Cartography” Into the History of Cartography: Arthur H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geography 360 Principles of Cartography
Geography 360 Principles of Cartography April 26, 2006 Typography Outlines 1. Principles of typography • Anatomy of letterform • Classifying type family • Typographic variables 2. Using type for map design • Choosing type family • Choosing typographic variables • Guidelines for type placement 1. Principles of typography • What constitutes letterform? – with focus on serif and shading • Classifying type family – based on common characteristics of letterform • Typographic variables – Type style, size, case, spacing, … Some design aspects of letterform •Serif: finishing strokes added to the end of the main strokes of the letter • Shading: main slant of letterforms Source: Dent Figure 14.1 •Serif vs. San Serif • Diagonal shading vs. horizontal shading Aspects of letterform • Serif vs. Sans Serif – Serif: lettering styles that contain such finishing strokes – Sans Serif: lettering styles that do not contain such finishing strokes • Diagonal Shading vs. horizontal/vertical Shading – Where is the position of the maximum stress in curved letters? – See Dent Figure 14.3 What is type family? • Type family: a group of type designs that reflect common design characteristics and share a common base name (Fig. 11.18) Palatino Helvetica Bookman Gill Sans Classifying type family Alexander Lawson, 1971, Printing types: An Introduction Classifying type family Class Appearance Distinct Other characteristics name Black Letter Hand Decorative Text lettering Oldstyle Lacking Diagonal Roman geometric shading Modern Geometric Vertical/horizo ntal shading Sans Precise, No serif Gothic serif clean-cut Typographic variables • Type family can be further differentiated by typographic variables such as • Type style: italic, normal, bold (Fig. 11.18 B) • Type size: 24 point (Fig. 11. 18D) • Type case: UPPERCASE, lowercase, Title Case, Sentence case (Fig. -
Cartographic Visualisation and Landscape Modeling
CARTOGRAPHIC VISUALISATION AND LANDSCAPE MODELING Milap Punia Associate Professor, Centre for the Study of Regional Development, School of Social Sciences, Jawaharlal Nehru University, New Delhi-110067 - [email protected] KEY WORDS: Preception, Aesthetics, Cartographic Design,Visualisation, Landscape ABSTRACT: Perception plays a major role for interpretation or extracting information from remote sensing data and from thematic maps. With advances in information technology, there remains a necessary and critical role for the “human in the loop” in the interpretation of remotely sensed imagery, in earth sciences and cartography. On the side of information technology display systems play a critical role in supporting visualization, and in recent years it has become widely recognized that the visualization of data is critical in science, including the domain of cartography, a field with a long-standing interest in issues of communication effectiveness. These cartographic concerns pertaining to the features of display symbols, elements, and patterns have clear effects on process of perception and visual search. In this study an attempt has been made to harness, interpret, compare and evaluate landscape aesthetics with cartographic aesthetics. By understanding and incorporating cartographic aesthetics with landscape aesthetics, the cartographic design process can be strengthened and effective maps can be generated. Here both landscape and cartography are considered as objects of aesthetics and an attempt has been made to evaluate their aesthetic experience and to analyze their various patterns of similarity and exceptions. By doing this it formulates and facilitates conception of feeling, expression and visual reality all together in the cartographic design process. 1. INTRODUCTION Aesthetics has been a subject of philosophy since long period. -
Developing an Arabic Typography Course for Visual Communication Design
