The Historical Role of Photomechanical Techniques in Map Production Karen Severud Cook

Total Page:16

File Type:pdf, Size:1020Kb

The Historical Role of Photomechanical Techniques in Map Production Karen Severud Cook The Historical Role of Photomechanical Techniques in Map Production Karen Severud Cook ABSTRACT: From the 1880s until the 1970s, photomechanical techniques played an important role in map making. Images created by and for photography were manipulated to form the printing image(s) from which the map was reproduced in multiple copies. After experiments in mapmaking in the 1860s, photomechanical techniques gained acceptance by the 1880s and, thereafter, increasingly dominated mapmaking until their rapid decline after the 1970s, as the shift to computers and electronic technology occurred. When they replaced earlier manual methods in the nineteenth century, photomechanical techniques caused the tools and materials of map production and the roles of personnel to change. Control over image production shifted from the printer to the cartographer as pen-and-ink drafting and associated collage techniques developed in the early 1900s, and even more so when scribing came into general use in the 1960s. Having thus assumed more direct responsibility for the end product (the printed map), the cartographer also adopted methods of predicting and controlling its appearance, such as standardized tools and materials, drafting specifications, flow charting, and color proofing. Through the faster and cheaper production of maps whose graphic presentation of information was enhanced by tonal effects and color printing, photomechanical production techniques also contributed to the growth of the map trade and of map use during the twentieth century. KEYWORDS: Photomechanical map production; map design; map reproduction; production tools; production techniques; production materials; pen-and-ink drafting; photographic halftone screen; photographic tint screen; stick-up; negative scribing; technical pens; photolithography; photoengrav- ing; collage techniques Introduction images for and by photography that ultimately form the printing image(s) from which the map is or about a century (from the 1880s until reproduced in multiple copies. They combine the the 1970s), photomechanical production ability of photography to create images automatically played a significant role in mapmak- (by the action of light on a light-sensitive emulsion) Fing. After several decades of initial experimental with the ability of relief, intaglio, or lithographic development in various branches of the graphic printing processes to reproduce multiple copies by arts, photomechanical techniques began to find repeated impressions of the inked printing image use in map production from the 1860s onward. (Nadeau 1990, p. 377). Continuing technical innovations enhanced the Faster, cheaper, and increasingly competitive graphic capabilities and cost effectiveness of graphically with alternative non-photographic photomechanical production techniques until techniques, photomechanical techniques became their use in mapmaking peaked in the 1970s. ever more important in map production from the By that time, advances in computer techniques 1880s until their decline after the 1970s. When they for map production were offering new alterna- replaced earlier manual methods in the nineteenth tives, and the focus of innovation shifted in that century, photomechanical techniques caused a change direction. By the 1990s electronic technology had in the tools and materials of map production and almost entirely supplanted photomechanical tech- the roles of personnel. Through the faster and nology in map production. cheaper production of maps enhanced by halftone As employed in mapmaking, photomechanical effects and color printing, they also contributed to production techniques involve the creation of the growth of both the map trade and map use in the twentieth century. This essay traces the historical Karen Severud Cook is Assistant Special Collections Librarian (Manuscripts) at the Spencer Research Library, University of Kansas, rise and fall of photomechanical techniques in map 1450 Poplar Lane, Lawrence KS 66045-7616. Phone: (785) 864-3357. production and explores their far-reaching impact E-mail: <[email protected]>. on cartography. Cartography and Geographic Information Science, Vol. 29, No. 3, 2002, pp. 137-154 Photomechanical Production in mental data in the form of photographs from the Cartographic Process which point locations, relief, and other map in- formation can be compiled. Although the idea of Map production is but one step in the complex photographic surveying had been suggested in cooperative process by which mapmakers take data 1839, it was not until the 1850s that topographic about the spatial environment and turn it into pub- surveyors began to experiment with ground- lished maps that inform the spatial thinking and level photography. The use of photography in behavior of map users. The cartographic process topographic surveying, especially in difficult is often modeled as a sequence of stages. At each terrain, became accepted by the 1880s. From stage, a different combination of techniques, tools, the 1850s onward, ideas for aerial photographic materials, and personnel interacts to prepare the surveying (from balloons and kites) were also put spatial information for transfer to the next stage. forward but with limited progress until after the The sequence of stages may vary but generally invention of the airplane in 1903. Its develop- progresses from initial concept through data col- ment for military purposes accelerated by World lection, compilation, graphic design, production, War I, aerial photographic surveying also found printing, publication, and use. A change in one increasing civilian use from the 1920s onward. element at any stage of the cartographic process Aerial photographic technology and expertise affects