Forest Health Monitoring at Pictured Rocks National Lakeshore 2017 Field Season

Total Page:16

File Type:pdf, Size:1020Kb

Forest Health Monitoring at Pictured Rocks National Lakeshore 2017 Field Season National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Forest Health Monitoring at Pictured Rocks National Lakeshore 2017 Field Season Natural Resource Data Series NPS/GLKN/NRDS—2019/1242 ON THE COVER Clockwise from top left: Herbaceous quadrat at rich site (NPS); collecting diameter at breast height of a beech tree (NPS); transect line (NPS); collecting herbaceous data in a rich ravine (NPS). Forest Health Monitoring at Voyageurs National Lakeshore 2017 Field Season Natural Resource Data Series NPS/GLKN/NRDS—2019/1242 Suzanne Sanders and Jessica Kirschbaum National Park Service Great Lakes Inventory and Monitoring Network 2800 Lakeshore Dr. East Ashland, Wisconsin 54806 November 2019 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. Data in this report were collected and analyzed using methods based on established, peer-reviewed protocols and were analyzed and interpreted within the guidelines of the protocols. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from the Great Lakes Inventory and Monitoring Network and the Natural Resource Publications Management website. If you have difficulty accessing information in this publication, particularly if using assistive technology, please email [email protected]. Please cite this publication as: Sanders, S., and J. Kirschbaum. 2019. Forest health monitoring at Pictured Rocks National Lakeshore: 2017 field season. Natural Resource Data Series NPS/GLKN/NRDS—2019/1242. National Park Service, Fort Collins, Colorado. NPS 625/165452, November 2019 ii Contents Page Figures.................................................................................................................................................... v Tables ................................................................................................................................................... vii Executive Summary .............................................................................................................................. ix Acknowledgments ................................................................................................................................. xi Introduction ............................................................................................................................................ 1 Methods .................................................................................................................................................. 3 Study Area ...................................................................................................................................... 3 Sampling Design and Field Methods ............................................................................................. 4 Sampling Design ....................................................................................................................... 4 Basic Measurements: Trees, Groundlayer, and Coarse Woody Material .................................. 4 Browse ....................................................................................................................................... 5 Tree Health ................................................................................................................................ 7 Earthworm Impacts ................................................................................................................... 8 Plant Identification .................................................................................................................... 8 Classifications and Summaries ....................................................................................................... 9 Forest Type Classification ......................................................................................................... 9 Functional Groups ..................................................................................................................... 9 Coefficients of Conservatism and the Modified Floristic Quality Index .................................. 9 2017 Status and Short-term Change of Indices ....................................................................... 10 Results .................................................................................................................................................. 11 Trees: 2017 Density by Diameter Classes .................................................................................... 12 Trees: Short-Term Change ........................................................................................................... 14 Coarse Woody Material and Standing Dead Trees ...................................................................... 16 Browse and Disease ...................................................................................................................... 17 Tree Health ................................................................................................................................... 20 Community Indices ...................................................................................................................... 21 iii Contents (continued) Page Earthworm Impacts ...................................................................................................................... 21 Discussion ............................................................................................................................................ 23 Management Recommendations .......................................................................................................... 23 Literature Cited .................................................................................................................................... 25 Appendix A. List of all species sampled.............................................................................................. 29 iv Figures Page Figure 1. Upper Peninsula of Michigan (inset) and Pictured Rocks National Lakeshore (main map). ............................................................................................................................................ 3 Figure 2. Great Lakes Network Hybrid plot showing three parallel transects (solid lines), tree sampling areas (bounding dashed rectangles), and quadrat locations (solid squares). .................. 5 Figure 3. Locations of 59 permanent monitoring plots. Dot color indicates the plot’s habitat class. ......................................................................................................................................... 11 Figure 4. Density by diameter size classes for plots, by forest type, 2017. ........................................ 13 Figure 5a. Density of live trees by forest type in the core (left) and IBZ (right) ................................ 14 Figure 5b. Density of living Fagus grandifolia density by forest type in core plots (left) and IBZ (right). .................................................................................................................................... 14 Figure 6a. Basal area of live trees by forest type in core plots (left) and IBZ (right) ......................... 15 Figure 6b. Basal area of living Fagus grandifolia by forest type in core plots (left) and IBZ (right) ............................................................................................................................................ 15 Figure 7. Density (left) and basal area (right) of living beech, standing dead beech, and standing dead trees of unknown species .............................................................................................. 15 Figure 8. Seedling density by forest type in core plots (left) and IBZ (right) ..................................... 16 Figure 9. Density of large, advanced decay, coarse, woody material pieces for wildlife (≥30 cm DBH, ≥2 m length, decay class 3 or 4). ................................................................................. 17 Figure 10. Density of standing dead trees ≥30 cm DBH in core plots (left) and IBZ plots (right) ..................................................................................................................................................