Developing an Arabic Typography course for Visual Communication Design Students in the Middle East and North African Region A thesis submitted to the School of Visual Communication Design, College of Communication and Information of Kent State University in partial fulfillment of the requirements for the degree of Master of Fine Arts by Basma Almusallam May, 2014 Thesis written by Basma Almusallam B.F.A, Kuwait University, 2008 M.F.A, Kent State University, 2014 Approved by ___________________________ Jillian Coorey, M.F.A., Advisor ___________________________ AnnMarie LeBlanc, M.F.A., Director, School of Visual Communication Design ___________________________ Stanley T. Wearden, Ph.D., Dean, College of Communication and Information Table of Contents TABLE OF CONTENTS………………………………………………………………...... iii LIST OF FIGURES……………………………………………………………………….. v PREFACE………………………………………………………………………………..... vi CHAPTER I. INTRODUCTION…………………………………………………………. 1 The Current Issue………………………………………………….. 1 Core Objectives……………………………………………………. 3 II. THE HISTORY OF THE ARABIC WRITING SYSTEM, CALLIGRAPHY AND TYPOGRAPHY………………………………………....………….. 4 The Arabic Writing System……………………………………….. 4 Arabic Calligraphy………………………………………………… 5 The Undocumented Art of Arabic Calligraphy……………….…… 6 The Shift Towards Typography and the Digital Era………………. 7 The Pressing Issue of the Present………………………………….. 8 A NOTE ON THE PROCESS…………………………………………………………….. 10 Applying a Framework for Research Documentation…………….. 11 Mental Model……………………………………………………… 12 Proposed User Testing……………………………………………. -
MAP DESIGN a Development of Background Map Visualisation in Digpro Dppower Application
EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 MAP DESIGN A development of background map visualisation in Digpro dpPower application FREDRIK AHNLÉN KTH SKOLAN FÖR ARKITEKTUR OCH SAMHÄLLSBYGGNAD Acknowledgments Annmari Skrifvare, Digpro AB, co-supervisor. For setting up test environment, providing feed- back and support throughout the thesis work. Jesper Svedberg, Digpro AB, senior-supervisor. For providing feedback both in the start up process of the thesis work as well as the evaluation part. Milan Horemuz, KTH Geodesy and Geoinformatics, co-supervisor. For assisting in the structur- ing of the thesis work as well as providing feedback and support. Anna Jenssen, KTH Geodesy and Geoinformatics, examiner. Finally big thanks to Anders Nerman, Digpro AB, for explaining the fundamentals of cus- tomer usage of dpPower and Jeanette Stenberg, Kraftringen, Gunilla Pettersson, Eon Energi, Karin Backström, Borlänge Energi, Lars Boström, Torbjörn Persson and Thomas Björn- hager, Smedjebacken Energi Nät AB, for providing user feedback via interviews and survey evaluation. i Abstract What is good map design and how should information best be visualised for a human reader? This is a general question relevant for all types of design and especially for digital maps and various Geographic Information Systems (GIS), due to the rapid development of our digital world. This general question is answered in this thesis by presenting a number of principles and tips for design of maps and specifically interactive digital visualisation systems, such as a GIS. Furthermore, this knowledge is applied to the application dpPower, by Digpro, which present the tools to help customers manage, visualise, design and perform calculations on their electrical networks. -
Map Layout and Cartographic Design with Arcgis Desktop
Map Layout and Cartographic Design with ArcGIS Desktop Matthew Baker ESRI Educational Services Redlands, CA Education UC 2008 1 Seminar overview • General map design principles • Working with map elements • UiUsing Arc Map temp ltlates • Tips and tricks for improving maps Education UC 2008 2 Affective and substantive design • ‘Thin k be fore you draw ’ – Map design is a timetime--consumingconsuming process • Affec tive – What is the ‘look’ or ‘feel’ of the map? • Historical, modern, technical • Substantive – What is shown on the map and for what purpose? • Text blocks, charts, tables, images Map image from the Atlas of Oregon (2nd. Ed.), Copyright 2001 University of Oregon Press Education UC 2008 3 Layout design • Balance – Margins – White space – Bounding boxes – Alignment Unbalanced layout Education UC 2008 4 Layout design • Balance – Margins – White space – Bounding boxes – Alignment Balanced layout Education UC 2008 5 Layout design: Figure Ground Relationship • Figure: – object in front of the background • Ground: – Underlying plane behind elements • Figure-Ground Relationship – Separating figure from ground – Enhanced using • Drop shadow • Draw order • Contrast Map image from the Atlas of Oregon (2nd. Ed.) Copyright 2001 University of Oregon Press Education UC 2008 6 Layout design • Visua l contrast – Separates figure from ground Education UC 2008 7 Layout design • Visual contrast Education UC 2008 8 Layout design • Visual hierarchy • More attention paid from top down • Top: – Important items – Larger items • Bottom – Less important -
