Obtencion De Funciones De Partición Vía El Teorema De Atiyah-Bott-Singer Y Cuantización Geométrica

Total Page:16

File Type:pdf, Size:1020Kb

Obtencion De Funciones De Partición Vía El Teorema De Atiyah-Bott-Singer Y Cuantización Geométrica Tesis de Grado Obtencion de funciones de partición vía el Teorema de Atiyah-Bott-Singer y Cuantización Geométrica Acosta, Joel Alejandro 2017 Este documento forma parte de las colecciones digitales de la Biblioteca Central Dr. Luis Federico Leloir, disponible en bibliotecadigital.exactas.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the digital collection of the Central Library Dr. Luis Federico Leloir, available in bibliotecadigital.exactas.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Acosta, Joel Alejandro. (2017). Obtencion de funciones de partición vía el Teorema de Atiyah- Bott-Singer y Cuantización Geométrica. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. https://hdl.handle.net/20.500.12110/seminario_nFIS000001_Acosta Cita tipo Chicago: Acosta, Joel Alejandro. "Obtencion de funciones de partición vía el Teorema de Atiyah-Bott- Singer y Cuantización Geométrica". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2017. https://hdl.handle.net/20.500.12110/seminario_nFIS000001_Acosta Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: bibliotecadigital.exactas.uba.ar Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de F´ısica Tesis de Licenciatura Obtenci´onde funciones de partici´onv´ıael Teorema de Atiyah-Bott-Singer y Cuantizaci´onGeom´etrica Joel Alejandro Acosta Director: Dr. Mauricio Leston Codirector: Dr. Alan Garbarz Fecha de Presentaci´on:Marzo 2017 Tema: Obtenci´onde funciones de partici´onv´ıael Teorema de Atiyah-Bott-Singer y Cuantizaci´on Geom´etrica Alumno: Joel A. Acosta L.U.: 721/10 Lugar de trabajo: Instituto de Astronom´ıay F´ısicadel Espacio IAFE - CONICET-UBA Director del trabajo: Dr. Mauricio Leston Codirector del trabajo: Dr. Alan Garbarz Fecha de iniciaci´on: Septiembre 2016 Fecha de finalizaci´on: Marzo 2017 Fecha de examen: Mi´ercoles22 de Marzo de 2017 Informe final aprobado por: Autor Director Jurado Codirector Jurado Profesor de Tesis de Licenciatura Jurado Resumen En esta tesis se estudia el teorema de punto fijo de Atiyah-Bott-Singer. Este teorema conecta varias ramas de la matem´aticay mostraremos que tiene un gran potencial para ser utilizado en distintas situaciones f´ısicas,donde la funci´onde partici´onjuega un papel relevante. Por ejemplo, y como meta a largo plazo, se podr´ıautilizar dicho teorema para la obtenci´onde una funci´onde partici´oncu´antica de la gravedad AdS3, incluso como resultado previo a la obtenci´onde una descripci´oncompleta y expl´ıcitade la teor´ıacu´antica. Dado que el teorema de Atiyah-Bott-Singer involucra varios objetos matem´aticosen principio dis- conexos, se introducen aqu´ıcon cierto detalle. Se comienza estableciendo la estructura geom´etrica del problema cl´asicopara luego introducir el m´etodo de cuantizaci´ongeom´etrica. Este´ es un tema principal de la presente tesis y puede entenderse como una generalizaci´onde la cuantizaci´oncan´onica en t´erminode elementos geom´etricosdel espacio de fases del sistema cl´asico.En particular, en la pre- sente tesis se explica de manera autocontenida las estructuras estructuras necesarias para que el lector pueda familiarizarse con el programa de cuantizaci´ongeom´etricase~nalandosus ventajas y debilidades. Lograda la cuantizaci´ongeom´etricade un sistema, se puede calcular la funci´onde partici´onasociada a cierta transformaci´on.Por otro lado, aqu´ıse muestra que gracias a sofisticados resultados matem´ati- cos, se