediate forms that demonstrate terrestrial competency without an obvious ecological basis. The variation in chiropteran terrestrial ability has been hypothesized to be constrained by the morphology of the pelvis and hindlimbs into what are termed types 1, 2, and 3 bats.
    [Show full text]
  • BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at NEW WORLD NECTAR-FEEDING BATS: BIOLOGY, MORPHOLOGY AND CRANIOMETRIC APPROACH TO SYSTEMATICS by ERNST-HERMANN SOLMSEN BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr. 44 1998 Herausgeber: ZOOLOGISCHES FORSCHUNGSINSTITUT UND MUSEUM ALEXANDER KOENIG BONN © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at BONNER ZOOLOGISCHE MONOGRAPHIEN Die Serie wird vom Zoologischen Forschungsinstitut und Museum Alexander Koenig herausgegeben und bringt Originalarbeiten, die für eine Unterbringung in den „Bonner zoologischen Beiträgen" zu lang sind und eine Veröffentlichung als Monographie rechtfertigen. Anfragen bezüglich der Vorlage von Manuskripten sind an die Schriftleitung zu richten; Bestellungen und Tauschangebote bitte an die Bibliothek des Instituts. This series of monographs, published by the Zoological Research Institute and Museum Alexander Koenig, has been established for original contributions too long for inclu- sion in „Bonner zoologische Beiträge". Correspondence concerning manuscripts for pubhcation should be addressed to the editor. Purchase orders and requests for exchange please address to the library of the institute. LTnstitut de Recherches Zoologiques et Museum Alexander Koenig a etabh cette serie de monographies pour pouvoir publier des travaux zoologiques trop longs pour etre inclus dans les „Bonner zoologische Beiträge". Toute correspondance concernante
    [Show full text]
  • Chromosomal Evolution and Phylogeny in the Nullicauda Group
    Gomes et al. BMC Evolutionary Biology (2018) 18:62 https://doi.org/10.1186/s12862-018-1176-3 RESEARCHARTICLE Open Access Chromosomal evolution and phylogeny in the Nullicauda group (Chiroptera, Phyllostomidae): evidence from multidirectional chromosome painting Anderson José Baia Gomes1,3, Cleusa Yoshiko Nagamachi1,4, Luis Reginaldo Ribeiro Rodrigues2, Malcolm Andrew Ferguson-Smith5, Fengtang Yang6, Patricia Caroline Mary O’Brien5 and Julio Cesar Pieczarka1,4* Abstract Background: The family Phyllostomidae (Chiroptera) shows wide morphological, molecular and cytogenetic variation; many disagreements regarding its phylogeny and taxonomy remains to be resolved. In this study, we use chromosome painting with whole chromosome probes from the Phyllostomidae Phyllostomus hastatus and Carollia brevicauda to determine the rearrangements among several genera of the Nullicauda group (subfamilies Gliphonycterinae, Carolliinae, Rhinophyllinae and Stenodermatinae). Results: These data, when compared with previously published chromosome homology maps, allow the construction of a phylogeny comparable to those previously obtained by morphological and molecular analysis. Our phylogeny is largely in agreement with that proposed with molecular data, both on relationships between the subfamilies and among genera; it confirms, for instance, that Carollia and Rhinophylla, previously considered as part of the same subfamily are, in fact, distant genera. Conclusions: The occurrence of the karyotype considered ancestral for this family in several different branches
    [Show full text]
  • Lista Patron Mamiferos
    NOMBRE EN ESPANOL NOMBRE CIENTIFICO NOMBRE EN INGLES ZARIGÜEYAS DIDELPHIDAE OPOSSUMS Zarigüeya Neotropical Didelphis marsupialis Common Opossum Zarigüeya Norteamericana Didelphis virginiana Virginia Opossum Zarigüeya Ocelada Philander opossum Gray Four-eyed Opossum Zarigüeya Acuática Chironectes minimus Water Opossum Zarigüeya Café Metachirus nudicaudatus Brown Four-eyed Opossum Zarigüeya Mexicana Marmosa mexicana Mexican Mouse Opossum Zarigüeya de la Mosquitia Micoureus alstoni Alston´s Mouse Opossum Zarigüeya Lanuda Caluromys derbianus Central American Woolly Opossum OSOS HORMIGUEROS MYRMECOPHAGIDAE ANTEATERS Hormiguero Gigante Myrmecophaga tridactyla Giant Anteater Tamandua Norteño Tamandua mexicana Northern Tamandua Hormiguero Sedoso Cyclopes didactylus Silky Anteater PEREZOSOS BRADYPODIDAE