the other elements of that stage and, in developed further during World War II and turn, affects the other stages in varying degrees. replaced ground surveying for most mapping Systematically following changes that occur in the purposes by the 1950s. Since the beginnings of cartographic process over time, as this essay does, satellite photography in the 1960s, remote sens- is a useful approach for studying the history of car- ing has also developed, like aerial photography, tography (Woodward 1974). into a largely separate field of activity of data Map production, the subject of this essay, is the collection, analysis, and interpretation. Aerial stage that turns the cartographer’s rough compilation photography and remote sensing supply both into a ready-to-print image. In the photomechanical raw and processed spatial data and imagery for era this usually meant tracing or otherwise copying a cartography and GIS. compiled worksheet to produce one or more camera- 2. Photomechanical production. In map produc- ready images, the number, form, and sequence of tion, the role of photomechanical techniques is which varied according to the production techniques usually to copy an image from one surface to being employed. Photomechanical techniques in another and often to modify it (by scale change, map production must be considered in relation to reversal, halftoning, etc.). The exposure is the production personnel, their tools and materials, sometimes made by contact printing, sometimes and the nature of the camera-ready images they with a camera. The result may serve as a guide produce. The links between map production and image, a transfer image, or an image for direct the other stages of the cartographic process are also use in the next step. Isolated photomechanical important. For example, the choices of production experiments to produce fine arts and scientific and reproduction techniques made at the preceding illustrations were made in France and England stage of map design influence the appearance and during the 1820s and 1830s. A flurry of innova- cost of the printed map product. tion from the 1850s onward, some within cartog- Rather than discuss all the stages and elements of raphy but even more adopted from commercial the cartographic process, this essay will concentrate art, brought photomechanical techniques into on photomechanical production techniques and general use in map production by the 1880s. their connections with other elements and stages. Thereafter, cartographic use increased over time For example, although photographic technology as new techniques caught on, such as halftone in has been important throughout the cartographic the 1890s, four-color process in the early 1900s, process, only those aspects relevant to map pro- and scribing in the 1960s. When the digital shift duction are discussed in detail. This narrow focus began in the 1970s, the challenge of matching is valid because the cartographic uses of photogra- photomechanical effects and image quality with phy have fallen into three distinct categories: data computer software and hardware caused the recording, photomechanical production, and map transition to computer production to lag behind format. These three categories have developed and that for data collection. Computer graphics functioned separately in cartography, as shown by production has succeeded in cartography, like the historical summaries below. photomechanical production before it, by adopt- 1. Data recording. Photographic data recording for ing and adapting technology developed for the mapmaking usually means collecting environ- graphic arts in general. 138 Cartography and Geographic Information Science Vol. 29, No. 3 139 3. Map format. Photographic technology also affect- knowing its origins. The late nineteenth century ed the
Recommended publications
  • Graphic Design & Illustration Using Adobe Illustrator CC 1 Dear Candidate, in Preparation for the Graphic Design & Illu
    Graphic Design & Illustration Using Adobe Illustrator CC Dear Candidate, In preparation for the Graphic Design & Illustration Using Adobe Illustrator CC certification exam, we’ve put together a set of practice materials and example exam items for you to review. What you’ll find in this packet are: • Topic areas and objectives for the exam. • Links to practice tutorials and files. • Practice exam items. We’ve assembled excerpted material from the Adobe Illustrator CC Learn and Support page, and the Visual Design curriculum to highlight a few of the more challenging techniques covered on the exam. You can work through these technical guides and with the provided image files (provided separately). Additionally, we’ve included the certification objectives so that you are aware of the elements that are covered on the exam. Finally, we’ve included practice exam items to give you a feel for some of the items. These materials are meant to help you familiarize yourself with the areas of the exam so are not comprehensive across all the objectives. Thank you, Adobe Education Adobe, the Adobe logo, Adobe Photoshop and Creative Cloud are either registered trademarks or trademarks of Adobe Systems 1 Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners. © 2017 Adobe Systems Incorporated. All rights reserved. Graphic Design & Illustration Using Adobe Illustrator CC Adobe Certified Associate in Graphic Design & Illustration Using Adobe Illustrator CC (2015) Exam Structure The following lists the topic areas for the exam: • Setting project requirements • Understanding Digital Graphics and Illustrations • Understanding Adobe Illustrator • Creating Digital Graphics and Illustrations Using Adobe Illustrator • Archive, Export, and Publish Graphics Using Adobe Illustrator Number of Questions and Time • 40 questions • 50 minutes Exam Objectives Domain 1.0 Setting Project Requirements 1.1 Identify the purpose, audience, and audience needs for preparing graphics and illustrations.