puede hacer uso del teorema de Atiyah-Bott-Singer para calcular dicha funci´onde partici´on, sin descansar en la maquinar´ıade la cuantizaci´ongeom´etrica.La matem´aticaadicional necesaria se introduce lentamente, partiendo de f´ormulas de punto fijo simples e intuitivas, hasta llegar finalmente al teorema de Atiyah-Bott-Singer y la f´ormula para obtener la funci´onde partici´onque nos brinda. El objetivo principal del trabajo es poner a ambos, cuantizaci´ongeom´etricay f´ormula de Atiyah- Bott-Singer, dentro del mismo contexto de b´usquedade una funci´onde partici´onen una teor´ıacu´antica. En especial, se resaltan las virtudes del teorema de Atiyah-Bott-Singer frente al laborioso programa de cuantizaci´ongeom´etrica.En particular la aplicaci´onde estos dos elementos al caso de gravedad AdS3 (donde el grupo relevante es el de Virasoro) presenta enormes dificultades t´ecnicas,motivo por el cual en este trabajo se estudiar´aen detalle el caso del grupo SU(2), en el que las t´ecnicasy resultados a presentar resultan manejables. Agradecimientos Antes que nada, quisiera expresar mi profundo agradecimiento a mi familia, por su apoyo incondicional durante toda mi formaci´onacad´emica. Agradezco a Mauricio y Alan, por brindarme la oportunidad de trabajar con ellos, y orientarme en cada paso desde el inicio del desarrollo de este trabajo, agradezco adem´aspor su infinita paciencia a la hora de leerlo y por la gran cantidad de comentarios ´utilesque me brindaron. De igual mane- ra, agradezco a los miembros del grupo, en especial a Joan, David y Guillem, por hacer este ´ultimo a~norealmente amigable y, espero, productivo. Las constantes reuniones de grupo, charlas durante los almuerzos y las muy extendidas sobremesas me enriquecieron enormemente. En particular quiero agra- decer a Joan, con quien compart´ıincontables discusiones las cuales aportaron de manera significativa a mi entendimiento general. Agradezco a los compa~neros y amigos que conoc´ıa lo largo de la carrera, los cuales contribuyeron de manera inconmensurable tanto a mi formaci´onacad´emicacomo a mi formaci´oncomo persona. Agradezco a Ariel y Nachito, a quienes conoc´ıal principio de la carrera y desde ese momento co- menzaron a alimentar mi, inicialmente pobre, inter´esen la f´ısica.A Agust´ınquien me ense~n´oque cuando es necesario, los d´ıaspueden tener mas de veinticuatro horas y que un a~nopuede separarse en tres cuatrimestres de cinco meses cada uno. A Christian, a quien conoc´ıen el secundario y con quien puedo disfrutar conversar tanto de temas acad´emicoscomo puramente l´udicos. Agradezco a Hernan, Juan, Noe, Juanma, Mariel, Ceci, Jony, Yanina, Augusto, Quinti y muchos otros que hicieron que gradualmente la facultad se convierta en un hogar para mi. Agradezco especialmente a Bel´encon quien compartimos much´ısimascharlas, discusiones, quejas, sonrisas, tiempo de estudio, berrinches y enojos. Su constante preocupaci´on, consejos y retos hicieron que estos dos ´ultimosa~nossean terriblemente productivos. Finalmente agradezco de coraz´ona Sebastian, Mari y Jime a quienes aprecio profundamente. Ellos supieron acompa~narmeen el trayecto final ayud´andomea alcanzar un equilibrio entre estudio y di- versi´on,soportando en mayor o menor medida, mis constantes cambios de humor. Su compa~n´ıay amistad son, sin lugar a duda, el motivo por el cual concluyo esta etapa en pleno uso de mis facultades mentales. iii ´Indice general Resumen i Agradecimientos iii ´Indice general v Introducci´on vii 1. Geometr´ıaSimpl´ectica 1 1.1. Espacios vectorial simpl´ecticos . .1 1.2. Variedades simpl´ecticas . .4 1.3. Campos vectoriales Hamiltonianos . .7 1.4. Corchetes de Poisson . 