Cartographic Perspectives Perspectives 1 Journal of the North American Cartographic Information Society Number 65, Winter 2010
Number 65, Winter 2010 cartographicCartographic perspectives Perspectives 1 Journal of the North American Cartographic Information Society Number 65, Winter 2010 From the Editor In this Issue Dear NACIS Members: OPINION PIECE Outside the Bubble: Real-world Mapmaking Advice for Students 7 The winter of 2010 was quite an ordeal to get through here on the FEATURED ARTICLES eastern side of Big Savage Moun- Considerations in Design of Transition Behaviors for Dynamic 16 tain. A nearby weather recording Thematic Maps station located on Keysers Ridge Sarah E. Battersby and Kirk P. Goldsberry (about 10 miles to the west of Frostburg) recorded 262.5 inches Non-Connective Linear Cartograms for Mapping Traffic Conditions 33 of snow for the winter of 2010. Yi-Hwa Wu and Ming-Chih Hung For the first time in my eleven- year tenure at Frostburg State REVIEWS University, the university was Cartography Design Annual # 1 51 shut down for an entire week. Reviewed by Mary L. Johnson The crews that normally plow the sidewalks and parking lots were Cartographic Relief Presentation 53 snowed in and could not get out of Reviewed by Dawn Youngblood their homes. As storm after storm swept through the area, plow- GIS Tutorial for Marketing 54 ing became more difficult. There Reviewed by Eva Dodsworth wasn’t enough room to pile up the snow. Even today, snow drifts The State of the Middle East: An Atlas of Conflict and Resolution 56 remain dotted amidst the green- Reviewed by Daniel G. Cole ing fields. However, it appears as though spring will pass us by as CARTOGRAPHIC COLLECTIONS summer apparently is already here More than Just a Pretty Picture: The Map Collection at the Library 59 with several days that have broken of Virginia existing record high temperatures. -
Design Issues with 3D Maps and the Need for 3D Cartographic Design
Design Issues with 3D Maps and the Need for 3D Cartographic Design Principles Dave Pegg Abstract Design issues regarding the presentation of geographical information in a th ree- dimensional perspective are varied and complex. This paper looks at some of issues of 3D mapping stemming from its rapid development as a cartographic tool, its growing popularity and accessibility amongst users, and the 3D cartographic principles proposed to manage the design and presentation that are not covered by traditional cartographic principles. Introduction Multimedia cartography has been propelled forward by the rapid technological advances for the capture, manipulation and presentation of geographical data, with most map products now being developed digitally. The quality and accuracy of data capture, data storage & manipulation capabilities, as well as the advancements in software, mean that a cartographer now has the ability to digitally create spatially accurate, detailed and high resolution three-dimensional maps and visualizations. The advent of Digital terrain or elevation models make available the presentation of geographical data in three dimensional space, and allowing precise modelling of not only x and y locations, but the z height creating a three-dimensional landscape. In the case of three-dimensional cartographic mapping, there are many different applications that have been designed for the creation of 3D maps and visualizations, and the development of standards and guidelines in regards to the technical aspects of such models. 3D maps can be done in several different ways, each way creating a different representation of the landscape. 3D maps can be photorealistic, where the landscape is created to match the exact landscape, using techniques of overlaying ortho-photography over a 3D model, or can be “symbolistic”, where the maps are generalized and symbols designed to show object locations and information. -
CARTOGRAPHIC DESIGN: Cartographic Design Principles Symbology Type Map Compilation Cartographic Design Principles from the Outset…