    [Show full text]
  • Other Printing Methods
    FLEXO vs. OTHER PRINTING METHODS Web: www.luminite.com Phone: 888-545-2270 As the printing industry moves forward into 2020 and beyond, let’s take a fresh look at the technology available, how flexo has changed to meet consumer demand, and how 5 other popular printing methods compare. CONTENTS ● A History of Flexo Printing ● How Flexo Printing Works ● How Litho Printing Works ● How Digital Printing Works ● How Gravure Printing Works ● How Offset Printing Works ● What is Screen Printing? ● Corrugated Printing Considerations ● Flexo Hybrid Presses ● Ready to Get Started with Flexo? 2 A History of Flexo Printing The basic process of flexography dates back to the late 19th century. It was not nearly as refined, precise, or versatile as the flexo process today -- and can be best described as a high-tech method of rubber stamping. Printing capabilities were limited to very basic materials and designs, with other printing methods greatly outshining flexo. Over the past few decades flexo technology has continuously evolved. This is largely thanks to the integration of Direct Laser Engraving technology, advancements in image carrier materials, and in press technologies. These innovations, among others, have led to increased quality and precision in flexo products. These technological improvements have positioned flexography at the helm of consumer product and flexible packaging printing. Flexo is growing in popularity in a variety of other industries, too, including medical and pharmaceutical; school, home, and office products; and even publishing. How Flexo Printing Works Flexo typically utilizes an elastomer or polymer image carrier such as sleeves, cylinders, and plates. The image carrier is engraved or imaged to create the design for the final desired product.
    [Show full text]
  • Geography 360 Principles of Cartography
    Geography 360 Principles of Cartography April 26, 2006 Typography Outlines 1. Principles of typography • Anatomy of letterform • Classifying type family • Typographic variables 2. Using type for map design • Choosing type family • Choosing typographic variables • Guidelines for type placement 1. Principles of typography • What constitutes letterform? – with focus on serif and shading • Classifying type family – based on common characteristics of letterform • Typographic variables – Type style, size, case, spacing, … Some design aspects of letterform •Serif: finishing strokes added to the end of the main strokes of the letter • Shading: main slant of letterforms Source: Dent Figure 14.1 •Serif vs. San Serif • Diagonal shading vs. horizontal shading Aspects of letterform • Serif vs. Sans Serif – Serif: lettering styles that contain such finishing strokes – Sans Serif: lettering styles that do not contain such finishing strokes • Diagonal Shading vs. horizontal/vertical Shading – Where is the position of the maximum stress in curved letters? – See Dent Figure 14.3 What is type family? • Type family: a group of type designs that reflect common design characteristics and share a common base name (Fig. 11.18) Palatino Helvetica Bookman Gill Sans Classifying type family Alexander Lawson, 1971, Printing types: An Introduction Classifying type family Class Appearance Distinct Other characteristics name Black Letter Hand Decorative Text lettering Oldstyle Lacking Diagonal Roman geometric shading Modern Geometric Vertical/horizo ntal shading Sans Precise, No serif Gothic serif clean-cut Typographic variables • Type family can be further differentiated by typographic variables such as • Type style: italic, normal, bold (Fig. 11.18 B) • Type size: 24 point (Fig. 11. 18D) • Type case: UPPERCASE, lowercase, Title Case, Sentence case (Fig.