11 2. Cuantizaci´onGeom´etrica 17 2.1. Precuantizaci´on. 21 2.2. Polarizaci´on. 30 2.3. M´ascorrecciones . 38 2.4. Observaciones . 40 2.5. Cuantizando las simetr´ıas . 40 3. Orbitas´ Coadjuntas de grupos de Lie 43 3.1. Grupos de Lie, representaci´onadjunta y coadjunta . 43 3.2. Estructura de las ´orbitascoadjuntas . 47 3.3. Equivalencia entre ´orbitas adjuntas y coadjuntas . 51 4. Cuantizaci´onGeom´etricade SU(2) 53 4.1. El grupo y su ´algebra . 53 4.2. Orbitas´ coadjuntas del grupo . 56 4.3. Forma de Kirillov para SU(2) . 57 4.4. La esfera como variedad simpl´ectica . 58 4.5. Condici´onde integrabilidad . 59 4.6. Campos hamiltonianos y corchetes de Poisson . 59 4.7. Polarizaci´ony espacio de Hilbert . 60 v vi ´INDICE GENERAL 4.8. Operadores sobre el Hilbert . 63 5. Teoremas de Punto fijo 67 5.1. F´ormulas de punto fijo para grupos discretos . 67 5.2. Acci´onen el espacio de funciones . 70 5.3. Acci´onen el espacio de secciones . 72 5.4. Representaciones inducidas . 73 5.5. Teorema de punto fijo de Lefschetz . 74 5.6. Teorema de punto fijo de Atiyah-Bott-Singer . 77 5.7. Aplicaci´onal grupo SU(2).................................. 81 6. Conclusiones 85 Appendices 89 A. Fibrados de l´ıneacon conexi´ony condici´onde integrabilidad . 89 B. Variedades complejas . 95 C. Definiciones varias . 97 Bibliograf´ıa 103 Introducci´on La b´usquedapor obtener una unificaci´onentre la mec´anicacu´antica y la relatividad general puede abordarse de muchas formas distintas. Un posible acercamiento es estudiar un caso mucho m´assim- ple, como por ejemplo la teor´ıade gravitaci´onde Einstein en 2 + 1 dimensiones con y sin constante cosmol´ogica.En particular, la gravedad en tres dimensiones con constante cosmol´ogicanegativa (de- nominada gravedad AdS3) es ciertamente m´assimple que la versi´onde cuatro dimensiones (que es la teor´ıa que la comunidad cient´ıficaaspira a cuantizar); por ejemplo, en dicho caso las soluciones de la ecuaci´onde Einstein son localmente difeomorfas a AdS, y difieren entre ellas solamente en cues- tiones globales, lo que implica ausencia de gravitones. La finalidad de tratar de cuantizar gravedad AdS3 es ganar intuici´onpara luego abordar
Recommended publications
  • 2010 Integral
    Autumn 2010 Volume 5 Massachusetts Institute of Technology 1ntegral n e w s f r o m t h e mathematics d e p a r t m e n t a t m i t The retirement of seven of our illustrious col- leagues this year—Mike Artin, David Ben- Inside ney, Dan Kleitman, Arthur Mattuck, Is Sing- er, Dan Stroock, and Alar Toomre—marks • Faculty news 2–3 a shift to a new generation of faculty, from • Women in math 3 those who entered the field in the Sputnik era to those who never knew life without email • A minority perspective 4 and the Internet. The older generation built • Student news 4–5 the department into the academic power- house it is today—indeed they were the core • Funds for RSI and SPUR 5 of the department, its leadership and most • Retiring faculty and staff 6–7 distinguished members, during my early years at MIT. Now, as they are in the process • Alumni corner 8 of retiring, I look around and see that my con- temporaries are becoming the department’s Dear Friends, older group. Yikes! another year gone by and what a year it Other big changes are in the works. Two of Marina Chen have taken the lead in raising an was. We’re getting older, and younger, cele- our dedicated long-term administrators— endowment for them. Together with those of brating prizes and long careers, remembering Joanne Jonsson and Linda Okun—have Tim Lu ’79 and Peiti Tung ’79, their commit- our past and looking to the future.