SLOTHS Perezoso Bigarfiado Choloepus hoffmanni Hoffmann’s Two-toed Sloth Perezoso Trigarfiado Bradypus variegatus Brown-throated Three-toed Sloth ARMADILLOS DASYPODIDAE ARMADILLOS Armadillo Centroamericano Cabassous centralis Northern Naked-tailed Armadillo Armadillo Común Dasypus novemcinctus Nine-banded Armadillo MUSARAÑAS SORICIDAE SHREWS Musaraña Americana Común Cryptotis parva Least Shrew MURCIELAGOS SAQUEROS EMBALLONURIDAE SAC-WINGED BATS Murciélago Narigudo Rhynchonycteris naso Proboscis Bat Bilistado Café Saccopteryx bilineata Greater White-lined Bat Bilistado Negruzco Saccopteryx leptura Lesser White-lined Bat Saquero Pelialborotado Centronycteris centralis Shaggy Bat Cariperro Mayor Peropteryx kappleri Greater Doglike Bat Cariperro Menor
    [Show full text]
  • Quaternary Bat Diversity in the Dominican Republic
    AMERICAN MUSEUM NOVITATES Number 3779, 20 pp. June 21, 2013 Quaternary Bat Diversity in the Dominican Republic PAÚL M. VELAZCO,1 HANNAH O’NEILL,2 GREGG F. GUNNELL,3 SIOBHÁN B. COOKE,4 RENATO RIMOLI,5 ALFRED L. ROSENBErgER,1, 6 AND NANCY B. SIMMONS1 ABSTRACT The fossil record of bats is extensive in the Caribbean, but few fossils have previously been reported from the Dominican Republic. In this paper, we describe new collections of fossil bats from two flooded caves in the Dominican Republic, and summarize previous finds from the Island of Hispaniola. The new collections were evaluated in the context of extant and fossil faunas of the Greater Antilles to provide information on the evolution of the bat community of Hispaniola. Eleven species were identified within the new collections, including five mormoopids (Mormoops blainvillei, †Mormoops magna, Pteronotus macleayii, P. parnellii, and P. quadridens), five phyllostomids (Brachy- phylla nana, Monophyllus redmani, Phyllonycteris poeyi, Erophylla bombifrons, and Phyllops falcatus), and one natalid (Chilonatalus micropus). All of these species today inhabitant Hispaniola with the exception of †Mormoops magna, an extinct species previously known only from the Quaternary of Cuba, and Pteronotus macleayii, which is currently known only from extant populations in Cuba and Jamaica, although Quaternary fossils have also been recovered in the Bahamas. Differences between the fossil faunas and those known from the island today suggest that dispersal and extirpa- tion events, perhaps linked to climate change or stochastic events such as hurricanes, may have played roles in structuring the modern fauna of Hispaniola. 1 Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Bats of the Tropical Lowlands of Western Ecuador
    Special Publications Museum of Texas Tech University Number 57 25 May 2010 Bats of the Tropical Lowlands of Western Ecuador Juan P. Carrera, Sergio Solari, Peter A. Larsen, Diego F. Alvarado, Adam D. Brown, Carlos Carrión B., J. Sebastián Tello, and Robert J. Baker Editorial comment. One extension of this collaborative project included the training of local students who should be able to continue with this collaboration and other projects involving Ecuadorian mammals. Ecuador- ian students who have received or are currently pursuing graduate degrees subsequent to the Sowell Expeditions include: Juan Pablo Carrera (completed M.A. degree in Museum Science at Texas Tech University (TTU) in 2007; currently pursuing a Ph.D. with Jorge Salazar-Bravo at TTU); Tamara Enríquez (completed M.A. degree in Museum Science at TTU in 2007, Robert J. Baker (RJB), major advisor); René M. Fonseca (received a post- humous M.S. degree from TTU in 2004, directed by RJB); Raquel Marchán-Rivandeneira (M.S. degree in 2008 under the supervision of RJB; currently pursuing a Ph.D. at TTU directed by Richard Strauss and RJB); Miguel Pinto (M.S. degree at TTU in 2009; currently pursuing a Ph.D. at the Department of Mammalogy and Sackler Institute for Comparative Genomics at the American Museum of Natural History, City University of New York); Juan Sebastián Tello (completed a Licenciatura at Pontificia Universidad Católica del Ecuador (PUCE) in 2005 with Santiago Burneo; currently pursuing a Ph.D. at Louisiana State University directed by Richard Stevens); Diego F. Alvarado (pursuing a Ph.D. at University of Michigan with L.
