Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing Anna E

Total Page:16

File Type:pdf, Size:1020Kb

Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing Anna E Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing Anna E. Boniakowski, Andrew S. Kimball, Benjamin N. Jacobs, Steven L. Kunkel and Katherine A. Gallagher This information is current as of October 1, 2021. J Immunol 2017; 199:17-24; ; doi: 10.4049/jimmunol.1700223 http://www.jimmunol.org/content/199/1/17 Downloaded from References This article cites 108 articles, 40 of which you can access for free at: http://www.jimmunol.org/content/199/1/17.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing Anna E. Boniakowski,* Andrew S. Kimball,† Benjamin N. Jacobs,† Steven L. Kunkel,‡ and Katherine A. Gallagher* The healing of cutaneous wounds is dependent on the pro- MF plasticity is crucial for wound repair. In this review, we gression through distinct, yet overlapping phases of wound will consider how MFs in the wound regulate inflammation healing, including hemostasis, inflammation, proliferation, and tissue repair. Comparatively, we will examine a patho- and resolution/remodeling. The failure of these phases to logic setting where loss of MF plasticity can lead to dysreg- occur in a timely, progressive fashion promotes pathologic ulated inflammation and impaired wound healing. wound healing. The macrophage (MF) has been demon- MFs and wound healing strated to play a critical role in the inflammatory phase of Downloaded from tissue repair, where its dynamic plasticity allows this cell Wound healing is exceedingly complex, and it represents the to mediate both tissue-destructive and -reparative func- evolutionary layering of numerous genetic, epigenetic, and tions. The ability to understand and control both the molecular processes to accomplish this goal. The process of initiation and the resolution of inflammation is critical human tissue repair is tightly regulated, and it proceeds in an for treating pathologic wound healing. There are now a orderly manner under normal conditions. This stepwise, regular host of studies demonstrating that metabolic and epige- order in which tissue healing takes place is divided into four http://www.jimmunol.org/ netic regulation of gene transcription can influence MF stages, corresponding roughly to the four waves of predominant plasticity in wounds. In this review, we highlight the cell type appearing in the wound bed (1). These are the he- molecular and epigenetic factors that influence MF po- mostasis, inflammatory, proliferative, and maturation phases. larization in both physiologic and pathologic wound heal- In the hemostasis phase, platelets and circulating coagulant ing, with particular attention to diabetic wounds. The factors accumulate at the site of tissue injury. The interactions Journal of Immunology, 2017, 199: 17–24. of these factors, along with activation of the endothelium, promote the initial invasion of immune cells, specifically polymorphonuclear leukocytes (PMNs). The arrival of these by guest on October 1, 2021 aintenance of skin integrity is crucial to survival, cells characterizes the beginning of the inflammatory phase (2). and tissue repair is an elaborate process that must This rapid, initial influx of PMNs is followed by successive M be tightly regulated. Although many cell types are waves of infiltrating monocytes that differentiate within the involved in tissue repair, the macrophage (MF) has been wound into MFs and dendritic cells. As injured tissue demonstrated to play a critical regulatory role in the healing progresses through the inflammatory phase, the predominant process, particularly during the inflammatory phase of heal- MF phenotype in the wound bed changes as well. These ing. MFs represent a phenotypically heterogeneous set of changing populations result from successive waves of circu- innate immune cells, demonstrating a broad range of func- lating monocyte invasion, as well as changes in the local tissue tions in both health and disease. Notably, the MF is active environment that direct the phenotypic expression in the in both the initiation and the resolution of inflammatory tissue-resident MF (trMF) (3–5). Through this plasticity, processes. Early in wound repair, transcriptional changes in MFs both direct inflammation and tissue destruction and MFs lead to production of inflammatory cytokines and promote tissue repair and transition to the proliferative phase clearance of pathogens and debris. During later stages of the of healing. After resolution of the inflammatory phase, the inflammatory phase of wound healing, MFs contribute to the proliferative phase ensues, in which fibroblasts and other cells resolution of inflammation and promote tissue repair. It is reconstitute the tissue matrix, via deposition of collagens, this paradox—that the MF exists both to promote tissue primarily type III early and type I later as healing progresses destruction and later repair—that makes the MF one of the (6, 7). Contractile myofibroblasts contribute to wound con- most fascinating and important cells in the wound-healing traction (8). The final phase of healing is the