    [Show full text]
  • Scientific Report for the Year 2000
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 2000 Vienna, ESI-Report 2000 March 1, 2001 Supported by Federal Ministry of Education, Science, and Culture, Austria ESI–Report 2000 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 2000 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2001 Honorary President: Walter Thirring, Tel. +43-1-4277-51516. President: Jakob Yngvason: +43-1-4277-51506. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Eva Kissler, Ursula Sagmeister: +43-1-3172047-12, [email protected] Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 Wolfgang Pauli und die Physik des 20. Jahrhunderts . 3 Summer Session Seminar Sophus Lie . 3 PROGRAMS IN 2000 . 4 Duality, String Theory, and M-theory . 4 Confinement . 5 Representation theory . 7 Algebraic Groups, Invariant Theory, and Applications . 7 Quantum Measurement and Information . 9 CONTINUATION OF PROGRAMS FROM 1999 and earlier . 10 List of Preprints in 2000 . 13 List of seminars and colloquia outside of conferences .
    [Show full text]
  • SCIENTIFIC REPORT for the 5 YEAR PERIOD 1993–1997 INCLUDING the PREHISTORY 1991–1992 ESI, Boltzmanngasse 9, A-1090 Wien, Austria
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the 5 Year Period 1993–1997 Including the Prehistory 1991–1992 Vienna, ESI-Report 1993-1997 March 5, 1998 Supported by Federal Ministry of Science and Transport, Austria http://www.esi.ac.at/ ESI–Report 1993-1997 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE 5 YEAR PERIOD 1993–1997 INCLUDING THE PREHISTORY 1991–1992 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 5, 1998 Table of contents THE YEAR 1991 (Paleolithicum) . 3 Report on the Workshop: Interfaces between Mathematics and Physics, 1991 . 3 THE YEAR 1992 (Neolithicum) . 9 Conference on Interfaces between Mathematics and Physics . 9 Conference ‘75 years of Radon transform’ . 9 THE YEAR 1993 (Start of history of ESI) . 11 Erwin Schr¨odinger Institute opened . 11 The Erwin Schr¨odinger Institute An Austrian Initiative for East-West-Collaboration . 11 ACTIVITIES IN 1993 . 13 Short overview . 13 Two dimensional quantum field theory . 13 Schr¨odinger Operators . 16 Differential geometry . 18 Visitors outside of specific activities . 20 THE YEAR 1994 . 21 General remarks . 21 FTP-server for POSTSCRIPT-files of ESI-preprints available . 22 Winter School in Geometry and Physics . 22 ACTIVITIES IN 1994 . 22 International Symposium in Honour of Boltzmann’s 150th Birthday . 22 Ergodicity in non-commutative algebras . 23 Mathematical relativity . 23 Quaternionic and hyper K¨ahler manifolds, . 25 Spinors, twistors and conformal invariants . 27 Gibbsian random fields . 28 CONTINUATION OF 1993 PROGRAMS . 29 Two-dimensional quantum field theory . 29 Differential Geometry . 29 Schr¨odinger Operators .
    [Show full text]
  • Lie Group Machine Learning on Statistical Drone Doppler & Kinematic Signatures
    December 3rd 2019 Souriau Symplectic Structures of Lie Group Machine Learning on Statistical Drone Doppler & Kinematic Signatures Frédéric BARBARESCO Key Technology Domain Processing, Control & Cognition KTD PCC « SENSING » Segment Leader ENS Ulm 1942 KTD PCC Representative for Thales Land & Air Systems www.thalesgroup.com OPEN Drone Detection, Tracking and Recognizing ▌ Drone Recognition The illegal use of drones requires development of systems capable of detecting, tracking and recognizing them in a non-collaborative manner, and this with sufficient anticipation to be able to engage interception means adapted to the threat. The small size of autonomous aircraft makes it difficult to detect them at long range with enough early warning with conventional techniques, and seems more suitable for observation by radar systems. However, the radio frequency detection of this type of object poses other difficulties to solve because of their slow speed which can make them confused with other mobile echoes such as those of land vehicles, birds and movements of vegetation agitated by atmospheric turbulences. It is therefore necessary to design robust classification methods of its echoes to ensure their discrimination with respect to criteria characterizing their movements (micro-movements of their moving parts and body kinematic movements). Applications of Geometric and Structure Preserving Methods OPEN 2 Cambridge University – Newton Institute, 03/12/19 Drone Recognition on Radar Doppler Signature of their moving parts ▌ Drone Radar Micro-Doppler Signature The first idea is to listen to the Doppler signature of the radar echo coming from the drone, which signs the radial velocity variations of the reflectance parts of the moving elements, like the blades.