Recommended publications
  • Explain Kotar Classification
    National Park Service U.S. Department of the Interior Natural Resource Program Center Implementation of a Long-term Vegetation Monitoring Program at Pictured Rocks National Lakeshore Natural Resource Technical Report NPS/GLKN/NRTR—2010/405 ON THE COVER Clockwise from top left: recording the groundlayer in 1m2 quadrat; measuring tree DBH; beech bark disease. Photographs by: GLKN vegetation monitoring field crew Implementation of a Long-term Vegetation Monitoring Program at Pictured Rocks National Lakeshore Natural Resource Technical Report NPS/GLKN/NRTR—2010/405 Suzanne Sanders and Jessica Grochowski National Park Service Great Lakes Inventory & Monitoring Network 2800 Lake Shore Dr. East Ashland, WI 54806 FortNovember Collins, 2010 Colorado U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Pest Categorisation of Non‐EU Viruses of Rubus L
    SCIENTIFIC OPINION ADOPTED: 21 November 2019 doi: 10.2903/j.efsa.2020.5928 Pest categorisation of non-EU viruses of Rubus L. EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Thierry Candresse, Elisavet Chatzivassiliou, Franco Finelli, Stephan Winter, Domenico Bosco, Michela Chiumenti, Francesco Di Serio, Franco Ferilli, Tomasz Kaluski, Angelantonio Minafra and Luisa Rubino Abstract The Panel on Plant Health of EFSA conducted a pest categorisation of 17 viruses of Rubus L. that were previously classified as either non-EU or of undetermined standing in a previous opinion. These infectious agents belong to different genera and are heterogeneous in their biology. Blackberry virus X, blackberry virus Z and wineberry latent virus were not categorised because of lack of information while grapevine red blotch virus was excluded because it does not infect Rubus. All 17 viruses are efficiently transmitted by vegetative propagation, with plants for planting representing the major pathway for entry and spread. For some viruses, additional pathway(s) are Rubus seeds, pollen and/or vector(s). Most of the viruses categorised here infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Cherry rasp leaf virus, raspberry latent virus, raspberry leaf curl virus, strawberry necrotic shock virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria to qualify as potential Union quarantine pests (QPs).
    [Show full text]
  • Grasses-Accts 4
    MELICA Oniongrass The name Melica comes directly from the Italian name for a kind of sorghum. The genus Melica resembles Bromus in the overall appearance of the flowerhead, which may vary from a form with open spreading branches to a tight, slightly closed spike. To confuse things even more, Melica smithii has two small teeth at the tip of the lemma where the awn meets the lemma, which is a standard character used to differentiate Bromus from other genera. The two genera differ in that Melica has spikelets with two to four sterile flowers above the fertile flowers and these are almost like scales. This gives the spikelet a more pointed or sometimes a more open appearance because the lemma is not full. The glumes are shorter than the first lemma and are thin, papery, and transparent. The sheath is closed to near the point where it meets the blade. The ligules are membrane-like and often closed in the front. In addition, there are no auricles and the callus is not bearded. This genus has a few species that are bulbous at the base of the stem. Important features to look for are the bulbous stem base and whether or not awns are present. Three of the four species of Melica found in the Columbia Basin region are Blue listed by the B.C. Conservation Database Centre in Douglas et al. (1998). In some cases this rarity is the result of the type of specialized habitat re- quirements of the species. In other cases, the species are at the limit of their range.
    [Show full text]
  • Ground Vegetation Patterns of the Spruce-Fir Area of the Great Smoky Mountains National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-1957 Ground Vegetation Patterns of the Spruce-Fir Area of the Great Smoky Mountains National Park Dorothy Louise Crandall University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Botany Commons Recommended Citation Crandall, Dorothy Louise, "Ground Vegetation Patterns of the Spruce-Fir Area of the Great Smoky Mountains National Park. " PhD diss., University of Tennessee, 1957. https://trace.tennessee.edu/utk_graddiss/1624 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Dorothy Louise Crandall entitled "Ground Vegetation Patterns of the Spruce-Fir Area of the Great Smoky Mountains National Park." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Botany. Royal E. Shanks, Major Professor We have read this dissertation and recommend its acceptance: James T. Tanner, Fred H. Norris, A. J. Sharp, Lloyd F. Seatz Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) December 11, 19)7 To the Graduate Council: I am submitting herewith a thesis written by DorothY Louise Crandall entitled "Ground Vegetation Patterns of the Spruce-Fir Area of the Great Smoky Hountains National Park." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Botany.