    [Show full text]
  • Printing Industry Is the Large Proportion of Very Small Firms
    The printing sector is a diversified industry sector composed of firms who perform printing as well as firms who render services for the printing trade, such as platemaking and bookbinding. One of the most significant characteristics of the printing industry is the large proportion of very small firms. The Census Bureau reported that in 2002 nearly half of the 37,538 printing companies had fewer than five employees; approximately 80 percent employed fewer than 20 workers. Processes used in printing include a variety of methods used to transfer an image from a plate, screen, film, or computer file to some medium, such as paper, plastics, metal, textile articles, or wood. The most prominent of these methods is to transfer the image from a plate or screen to the medium (lithographic, gravure, screen, and flexographic printing). A rapidly growing new technology uses a computer file to directly "drive" the printing mechanism to create the image and new electrostatic and other types of equipment (digital or nonimpact printing). Four Main Segments The printing industry can be separated into four main segments: Lithography Flexography Gravure Screen printing Lithography Lithography is a planographic printing system where the image and non-image areas are chemically differentiated with the image area being oil receptive and non-image area water receptive. Ink film from the lithographic plate is transferred to an intermediary surface called a blanket, which, in turn, transfers the ink film to the substrate. Fountain solution is applied to maintain the hydrophilic properties of the non-image area. Ink drying is divided into heatset and non- heatset.
    [Show full text]
  • 617.727.5944 2.7 Labeling a Picture Or a Diagram
    BPS Curriculum Framework > Informational/Explanatory Text > Grade 2 > Drafting and Revising > Labeling a picture or diagram 2.7 Labeling a picture or a Connection : We have been noticing the beautiful pictures and helpful diagram diagrams in our mentor text for “all-about” books. We have even added pictures and diagrams to our own writing to really give our readers a better idea of what our subject looks like, but there is still one more thing we need to think about. We need to be sure our readers understand what they are looking at. Learning Objective: Students will label pictures and Teaching : Labeling our pictures gives our readers a better diagrams from the outdoor understanding of what they are looking at. Our labels help the reader classroom know exactly what they are seeing. It may tell the time of the year, the location, the size, or the specific parts of the subject they are looking at. Let’s look at The “Saddle Up!” Section in the “Kids book of Horses” and see how the author has used labels to teach us the parts of a Mentor Texts: “Volcanoes”; saddle. “Bears, Bears, Bears”; “Try It Think about something in the classroom and tell your partner “Apples”; “The Pumpkin what you might have to label if you were going to illustrate this object. Book”; “ The Kids Horse Book ”, Share out with class. Sylvia Funston Instructions to students for Independent Outdoor Writing : 1. Today, when we go out to the outdoor classroom we are going to choose an object to illustrate. It can be from our classroom list or anything else you see outside (at boat in the harbor, a truck or car going by, a small animal scampering away, or items on the playground: a slide or climbing frame.
    [Show full text]
  • Cartographic Visualisation and Landscape Modeling
    CARTOGRAPHIC VISUALISATION AND LANDSCAPE MODELING Milap Punia Associate Professor, Centre for the Study of Regional Development, School of Social Sciences, Jawaharlal Nehru University, New Delhi-110067 - [email protected] KEY WORDS: Preception, Aesthetics, Cartographic Design,Visualisation, Landscape ABSTRACT: Perception plays a major role for interpretation or extracting information from remote sensing data and from thematic maps. With advances in information technology, there remains a necessary and critical role for the “human in the loop” in the interpretation of remotely sensed imagery, in earth sciences and cartography. On the side of information technology display systems play a critical role in supporting visualization, and in recent years it has become widely recognized that the visualization of data is critical in science, including the domain of cartography, a field with a long-standing interest in issues of communication effectiveness. These cartographic concerns pertaining to the features of display symbols, elements, and patterns have clear effects on process of perception and visual search. In this study an attempt has been made to harness, interpret, compare and evaluate landscape aesthetics with cartographic aesthetics. By understanding and incorporating cartographic aesthetics with landscape aesthetics, the cartographic design process can be strengthened and effective maps can be generated. Here both landscape and cartography are considered as objects of aesthetics and an attempt has been made to evaluate their aesthetic experience and to analyze their various patterns of similarity and exceptions. By doing this it formulates and facilitates conception of feeling, expression and visual reality all together in the cartographic design process. 1. INTRODUCTION Aesthetics has been a subject of philosophy since long period.