    [Show full text]
  • 2018 Leroy P. Steele Prizes
    AMS Prize Announcements FROM THE AMS SECRETARY 2018 Leroy P. Steele Prizes Sergey Fomin Andrei Zelevinsky Martin Aigner Günter Ziegler Jean Bourgain The 2018 Leroy P. Steele Prizes were presented at the 124th Annual Meeting of the AMS in San Diego, California, in January 2018. The Steele Prizes were awarded to Sergey Fomin and Andrei Zelevinsky for Seminal Contribution to Research, to Martin Aigner and Günter Ziegler for Mathematical Exposition, and to Jean Bourgain for Lifetime Achievement. Citation for Seminal Contribution to Research: Biographical Sketch: Sergey Fomin Sergey Fomin and Andrei Zelevinsky Sergey Fomin is the Robert M. Thrall Collegiate Professor The 2018 Steele Prize for Seminal Contribution to Research of Mathematics at the University of Michigan. Born in 1958 in Discrete Mathematics/Logic is awarded to Sergey Fomin in Leningrad (now St. Petersburg), he received an MS (1979) and Andrei Zelevinsky (posthumously) for their paper and a PhD (1982) from Leningrad State University, where “Cluster Algebras I: Foundations,” published in 2002 in his advisor was Anatoly Vershik. He then held positions at St. Petersburg Electrotechnical University and the Institute the Journal of the American Mathematical Society. for Informatics and Automation of the Russian Academy The paper “Cluster Algebras I: Foundations” is a of Sciences. Starting in 1992, he worked in the United modern exemplar of how combinatorial imagination States, first at Massachusetts Institute of Technology and can influence mathematics at large. Cluster algebras are then, since 1999, at the University of Michigan. commutative rings, generated by a collection of elements Fomin’s main research interests lie in algebraic com- called cluster variables, grouped together into overlapping binatorics, including its interactions with various areas clusters.
    [Show full text]
  • Prizes and Awards
    SAN DIEGO • JAN 10–13, 2018 January 2018 SAN DIEGO • JAN 10–13, 2018 Prizes and Awards 4:25 p.m., Thursday, January 11, 2018 66 PAGES | SPINE: 1/8" PROGRAM OPENING REMARKS Deanna Haunsperger, Mathematical Association of America GEORGE DAVID BIRKHOFF PRIZE IN APPLIED MATHEMATICS American Mathematical Society Society for Industrial and Applied Mathematics BERTRAND RUSSELL PRIZE OF THE AMS American Mathematical Society ULF GRENANDER PRIZE IN STOCHASTIC THEORY AND MODELING American Mathematical Society CHEVALLEY PRIZE IN LIE THEORY American Mathematical Society ALBERT LEON WHITEMAN MEMORIAL PRIZE American Mathematical Society FRANK NELSON COLE PRIZE IN ALGEBRA American Mathematical Society LEVI L. CONANT PRIZE American Mathematical Society AWARD FOR DISTINGUISHED PUBLIC SERVICE American Mathematical Society LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH American Mathematical Society LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION American Mathematical Society LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT American Mathematical Society SADOSKY RESEARCH PRIZE IN ANALYSIS Association for Women in Mathematics LOUISE HAY AWARD FOR CONTRIBUTION TO MATHEMATICS EDUCATION Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE WOMEN IN MATHEMATICS Association for Women in Mathematics MICROSOFT RESEARCH PRIZE IN ALGEBRA AND NUMBER THEORY Association for Women in Mathematics COMMUNICATIONS AWARD Joint Policy Board for Mathematics FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics BECKENBACH BOOK PRIZE Mathematical Association of America CHAUVENET PRIZE Mathematical Association of America EULER BOOK PRIZE Mathematical Association of America THE DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS Mathematical Association of America YUEH-GIN GUNG AND DR.CHARLES Y.