maturation or process. remodeling phase, where the extracellular matrix expands and *Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Abbreviations used in this article: ATM, adipocyte tissue MF; HDAC, histone deace- Arbor, MI 48109; †Section of General Surgery, Department of Surgery, University of tylase; H3K, histone H3 lysine; IRF, IFN-regulatory factor; MF, macrophage; M1, Michigan, Ann Arbor, MI 48109; and ‡Department of Pathology, University of Mich- proinflammatory MoMF; M2, anti-inflammatory MoMF; MMP, matrix metallopro- igan, Ann Arbor, MI 48109 teinase; MoMF, monocyte-MF; PMN, polymorphonuclear leukocyte; SIRT, sirtuin; T2D, type 2 diabetes; trMF, tissue-resident MF. Received for publication February 13, 2017. Accepted for publication April 20, 2017. Address correspondence and reprint requests to Dr. Katherine A. Gallagher, Section of Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 Vascular Surgery, University of Michigan, 1500 East Medical Center Drive, SPC 5867, Ann Arbor, MI 48109. E-mail address: [email protected] www.jimmunol.org/cgi/doi/10.4049/jimmunol.1700223 18 BRIEF REVIEWS: MACROPHAGE-MEDIATED INFLAMMATION IN WOUND HEALING tissue strength returns, although ultimately reaching only 70% it has been well demonstrated that trMFs and MoMFsarein of its initial strength (7). fact quite different in gene transcription and in their function Recently, there has been a significant focus on the charac- within the wound bed (20, 21). These are, in fact, indepen- terization of the various expressions of in vivo MF phenotypes. dently maintained populations during wound inflammation Consistent identification of monocyte-MF (MoMF) sub- and subsequent resolution. The origins of these two pop- types in vitro and in vivo has been controversial in the liter- ulations differ: trMFs are, with the exception of those in the ature because of poor consensus on nomenclature and cell gastrointestinal tract, of embryonic origin, originating in the marker definitions (9). For example, NOS2 has traditionally fetal liver and on embryonic day 9 in the yolk sac and seeding been used to identify proinflammatory MoMFs by immu- cutaneous and organ tissues early in mammalian development nohistochemistry, whereas Arg-1 has been used to identify (22–25). In contrast, MoMFs are hematopoietic cells of the anti-inflammatory MoMFs (10). These definitions are prob- myeloid lineage (22–25). trMFs are thought to have tissue- lematic, however, because Arg-1 is also expressed in both specific roles in the healing process (26) and are, along with proinflammatory MoMFsandsometrMFs(11).Othermarkers mast cells, dendritic cells, and stromal cells, activated in the have been suggested in defining these MoMF populations, for immediate phase of injury by a number of cellular damage example, CCR2 for proinflammatory MoMFsandCD163or signals. These damage signals are released by direct cellular CD206 (mannose receptor) for anti-inflammatory MoMFs, all injury, pathogen entry, or toxic and oxidative stressors (27). with varying success (10). For example, alarmins, a diverse group of molecules that play MF phenotype identification, particularly in vivo, has a variety of intracellular roles in the steady-state, are released remained elusive, because wound MFscoexpressthesame upon injury into the extracellular milieu, where they activate Downloaded from markers across subtypes and alter their surface marker ex- local inflammatory cells through pattern recognition receptors pression profile in subtly different environments.
Recommended publications
  • Recombinant Factors for Hemostasis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical & Biomolecular Engineering Theses, Chemical and Biomolecular Engineering, Dissertations, & Student Research Department of Summer 2010 Recombinant Factors for Hemostasis Jennifer Calcaterra University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemengtheses Part of the Biochemical and Biomolecular Engineering Commons Calcaterra, Jennifer, "Recombinant Factors for Hemostasis" (2010). Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research. 5. https://digitalcommons.unl.edu/chemengtheses/5 This Article is brought to you for free and open access by the Chemical and Biomolecular Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Recombinant Factors for Hemostasis by Jennifer Calcaterra A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Interdepartmental Area of Engineering (Chemical & Biomolecular Engineering) Under the Supervision of Professor William H. Velander Lincoln, Nebraska August, 2010 Recombinant Factors for Hemostasis Jennifer Calcaterra, Ph.D. University of Nebraska, 2010 Adviser: William H. Velander Trauma deaths are a result of hemorrhage in 37% of civilians and 47% military personnel and are the primary cause of death for individuals under 44 years of age. Current techniques used to treat hemorrhage are inadequate for severe bleeding. Preliminary research indicates that fibrin sealants (FS) alone or in combination with a dressing may be more effective; however, it has not been economically feasible for widespread use because of prohibitive costs related to procuring the proteins.