    [Show full text]
  • Brachyphylla Nana
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum Museum, University of Nebraska State December 1983 Brachyphylla nana Pierre Swanepoel Kaffrarian Museum, King William’s Town, 5600, Republic of South Africa Hugh H. Genoways University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/museummammalogy Part of the Zoology Commons Swanepoel, Pierre and Genoways, Hugh H., "Brachyphylla nana" (1983). Mammalogy Papers: University of Nebraska State Museum. 94. https://digitalcommons.unl.edu/museummammalogy/94 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Brachyphylla nana. BY Pierre swanepoel and ugh H. Genoways Published 15 December 1983 by The American Society of Mammalogists Brachyphylla nana Miller, 1902 1977); Cueva de Paredones, Habana Province (Woloszyn and Silva- Taboada, 1977); Cuba (Arredondo, 1970; Mayo, 1970); St. Michel, Greater Antillean Fruit-eating Bat Haiti (Miller, 1929); Isle of Pines (Peterson, 1917); Dairy Cave, Brachyphylla nana Miller, 1902:409. Type locality El Guami, St. .4nn Parish, Jamaica (Koopman and Williams, 1951); Portland Pinar de Rio, Cuba. Cave, Clarendon Parish, Jamaica (Williams, 1952). Brachyphylla purnlla Miller. 1918:39. Type locality Port-de-Paix, Swanepoel and Genoways (1978) re-examined the material Haiti. collected at Dairy Cave, St. Ann Parish, Jamaica. This Pleistocene or sub-Recent fossil material generally averaged larger than Recent CONTEXT AND CONTENT.
    [Show full text]
  • Neotropical Nectar-Feeding Bats (Family Phyllostomidae) Revisited: Lingual Data Support a Recently-Proposed Molecular Phylogeny
    Illinois Wesleyan University Digital Commons @ IWU Honors Projects Biology 4-25-2001 Neotropical Nectar-feeding Bats (Family Phyllostomidae) Revisited: Lingual Data Support a Recently-Proposed Molecular Phylogeny Shawn De La Mar '01 Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/bio_honproj Part of the Biology Commons Recommended Citation De La Mar '01, Shawn, "Neotropical Nectar-feeding Bats (Family Phyllostomidae) Revisited: Lingual Data Support a Recently-Proposed Molecular Phylogeny" (2001). Honors Projects. 5. https://digitalcommons.iwu.edu/bio_honproj/5 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. Neotropical Nectar-feeding Bats (Family PhyUostomidae) Revisited: Lingual Data Support a Recently-proposed Molecular Phylogeny. A Senior Research Honors Paper Presented By Shawn De La Mar Deparbnent ofBiology Illinois Wesleyan University April 25, 2001 Neotropical Nectar-feeding Bats Revisited: Lingual Data Support a Recently­ proposed Molecular Phylogeny. A Senior Research Honors Paper Presented by Shawn De La Mar Department of Biology Illinois Wesleyan University April 25, 2001 Approved as to style and content by: Th~~Ri:t~F=gy;':;'=IL..WU----- Research Advisor Charles Springwood, pt.
