GG12CH08-Daley ARI 26 July 2011 14:10 Genomic Approaches to Deconstruct Pluripotency Yuin-Han Loh,1,2,∗ Lin Yang,1,2,∗ Jimmy Chen Yang,1,2,∗∗ Hu Li,3,4,∗∗ James J. Collins,3,4,5 and George Q. Daley1,2,5,6,7 1Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children’s Hospital Boston; Dana-Farber Cancer Institute; and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; email:
[email protected] 2Harvard Stem Cell Institute, Cambridge, Massachusetts 02115 3Department of Biomedical Engineering and Center for BioDynamics, Boston University, Boston, Massachusetts 02215 4Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115 5Howard Hughes Medical Institute, Boston, Massachusetts 02115 6Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 7Manton Center for Orphan Disease Research, Boston, Massachusetts 02115 Annu. Rev. Genomics Hum. Genet. 2011. Keywords 12:165–85 transcription regulation, epigenetics, histone modifications, DNA First published online as a Review in Advance on July 25, 2011 methylation, pluripotent stem cells The Annual Review of Genomics and Human Genetics Abstract is online at genom.annualreviews.org Embryonic stem cells (ESCs) first derived from the inner cell mass of by Boston University on 10/07/11. For personal use only. This article’s doi: 10.1146/annurev-genom-082410-101506 blastocyst-stage embryos have the unique capacity of indefinite self- renewal and potential to differentiate into all somatic cell types. Similar Copyright c 2011 by Annual Reviews. All rights reserved developmental potency can be achieved by reprogramming differen- tiated somatic cells into induced pluripotent stem cells (iPSCs).