    [Show full text]
  • Developing an Arabic Typography Course for Visual Communication Design
    Developing an Arabic Typography course for Visual Communication Design Students in the Middle East and North African Region A thesis submitted to the School of Visual Communication Design, College of Communication and Information of Kent State University in partial fulfillment of the requirements for the degree of Master of Fine Arts by Basma Almusallam May, 2014 Thesis written by Basma Almusallam B.F.A, Kuwait University, 2008 M.F.A, Kent State University, 2014 Approved by ___________________________ Jillian Coorey, M.F.A., Advisor ___________________________ AnnMarie LeBlanc, M.F.A., Director, School of Visual Communication Design ___________________________ Stanley T. Wearden, Ph.D., Dean, College of Communication and Information Table of Contents TABLE OF CONTENTS………………………………………………………………...... iii LIST OF FIGURES……………………………………………………………………….. v PREFACE………………………………………………………………………………..... vi CHAPTER I. INTRODUCTION…………………………………………………………. 1 The Current Issue………………………………………………….. 1 Core Objectives……………………………………………………. 3 II. THE HISTORY OF THE ARABIC WRITING SYSTEM, CALLIGRAPHY AND TYPOGRAPHY………………………………………....………….. 4 The Arabic Writing System……………………………………….. 4 Arabic Calligraphy………………………………………………… 5 The Undocumented Art of Arabic Calligraphy……………….…… 6 The Shift Towards Typography and the Digital Era………………. 7 The Pressing Issue of the Present………………………………….. 8 A NOTE ON THE PROCESS…………………………………………………………….. 10 Applying a Framework for Research Documentation…………….. 11 Mental Model……………………………………………………… 12 Proposed User Testing…………………………………………….
    [Show full text]
  • The Art of the Cigar Label
    The Art of the Cigar Label A.AMO&CO. LA BVA TAMPA.FLA. An exhibition by the Ybor City Museum Society with assistance from the University of South Florida Libraries' Special Collections Curated by: Emanuel Leto "True, our pictures are many of them for the soap manufacturer, the insurance com­ panies, and the patent medicine man; but we try in our way to be educators of the people , and to give them good drawings and harmonious coloring. These business operators of ours who use pictures for advertising purposes know that the public have become fastidious; hence, they will only accept good designs. It is not so very long ago that advertising pictures invariably had hard, glaring backgrounds and crude, contrasting colors ... but that type of work would find no sale now except in the back woods." - Anonymous lithographer, New York, 1894 1 At first glance, the images on cigar labels seem simple; they are beautifully em­ bossed and the illustration- whether an attractive woman or a famous writer- jumps out at the viewer. However, cigar labels of the late 19th and early 20th centuries are also rich in allegory and symbolism, subtly illustrating themes like commerce, trade, or U.S. foreign relations. Label themes "reflect the tobacco industry's important influence on the economic, social, and political climate of Cuba and Florida cities like Key West and Tampa," 2 becoming "windows to the past," depicting contemporary events, political leaders, celebrities, and so­ cial life. A look at cigar labels also reveals quite a bit about America in the Gilded Age, from roughly 1870 to 1920.
    [Show full text]
  • Guns, More Crime Author(S): Mark Duggan Source: Journal of Political Economy, Vol
    More Guns, More Crime Author(s): Mark Duggan Source: Journal of Political Economy, Vol. 109, No. 5 (October 2001), pp. 1086-1114 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/322833 Accessed: 03-04-2018 19:37 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Journal of Political Economy This content downloaded from 153.90.149.52 on Tue, 03 Apr 2018 19:37:56 UTC All use subject to http://about.jstor.org/terms More Guns, More Crime Mark Duggan University of Chicago and National Bureau of Economic Research This paper examines the relationship between gun ownership and crime. Previous research has suffered from a lack of reliable data on gun ownership. I exploit a unique data set to reliably estimate annual rates of gun ownership at both the state and the county levels during the past two decades. My findings demonstrate that changes in gun ownership are significantly positively related to changes in the hom- icide rate, with this relationship driven almost entirely by an impact of gun ownership on murders in which a gun is used.