    [Show full text]
  • A Phylogeny of the Neotropical Nectar-Feeding Bats (Chiroptera: Phyllostomidae) Based on Morphological and Molecular Data
    Journal of Mammalian Evolution, Vol. 9, No. 1/ 2, June 2002 ( 2002) A Phylogeny of the Neotropical Nectar-Feeding Bats (Chiroptera: Phyllostomidae) Based on Morphological and Molecular Data Bryan C. Carstens,1,3 Barbara L. Lundrigan,1 and Philip Myers,2 We present a phylogeny of 35 species of nectar-feeding bats based on 119 morphological characters: 62 from the skin, skull, and dentition and 57 soft tissue characters (the latter from Wetterer et al., 2000). These data support monophyly of the subfamilies Brachyphyllinae, Phyllonycterinae, and Glossophaginae, and the tribes Glossophagini and Lonchophyllini. Our analysis contradicts the phylogeny estimated from the RAG-2 gene, which does not support a monophyletic Glossophaginae (Baker et al., 2000). Parsimony analysis of a combined matrix, containing morphological characters and RAG-2 sequences, results in a phylogeny that includes Brachyphyllinae and Phyllonycterinae in Glossophaginae. Support for most clades is stronger than in the morphological tree, but support for basal nodes of the phylogeny remains weak. The weak support at these basal nodes underscores the historical disagreements regarding relationships among these taxa; combining morphological and molecular data has not improved support for these nodes. Uncertainty regarding basal relationships complicates description of morphological change during the evolution of nectarivory in the Phyllostomidae. KEY WORDS: Phyllostomidae, Glossophaginae, Brachyphyllinae, Phyllonycterinae, nectar-feeding, RAG-2. INTRODUCTION The taxonomic history of the nectar-feeding phyllostomid bats has been dominated by questions pertaining to the relationships among three major groups (Table I), the Caribbean subfamilies Brachyphyllinae and Phyllonycterinae and the more broadly dis- tributed Glossophaginae. There has been little consensus regarding relationships among these groups.
    [Show full text]
  • Echolocation Calls and Wing Morphology of Bats from the West Indies
    Acta Chiropterologica, 6(1): 75–90, 2004 PL ISSN 1508–1109 © Museum and Institute of Zoology PAS Echolocation calls and wing morphology of bats from the West Indies NANCY VAUGHAN JENNINGS1, STUART PARSONS2, KATE E. BARLOW3, and MICHAEL R. GANNON4 1School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom E-mail: [email protected] 2School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 32 The Paddock, Seton Mains, Longniddry, East Lothian, EH32 0PG, United Kingdom Previous address: School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom 4Department of Biology, The Pennsylvania State University, Altoona College, 3000 Ivyside Park Altoona, PA 16601-3760, USA Echolocation calls of 119 bats belonging to 12 species in three families from Antillean islands of Puerto Rico, Dominica, and St. Vincent were recorded by using time-expansion methods. Spectrograms of calls and descriptive statistics of five temporal and frequency variables measured from calls are presented. The echolocation calls of many of these species, particularly those in the family Phyllostomidae, have not been described previously. The wing morphology of each taxon is described and related to the structure of its echolocation calls and its foraging ecology. Of slow aerial-hawking insectivores, the Mormoopidae and Natalidae Mormoops blainvillii, Pteronotus davyi davyi, P. quadridens fuliginosus, and Natalus stramineus stramineus can forage with great manoeuvrability in background-cluttered space (close to vegetation), and are able to hover. Pteronotus parnellii portoricensis is able to fly and echolocate in highly-cluttered space (dense vegetation). Among frugivores, nectarivores and omnivores in the family Phyllostomidae, Brachyphylla cavernarum intermedia is adapted to foraging in the edges of vegetation in background-cluttered space, while Erophylla bombifrons bombifrons, Glossophaga longirostris rostrata, Artibeus jamaicensis jamaicensis, A.
    [Show full text]