    [Show full text]
  • Arxiv:Math/9803079V1 [Math.RT] 18 Mar 1998 Esrfilso Ie Sn H Iga Ehd H Attosection Two Last the [9]
    Diagrams of representations Aleksandrs Mihailovs Department of Mathematics University of Pennsylvania Philadelphia, PA 19104-6395 [email protected] http://www.math.upenn.edu/∼mihailov/ May 1, 2017 Abstract For a representation of a Lie algebra, one can construct a diagram of the representation, i. e. a directed graph with edges labeled by matrix elements of the representation. This article explains how to use these diagrams to describe normal forms, orbits and invariants of the representation, especially for the case of nilpotent Lie algebras. 1 Introduction For a representation of a Lie algebra, one can construct a diagram of the representation, i. e. a directed graph with edges labeled by matrix elements of the representation. In section 2 I give the detailed definition and a few examples. In section 3 I describe how to construct the diagrams of symmetric and exterior powers of representations, with a few examples. Section 4 is the main section of this work. I introduce there the diagram method for the description of normal forms on the orbits arXiv:math/9803079v1 [math.RT] 18 Mar 1998 of a strictly triangular representation of a Lie algebra, usually nilpotent or pronilpotent. Some results in the beginning of this section (without using the diagrams) were obtained independently and earlier by Igor Brodski [1]. Then, in section 5, I show how to apply the diagram method to the description of normal forms of quadratic differentials on a line. First these normal forms were found by Alexandre Kirillov [3]. In section 6 I give the analogous description of normal forms of generalized tensor fields on a line, using the diagram method.
    [Show full text]
  • Program of the Sessions New Orleans, Louisiana, January 5–8, 2007
    Program of the Sessions New Orleans, Louisiana, January 5–8, 2007 2:00PM DAlembert, Clairaut and Lagrange: Euler and the Wednesday, January 3 (6) French mathematical community. Robert E. Bradley, Adelphi University AMS Short Course on Aspects of Statistical Learning, I 3:15PM Break. 3:30PM Enter, stage center: The early drama of hyperbolic 8:00 AM –4:45PM (7) functions in the age of Euler. Organizers: Cynthia Rudin, Courant Institute, New Janet Barnett, Colorado State University-Pueblo York University Miroslav Dud´ik, Princeton University 8:00AM Registration. 9:00AM Opening remarks by Cynthia Rudin and Miroslav Thursday, January 4 Dud´ik. 9:15AM Machine Learning Algorithms for Classification. MAA Board of Governors (1) Robert E. Schapire, Princeton University 10:30AM Break. 8:00 AM –5:00PM 11:00AM Occam’s Razor and Generalization Bounds. (2) Cynthia Rudin*, Center for Neural Science and AMS Short Course on Aspects of Statistical Learning, Courant Institute, New York University, and II Miroslav Dud´ik*, Princeton University 2:00PM Exact Learning of Boolean Functions and Finite 9:00 AM –1:00PM (3) Automata with Queries. Lisa Hellerstein, Polytechnic University Organizers: Cynthia Rudin, Courant Institute, New York University 3:15PM Break. Miroslav Dud´ik, Princeton University 3:45PM Panel Discussion. 9:00AM Online Learning. (8) Adam Tauman Kalai, Weizmann Institute of MAA Short Course on Leonhard Euler: Looking Back Science and Toyota Technological Institute after 300 Years, I 10:15AM Break. 10:45AM Spectral Methods for Visualization and Analysis of 8:00 AM –4:45PM (9) High Dimensional Data. Organizers: Ed Sandifer, Western Connecticut Lawrence Saul, University of California San Diego State University NOON Question and answer session.
    [Show full text]
  • Representation Theory V
    Representation Theory v. 1 Representations of ¯nite and compact groups. Representations of simple Lie algebras Dimitry Leites (Ed.) Abdus Salam School of Mathematical Sciences Lahore, Pakistan Summary. This volume consists of: (1) lectures on representation theory of ¯nite and compact groups for beginners (by A. Kirillov), and Lie theory on relation between Lie groups and Lie algebras (after E.¶ Vinberg); (2) introduction into representation theory of Lie algebras (by J. Bernstein); these lectures contain previously unpublished new proof of the Chevalley theorem and an approach to the classi¯cation of irreducible ¯nite dimensional representations of simple ¯nite dimensional Lie algebras by means of certain in¯nite dimensional modules. (3) The lecture course is illustrated by a translation of a paper by V. Arnold in which the master shows how to apply the representation theory of one of the simplest of ¯nite groups | the group of rotations of the cube | to some problems of real life. This part also contains open problems for a computer-aided study. ISBN 978-969-9236-01-3 °c D. Leites (translation from the Russian, compilation), 2009 °c respective authors, 2009 Contents Editor's preface . 5 Notation and several commentaries . 9 1 Lectures for beginners on representation theory: Finite and compact groups (A. A. Kirillov) ::::::::::::::::::::::: 11 Lecture 1. Complex representations of Abelian groups . 11 Lecture 2. Schur's lemma, Burnside's theorem . 16 Lecture 3. The structure of the group ring . 20 Lecture 4. Intertwining operators and intertwining numbers . 25 Lecture 5. On representations of Sn ............................ 29 Lecture 6. Invariant integration on compact groups . 34 Lecture 7.