DAY 2 CARTOGRAPHIC DESIGN: Cartographic Design Principles Symbology Type Map Compilation Cartographic Design Principles From the outset… • …know your message • These will guide your decisions about • …know your audience – map projections • …design for the medium – generalization – symbology – labeling – map elements (scale bars, legends, north arrows, etc.) – page layout – everything! A couple of cartographic terms… • Substantive objective • Affective objective – What you are showing – the – How you are showing it – the “substance” of the map’ “affect” of the map – The map is the MAIN thing!!!! – Sets the mood – Map elements support the map – Use map to promote it • these should be informative , • content not just take up space • colors, text, symbols • legend, title, inset maps, text – Use map elements to promote blocks, logos, north arrow, scale this • bounding box, north arrow, scale • text, color • images, graphs, other graphics • others Examples courtesy of the University of Oregon InfoGraphics Lab Design Planning • Visual balance – all elements balanced, aligned, thoughtful use of white space • Visual flow – movement of the eye across the page • Relative importance of map elements • Sketch map – starts you thinking, not the end Sketch Map • The place of interest • The distribution being mapped • The relative position of the data in the distribution being mapped • The map elements • The relative position of the map elements Cartographic Design Principles – review! • Generalization - Coastline • Figure-ground - Whitewash • Visual hierarchy – Administrative boundaries, rivers, labels • Legibility - labels • Visual balance – let’s take a look! • Visual flow • Symbolization • Typography Controls on Map Design and Compilation • Purpose – substantive / affective • Reality – shape, complexity, color • Available data – data quality / symbolization • Map scale – smaller scale - less feature detail • Audience – old / young, experienced / not • Conditions of use – light, distance, time to read map, medium, etc. -
Designing Typefaces for Maps. a Protocol of Tests
Designing typefaces for maps. A protocol of tests. Sébastien Biniek,a Guillaume Touya,a Gilles Rouffineau,b and Thomas Huot-Marchandc a Univ. Paris-Est, LASTIG COGIT, IGN, ENSG, F-94160 Saint-Mande, France b ÉSAD Grenoble Valence, 38 000, Grenoble, France c ANRT, ENSAD, 54013, Nancy, France. Abstract: The text management in map design is a topic generally linked to placement and composition issues. Whereas the type design issue is rarely addressed or at least only partially. Moreover the typefaces especially designed for maps are rare. This paper presents a protocol of tests to evaluate characters for digital topographic maps and fonts that were designed for the screen through the use of geographical information systems using this protocol. It was launched by the Atelier National de Recherche Typographique Research (ANRT, located in Nancy, France) and took place over his ‘post-master’ course in 2013. The purpose is to isolate different issues inherent to text in a topographic map: map background, nonlinear text placement and toponymic hierarchies. Further research is necessary to improve this kind of approach. Keywords: Typography, Fonts, Topographic maps cannot be said that cartography is used to exploit the 1. Introduction latest innovations in type design. Even some typographic The graphic and textual components of a map form a choices can be disappointing for type designers. For single image that is both seen and read but unlike map example, we would like to notice the recent change of objects, map texts doesn’t have pre-defined positions. On typeface that has been operated at Swisstopo (the Swiss the other hand, the text is always linked to a map object national mapping agency). -
Typography Height
THIS MONTH POInts OF VIEW a Serif Sans serif b Ascender Serif Typography Height Typography is the art and technique of arranging type. Like a Serif Descender person’s speaking style and skill, the quality of our treatment of Figure 1 | Typefaces. (a) The anatomy of letterform for serif (Garamond) letters on a page can influence how people respond to our mes- and sans serif (Univers) type both set at 58 point. (b) Four of the most sage. It is an essential act of encoding and interpretation, linking readily available fonts. what we say to what people see. Typography has been known to affect perception of credibility. line and paragraph settings (Fig. 2b). The relative scale of