    [Show full text]
  • Energy Healing
    57618_CH03_Pass2.QXD 10/30/08 1:19 PM Page 61 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. CHAPTER 3 Energy Healing Our remedies oft in ourselves do lie. —WILLIAM SHAKESPEARE LEARNING OBJECTIVES 1. Describe the types of energy. 2. Explain the universal energy field (UEF). 3. Explain the human energy field (HEF). 4. Describe the seven auric layers. 5. Describe the seven chakras. 6. Define the concept of energy healing. 7. Describe various types of energy healing. INTRODUCTION For centuries, traditional healers worldwide have practiced methods of energy healing, viewing the body as a complex energy system with energy flowing through or over its surface (Rakel, 2007). Until recently, the Western world largely ignored the Eastern interpretation of humans as energy beings. However, times have changed dramatically and an exciting and promising new branch of academic inquiry and clinical research is opening in the area of energy healing (Oschman, 2000; Trivieri & Anderson, 2002). Scientists and energy therapists around the world have made discoveries that will forever alter our picture of human energetics. The National Institutes of Health (NIH) is conducting research in areas such as energy healing and prayer, and major U.S. academic institutions are conducting large clinical trials in these areas. Approaches in exploring the concepts of life force and healing energy that previously appeared to compete or conflict have now been found to support each other. Conner and Koithan (2006) note 61 57618_CH03_Pass2.QXD 10/30/08 1:19 PM Page 62 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. 62 CHAPTER 3 • ENERGY HEALING that “with increased recognition and federal funding for energetic healing, there is a growing body of research that supports the use of energetic healing interventions with patients” (p.
    [Show full text]
  • Purinergic Signalling in Skin
    PURINERGIC SIGNALLING IN SKIN AINA VH GREIG MA FRCS Autonomic Neuroscience Institute Royal Free and University College School of Medicine Rowland Hill Street Hampstead London NW3 2PF in the Department of Anatomy and Developmental Biology University College London Gower Street London WCIE 6BT 2002 Thesis Submitted for the Degree of Doctor of Philosophy University of London ProQuest Number: U643205 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643205 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Purinergic receptors, which bind ATP, are expressed on human cutaneous kératinocytes. Previous work in rat epidermis suggested functional roles of purinergic receptors in the regulation of proliferation, differentiation and apoptosis, for example P2X5 receptors were expressed on kératinocytes undergoing proliferation and differentiation, while P2X? receptors were associated with apoptosis. In this thesis, the aim was to investigate the expression of purinergic receptors in human normal and pathological skin, where the balance between these processes is changed. A study was made of the expression of purinergic receptor subtypes in human adult and fetal skin.
    [Show full text]
  • Wound Classification
    Wound Classification Presented by Dr. Karen Zulkowski, D.N.S., RN Montana State University Welcome! Thank you for joining this webinar about how to assess and measure a wound. 2 A Little About Myself… • Associate professor at Montana State University • Executive editor of the Journal of the World Council of Enterstomal Therapists (JWCET) and WCET International Ostomy Guidelines (2014) • Editorial board member of Ostomy Wound Management and Advances in Skin and Wound Care • Legal consultant • Former NPUAP board member 3 Today We Will Talk About • How to assess a wound • How to measure a wound Please make a note of your questions. Your Quality Improvement (QI) Specialists will follow up with you after this webinar to address them. 4 Assessing and Measuring Wounds • You completed a skin assessment and found a wound. • Now you need to determine what type of wound you found. • If it is a pressure ulcer, you need to determine the stage. 5 Assessing and Measuring Wounds This is important because— • Each type of wound has a different etiology. • Treatment may be very different. However— • Not all wounds are clear cut. • The cause may be multifactoral. 6 Types of Wounds • Vascular (arterial, venous, and mixed) • Neuropathic (diabetic) • Moisture-associated dermatitis • Skin tear • Pressure ulcer 7 Mixed Etiologies Many wounds have mixed etiologies. • There may be both venous and arterial insufficiency. • There may be diabetes and pressure characteristics. 8 Moisture-Associated Skin Damage • Also called perineal dermatitis, diaper rash, incontinence-associated dermatitis (often confused with pressure ulcers) • An inflammation of the skin in the perineal area, on and between the buttocks, into the skin folds, and down the inner thighs • Scaling of the skin with papule and vesicle formation: – These may open, with “weeping” of the skin, which exacerbates skin damage.