    [Show full text]
  • Part 2 – Fruticose Species
    Appendix 5.2-1 Vegetation Technical Appendix APPENDIX 5.2‐1 Vegetation Technical Appendix Contents Section Page Ecological Land Classification ............................................................................................................ A5.2‐1‐1 Geodatabase Development .............................................................................................. A5.2‐1‐1 Vegetation Community Mapping ..................................................................................... A5.2‐1‐1 Quality Assurance and Quality Control ............................................................................ A5.2‐1‐3 Limitations of Ecological Land Classification .................................................................... A5.2‐1‐3 Field Data Collection ......................................................................................................... A5.2‐1‐3 Supplementary Results ..................................................................................................... A5.2‐1‐4 Rare Vegetation Species and Rare Ecological Communities ........................................................... A5.2‐1‐10 Supplementary Desktop Results ..................................................................................... A5.2‐1‐10 Field Methods ................................................................................................................. A5.2‐1‐16 Supplementary Results ................................................................................................... A5.2‐1‐17 Weed Species
    [Show full text]
  • Vegetation Community Monitoring at Ocmulgee National Monument, 2011
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Community Monitoring at Ocmulgee National Monument, 2011 Natural Resource Data Series NPS/SECN/NRDS—2014/702 ON THE COVER Duck potato (Sagittaria latifolia) at Ocmulgee National Monument. Photograph by: Sarah C. Heath, SECN Botanist. Vegetation Community Monitoring at Ocmulgee National Monument, 2011 Natural Resource Data Series NPS/SECN/NRDS—2014/702 Sarah Corbett Heath1 Michael W. Byrne2 1USDI National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, Georgia 31558 2USDI National Park Service Southeast Coast Inventory and Monitoring Network 135 Phoenix Road Athens, Georgia 30605 September 2014 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Pest Categorisation of Non-EU Viruses of Rubus L
    SCIENTIFIC OPINION ADOPTED: 21 November 2019 doi: 10.2903/j.efsa.2020.5928 Pest categorisation of non-EU viruses of Rubus L. EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Thierry Candresse, Elisavet Chatzivassiliou, Franco Finelli, Stephan Winter, Domenico Bosco, Michela Chiumenti, Francesco Di Serio, Franco Ferilli, Tomasz Kaluski, Angelantonio Minafra and Luisa Rubino Abstract The Panel on Plant Health of EFSA conducted a pest categorisation of 17 viruses of Rubus L. that were previously classified as either non-EU or of undetermined standing in a previous opinion. These infectious agents belong to different genera and are heterogeneous in their biology. Blackberry virus X, blackberry virus Z and wineberry latent virus were not categorised because of lack of information while grapevine red blotch virus was excluded because it does not infect Rubus. All 17 viruses are efficiently transmitted by vegetative propagation, with plants for planting representing the major pathway for entry and spread. For some viruses, additional pathway(s) are Rubus seeds, pollen and/or vector(s). Most of the viruses categorised here infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Cherry rasp leaf virus, raspberry latent virus, raspberry leaf curl virus, strawberry necrotic shock virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria to qualify as potential Union quarantine pests (QPs).
    [Show full text]
  • North American Species of Rubus L. (Rosaceae) Described from European Botanical Gardens (1789-1823)
    adansonia 2021 43 8 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) A. A. Khapugin (Tyumen State University, Russia) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE
    [Show full text]
  • Vegetation Community Monitoring at Congaree National Park: 2014 Data Summary
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Community Monitoring at Congaree National Park 2014 Data Summary Natural Resource Data Series NPS/SECN/NRDS—2016/1016 ON THIS PAGE Tiny, bright yellow blossoms of Hypoxis hirsuta grace the forest floor at Congaree National Park. Photograph courtesy of Sarah C. Heath, Southeast Coast Network. ON THE COVER Spiraling compound leaf of green dragon (Arisaema dracontium) at Congaree National Park. Photograph courtesy of Sarah C. Heath, Southeast Coast Network Vegetation Community Monitoring at Congaree National Park 2014 Data Summary Natural Resource Data Series NPS/SECN/NRDS—2016/1016 Sarah Corbett Heath1 and Michael W. Byrne2 1National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, GA 31558 2National Park Service Southeast Coast Inventory and Monitoring Network 135 Phoenix Drive Athens, GA 30605 May 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    Notes on Biogeography and New Records of Rust Fungi in the Great Lakes Region John W. McCain and Joe F. Hennen The Arthur Herbarium, Department of Botany and Plant Pathology Purdue University, West Lafayette, Indiana 47907 Uredinology (the study of rust fungi) includes research in the morphology, phylogeny, and classification of members of this important group of plant path- ogenic fungi. This is not a new study, for the first Indiana rust fungus was collected in 1876 (8). Dr. J. C. Arthur published his first manuscript on rust taxonomy in 1883, so the Arthur Herbarium will soon be 100 years old. Biogeography of rust fungi dates back at least to 1929, with Arthur's textbook, The Plant Rusts. Our pre- liminary studies indicate that the Great Lakes area is a promising region for bio- geographic studies of rusts. Many of the examples in this paper will be from Michigan, because the geography of the Great Lakes has had clear effects on plant distributions in that state. At least three procedural problems must be faced. First, geographic informa- tion from specimen labels is frequently useless, because it may be out-of-date. A number of Arthur's specimens are from the "Rust Garden" near West Lafayette, Indiana, a small swamp south of town that was a very fertile collecting spot. This was one of two known North American sites for Tripkragmium ulmariae (DC.) Link in Willd., the rust of Filipendula rubra (Hill) Robins. (Queen-of-the-prairie: Rosaceae) (8), but today we cannot locate that swamp. Other labels may be in- complete.