    [Show full text]
  • The Shaw Prize Founder's Biographical Note
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have achieved distinguished and significant advances, who have made outstanding contributions in culture and the arts, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference will be given to individuals whose significant work was recently achieved. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, is a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. In the 1950s he founded the film company Shaw Brothers (Hong Kong) Limited in Hong Kong. He served as Executive Chairman of Television Broadcasts Limited in Hong Kong since the 1970s until earlier this year and is now Chairman of TVB and a Member of its Executive Committee. Mr Shaw has also founded two charities, The Sir Run Run Shaw Charitable Trust and The Shaw Foundation Hong Kong, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive This is the seventh year of the Shaw Prize. Since its inauguration in 2004, it has become one of the most prestigious international awards in recognition of academic excellence of distinguished scientists whose achievements have significantly benefited mankind. This year, five eminent scientists will join the elite group of 31 prominent Shaw Laureates from around the world, whose work has been a lasting source of inspiration to fellow scientists and has advanced human understanding of astronomy, life science and medicine, and mathematical sciences.
    [Show full text]
  • Beilinson and Kazhdan Awarded 2020 Shaw Prize
    COMMUNICATION Beilinson and Kazhdan Awarded 2020 Shaw Prize The Shaw Foundation has announced the awarding of the 2020 Shaw Prize to Alexander Beilinson of the University of Chicago and David Kazhdan of the Hebrew University of Jerusalem “for their huge influence on and profound contributions to representation theory, as well as many other areas of mathematics.” for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system, and the representations also make the symme- try group better understood. In loose terms, representation theory is the study of the basic symmetries of mathematics and physics. Symmetry groups are of many different kinds: finite groups, Lie groups, algebraic groups, p-adic groups, loop groups, adelic groups. This may partly explain how Beilinson and Kazhdan have been able to contribute to so many different fields. One of Kazhdan’s most influential ideas has been the introduction of a property of groups that is known as Alexander Beilinson David Kazhdan Kazhdan’s property (T). Among the representations of a group there is always the not very interesting “trivial rep- Citation for Beilinson and Kazhdan resentation,” where we associate with each group element Alexander Beilinson and David Kazhdan are two mathe- the “transformation” that does nothing at all to the object. maticians who have made profound contributions to the While the trivial representation is not interesting on its branch of mathematics known as representation theory but own, much more interesting is the question of how close who are also famous for the fundamental influence they another representation can be to the trivial one.
    [Show full text]
  • FACTORIZATIONS in the IRREDUCIBLE CHARACTERS of COMPACT SEMISIMPLE LIE GROUPS Andrew Rupinski University of Pennsylvania, [email protected]
    Publicly accessible Penn Dissertations University of Pennsylvania Year 2010 FACTORIZATIONS IN THE IRREDUCIBLE CHARACTERS OF COMPACT SEMISIMPLE LIE GROUPS Andrew Rupinski University of Pennsylvania, [email protected] This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1 FACTORIZATIONS IN THE IRREDUCIBLE CHARACTERS OF COMPACT SEMISIMPLE LIE GROUPS Andrew Rupinski A Dissertation in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2010 Alexandre Kirillov Supervisor of Dissertation Tony Pantev Graduate Group Chairperson UMI Number: 3431168 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3431168 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 Acknowledgments Many people deserve thanks for getting me where I am. Ordered alphabetically by importance in Sanskirit, they include: • My family without whom I would not be here, and without whose daily phone calls to check in on me I was able to get lots of work done. • Janet, Monica, Robin and Paula in the office for always being there to tell me how to use the fax machine or to have me change the water as practice for my eventual career after grad school.
    [Show full text]