    [Show full text]
  • MAP DESIGN a Development of Background Map Visualisation in Digpro Dppower Application
    EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 MAP DESIGN A development of background map visualisation in Digpro dpPower application FREDRIK AHNLÉN KTH SKOLAN FÖR ARKITEKTUR OCH SAMHÄLLSBYGGNAD Acknowledgments Annmari Skrifvare, Digpro AB, co-supervisor. For setting up test environment, providing feed- back and support throughout the thesis work. Jesper Svedberg, Digpro AB, senior-supervisor. For providing feedback both in the start up process of the thesis work as well as the evaluation part. Milan Horemuz, KTH Geodesy and Geoinformatics, co-supervisor. For assisting in the structur- ing of the thesis work as well as providing feedback and support. Anna Jenssen, KTH Geodesy and Geoinformatics, examiner. Finally big thanks to Anders Nerman, Digpro AB, for explaining the fundamentals of cus- tomer usage of dpPower and Jeanette Stenberg, Kraftringen, Gunilla Pettersson, Eon Energi, Karin Backström, Borlänge Energi, Lars Boström, Torbjörn Persson and Thomas Björn- hager, Smedjebacken Energi Nät AB, for providing user feedback via interviews and survey evaluation. i Abstract What is good map design and how should information best be visualised for a human reader? This is a general question relevant for all types of design and especially for digital maps and various Geographic Information Systems (GIS), due to the rapid development of our digital world. This general question is answered in this thesis by presenting a number of principles and tips for design of maps and specifically interactive digital visualisation systems, such as a GIS. Furthermore, this knowledge is applied to the application dpPower, by Digpro, which present the tools to help customers manage, visualise, design and perform calculations on their electrical networks.
    [Show full text]
  • Map Layout and Cartographic Design with Arcgis Desktop
    Map Layout and Cartographic Design with ArcGIS Desktop Matthew Baker ESRI Educational Services Redlands, CA Education UC 2008 1 Seminar overview • General map design principles • Working with map elements • UiUsing Arc Map temp ltlates • Tips and tricks for improving maps Education UC 2008 2 Affective and substantive design • ‘Thin k be fore you draw ’ – Map design is a timetime--consumingconsuming process • Affec tive – What is the ‘look’ or ‘feel’ of the map? • Historical, modern, technical • Substantive – What is shown on the map and for what purpose? • Text blocks, charts, tables, images Map image from the Atlas of Oregon (2nd. Ed.), Copyright 2001 University of Oregon Press Education UC 2008 3 Layout design • Balance – Margins – White space – Bounding boxes – Alignment Unbalanced layout Education UC 2008 4 Layout design • Balance – Margins – White space – Bounding boxes – Alignment Balanced layout Education UC 2008 5 Layout design: Figure Ground Relationship • Figure: – object in front of the background • Ground: – Underlying plane behind elements • Figure-Ground Relationship – Separating figure from ground – Enhanced using • Drop shadow • Draw order • Contrast Map image from the Atlas of Oregon (2nd. Ed.) Copyright 2001 University of Oregon Press Education UC 2008 6 Layout design • Visua l contrast – Separates figure from ground Education UC 2008 7 Layout design • Visual contrast Education UC 2008 8 Layout design • Visual hierarchy • More attention paid from top down • Top: – Important items – Larger items • Bottom – Less important
    [Show full text]
  • Graphics Formats and Tools
    Graphics formats and tools Images à recevoir Stand DRG The different types of graphics format Graphics formats can be classified broadly in 3 different groups -Vector - Raster (or bitmap) - Page description language (PDL) Graphics formats and tools 2 Vector formats In a vector format (revisable) a line is defined by 2 points, the text can be edited Graphics formats and tools 3 Raster (bitmap) format A raster (bitmap) format is like a photograph; the number of dots/cm defines the quality of the drawing Graphics formats and tools 4 Page description language (PDL) formats A page description language is a programming language that describes the appearance of a printed page at a higher level than an actual output bitmap Adobe’s PostScript (.ps), Encapsulated PostScript (.eps) and Portable Document Format (.pdf) are some of the best known page description languages Encapsulated PostScript (.eps) is commonly used for graphics It can contain both unstructured vector information as well as raster (bitmap) data Since it comprises a mixture of data, its quality and usability are variable Graphics formats and tools 5 Background Since the invention of computing, or more precisely since the creation of computer-assisted drawing (CAD), two main professions have evolved - Desktop publishing (DTP) developed principally on Macintosh - Computer-assisted drawing or design (CAD) developed principally on IBM (International Business Machines) Graphics formats and tools 6 Use of DTP applications Used greatly in the fields of marketing, journalism and industrial design, DTP applications fulfil the needs of various professions - from sketches and mock-ups to fashion design - interior design - coachwork (body work) design - web page design -etc.
    [Show full text]