    [Show full text]
  • Msc Thesis, Quinn Barber
    Assessing the vulnerability of rare plants using climate change velocity, habitat connectivity and dispersal ability by Quinn Edward Cameron Barber A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Forest Biology and Management Department of Renewable Resources University of Alberta © Quinn Edward Cameron Barber, 2015 Abstract Climate change generally requires species to migrate northward or to higher elevation to maintain constant climate conditions, but migration requirement and migration capacity of individual species can vary greatly. Individual pop- ulations of species occupy different positions in the landscape that determine their required range shift to maintain similar climate, and likewise the mi- gration capacity depends on habitat connectivity. Here, I demonstrate an approach to quantify species vulnerabilities to climate change for 419 rare vascular plants in Alberta, Canada based on multivariate velocity of climate change, local habitat fragmentation, and migration capacity. Climate change velocities indicated that future migration requirements ranged from 1 to 5 km yr-1 in topographically complex landscapes, such as the Alberta Foothills and Rocky Mountains. In contrast, migration requirements to maintain constant climate in relatively flat Boreal Plains, Parkland and Grassland ranged from 4 to 8 km yr-1. Habitat fragmentation was also highest in these flat regions, particularly the Parkland Natural Region. Of the 419 rare vascular plants assessed, 36 were globally threatened (G1 to G3 ranking). Three of these globally threatened species were ranked as extremely vulnerable and five as highly vulnerable to the interactions among climate change velocity, habitat fragmentation and migration capacity. Incorporating dispersal characteristics and habitat fragmentation with local patterns in climate change velocity rep- resents a streamlined vulnerability assessment approach that may be applied to guide conservation actions, particularly where detailed species-specific data is limited.
    [Show full text]
  • Njplantlist.Pdf
    List of Endangered Plant Species and Plant Species of Concern June 2016 Scientific Name Common Name G Rank S Rank Federal Status State Status Other Status Abies balsamea Balsam Fir G5 S1 E LP, HL Acorus americanus American Sweetflag G5 S1? HL Actaea rubra var. rubra Red Baneberry G5T5 S2 HL Adlumia fungosa Climbing Fumitory G4 S2 HL Aeschynomene virginica Sensitive Joint-vetch G2 S1 LT E LP, HL Agalinis auriculata Ear-leaf False Foxglove G3 SX HL Agalinis fasciculata Pine Barren Foxglove G5 S3 HL Agalinis paupercula var. paupercula Small-flower False Foxglove G5T5 S2 HL Agastache nepetoides Yellow Giant-hyssop G5 S2 HL Agastache scrophulariifolia Purple Giant-hyssop G4 S2 HL Agrimonia microcarpa Small-fruit Grooveburr G5 S2 HL Agrostis geminata Ticklegrass G5 S1? HL Alisma triviale Large Water-plantain G5 S1 E LP, HL Alopecurus aequalis var. aequalis Short-awn Meadow-foxtail G5T5 S2 HL Alopecurus carolinianus Tufted Meadow-foxtail G5 S3 HL Amaranthus pumilus Seabeach Amaranth G2 S1 LT E LP, HL Amelanchier humilis Low Service-berry G5 S1S2 HL Amelanchier nantucketensis Nantucket Service-berry G3Q S1 HL Amelanchier sanguinea var. sanguinea Round-leaf Service-berry G5T5 S1.1 E LP, HL Amelanchier stolonifera Running Service-berry G5 S3 HL Amianthium muscitoxicum Fly Poison G4G5 S2 HL Ammannia latifolia Koehn's Toothcup G5 S1 E LP, HL Andromeda polifolia var. glaucophylla Bog Rosemary G5T5 S1 E LP, HL Andropogon glomeratus var. hirsutior Hairy Beardgrass G5T5 SH.1 HL Andropogon gyrans Elliott's Beardgrass G5 S2 HL Andropogon ternarius var. ternarius Silvery Beardgrass G5T5? S2 HL Anemone canadensis Canada Anemone G5 SX HL Anemone cylindrica Long-head Anemone G5 S1 E LP, HL Anemone virginiana var.
    [Show full text]