white In one study, identical job resumes printed using different type- space in Figure 2b makes the hierarchy of the content apparent. faces were sent out for review. Resumes with typefaces deemed Differentially aligning the paragraph text and bulleted list, when appropriate for a given industry resulted in applicants being con- allowed, differentiates the content. sidered more knowledgeable, mature, experienced, professional, To achieve meaningfully spaced text, use the ‘space before’ and believable and trustworthy than when less appropriate typefaces ‘space after’ settings instead of extra carriage returns. Find the were used1. In this case, picking the right typeface can help some- settings under Font menu > Paragraphs (PowerPoint) or Format one’s chances of landing a job. menu > Paragraphs (Word). The paragraph text in Figure 2b is set The term typeface is frequently conflated with font; Arial is a with 5 point space after it; the bulleted list has 3 point space after ‘typeface’ that may include roman, bold and italic ‘fonts’. -
Standards of Competence for Category "A" Nautical Cartographers
INTERNATIONAL INTERNATIONAL INTERNATIONAL FEDERATION OF HYDROGRAPHIC CARTOGRAPHIC SURVEYORS ORGANIZATION ASSOCIATION STANDARDS OF COMPETENCE FOR CATEGORY "A" NAUTICAL CARTOGRAPHERS Publication S-8A First Edition Version 1.0.1 - June 2018 Published by: The International Hydrographic Organization © 4b, quai Antoine 1er B.P. 445 Monaco, MC 98011 Cedex MONACO [email protected] www.iho.int Comments arising from the experience gained in the application of the guidance are welcome. They should be addressed to the Chair of the International Board for Standards of Competence of Hydrographic Surveyors and Nautical Cartographers at the above address. This document is published periodically. Please check with IHO for the latest edition, including current amendments. © Copyright International Hydrographic Organization 2018 This work is copyright. Apart from any use permitted in accordance with the Berne Convention for the Protection of Literary and Artistic Works (1886), and except in the circumstances described below, no part may be translated, reproduced by any process, adapted, communicated or commercially exploited without prior written permission from the International Hydrographic Organization (IHO). Copyright in some of the material in this publication may be owned by another party and permission for the translation and/or reproduction of that material must be obtained from the owner. This document or partial material from this document may be translated, reproduced or distributed for general information, on no more than a cost recovery basis. Copies -
CHAPTER 9 DATA DISPLAY and CARTOGRAPHY 9.1 Cartographic
CHAPTER 9 DATA DISPLAY AND CARTOGRAPHY 9.1 Cartographic Representation 9.1.1 Spatial Features and Map Symbols 9.1.2 Use of Color 9.1.3 Data Classification 9.1.4 Generalization Box 9.1 Representations 9.2 Types of Quantitative Maps Box 9.2 Locating Dots on a Dot Map Box 9.3 Mapping Derived and Absolute Values 9.3 Typography 9.3.1 Type Variations 9.3.2 Selection of Type Variations 9.3.3 Placement of Text in the Map Body Box 9.4 Options for Dynamic Labeling 9.4 Map Design 9.4.1 Layout Box 9.5 Wizards for Adding Map Elements 9.4.2 Visual Hierarchy 9.5 Map Production Box 9.6 Working with Soft-Copy Maps Box 9.7 A Web Tool for Making Color Maps Key Concepts and Terms Review Questions Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Applications: Data Display and Cartography Task 1: Make a Choropleth Map Task 2: Use Graduated Symbols, Line Symbols, Highway Shield Symbols, and Text Symbols Task 3: Label Streams Challenge Task References 1 Common Map Elements zCommon map elements are the title, body, legend, north arrow, scale, acknowledgment, and neatline/map border. zOther elements include the graticule or grid, name of map projection, inset or location map, and data quality information. Figure 9.1 Common map elements. 2 Cartographic Representation zCartography is the making and study of maps in all their aspects. zCartographers classify maps into general reference or thematic, and qualitative or quantitative. Spatial Features and Map Symbols zTo display a spatial feature on a map, we use a map symbol to indicate the feature’s location and a visual variable, or visual variables, with the symbol to show the feature’s attribute data.