    [Show full text]
  • Wound Care: the Basics
    Wound Care: The Basics Suzann Williams-Rosenthal, RN, MSN, WOC, GNP Norma Branham, RN, MSN, WOC, GNP University of Virginia May, 2010 What Type of Wound is it? How long has it been there? Acute-generally heal in a couple weeks, but can become chronic: Surgical Trauma Chronic -do not heal by normal repair process-takes weeks to months: Vascular-venous stasis, arterial ulcers Pressure ulcers Diabetic foot ulcers (neuropathic) Chronic Wounds Pressure Ulcer Staging Where is it? Where is it located? Use anatomical location-heel, ankle, sacrum, coccyx, etc. Measurements-in centimeters Length X Width X Depth • Length = greatest length (head to toe) • Width = greatest width (side to side) • Depth = measure by marking the depth with a Q- Tip and then hold to a ruler Wound Characteristics: Describe by percentage of each type of tissue: Granulation tissue: • red, cobblestone appearance (healing, filling in) Necrotic: • Slough-yellow, tan dead tissue (devitalized) • Eschar-black/brown necrotic tissue, can be hard or soft Evaluating additional tissue damage: Undermining Separation of tissue from the surface under the edge of the wound • Describe by clock face with patients head at 12 (“undermining is 1 cm from 12 to 4 o’clock”) Tunneling Channel that runs from the wound edge through to other tissue • “tunneling at 9 o’clock, measuring 3 cm long” Wound Drainage and Odor Exudate Fluid from wound • Document the amount, type and odor • Light, moderate, heavy • Drainage can be clear, sanguineous (bloody), serosanguineous (blood-tinged),
    [Show full text]
  • SOCH111 History of Healing Last Modified: 17-Jun-2021
    SUBJECT OUTLINE Subject Name: Subject Code: History of Healing SOCH111 SECTION 1 – GENERAL INFORMATION Award/s: Total Course Credit Points: Level: Bachelor of Health Science (Naturopathy) 128 1st Year Bachelor of Health Science (Myotherapy) 96 1st Year Bachelor of Health Science (Nutritional and Dietetic Medicine) 96 1st Year Bachelor of Complementary Medicine 48 1st Year Diploma of Health Science 32 1st Year Duration: 1 Semester Subject is: Core Subject Credit Points: 4 Student Workload: No. timetabled hours per week: No. personal study hours per week: Total hours per week: 6 4 10 Delivery Mode*: ☐ On campus ☒ Online / Digital ☐ Blended ☐ Intensive Weekly Session^ Format/s - 2 sessions per week: ☒ eLearning modules: Lectures: Interactive adaptive online learning modules Tutorials: can include asynchronous tutor moderated discussion forum and activities, learning journal activities or other web-based resources *All modes are supported by the online learning management system which will include subject documents such as handouts, readings and assessment guides. ^A ‘session’ is made up of 3 hours of timetabled / online study time per week unless otherwise specified. Each subject has a set number of sessions as outlined above. Study Pattern: ☒ Full Time ☒ Part Time Pre-requisites: Nil Co-requisites: Nil SECTION 2 – ACADEMIC DETAILS Subject Rationale This subject provides the student with an understanding of the history and philosophy underpinning traditional and other whole medical systems from early human existence to the present day in diverse cultures worldwide. Social, Australian College of Natural Medicine Pty Ltd trading as Endeavour College of Natural Health, FIAFitnation (National CRICOS #00231G, RTO #31489) SOCH111 History of Healing Last modified: 17-Jun-2021 Version: 27.0 Page 1 of 10 cultural and political developments are considered in the evolution of healing and medicine, as well as the parallel developments in anatomy, physiology and other sciences.
    [Show full text]
  • Collagen in Wound Healing
    bioengineering Review Collagen in Wound Healing Shomita S. Mathew-Steiner, Sashwati Roy and Chandan K. Sen * Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; [email protected] (S.S.M.-S.); [email protected] (S.R.) * Correspondence: [email protected]; Tel.: +1-317-278-2735 Abstract: Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided. Keywords: extracellular matrix; collagen; signaling; inflammation; wound healing; collagen dressings; engineered collagen Citation: Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound 1. Introduction Healing. Bioengineering 2021, 8, 63. Sophisticated regulation by a number of key factors including the environment of the https://doi.org/10.3390/ wound which is rich in extracellular matrix (ECM) drives the process of wound healing [1,2].
    [Show full text]
  • Hematopoiesis and Hemostasis
    Hematopoiesis and Hemostasis HAP Susan Chabot Hematopoiesis • Blood Cell Formation • Occurs in red bone marrow – Red marrow - found in flat bones and proximal epiphyses of long bones. • Each type of blood cell is produced in response to changing needs of the body. • On average, an ounce of new blood is produced each day with about 100 billion new blood cells/formed elements. Hemocytoblast • Hemo- means blood • Cyto- means cell • -blast means builder • Blood stem cell found in red bone marrow. • Once the precursor cell has committed to become a specific blood type, it cannot be changed. Hemocytoblast Erythropoiesis • Erythrocyte Formation • Because they are anucleated, RBC’s must be regularly replaced. – No info to synthesize proteins, grow or divide. • They begin to fall apart in 100 - 120 days. • Remains of fragmented RBC’s are removed by the spleen and liver. • Entire development , release, and ejection of leftover organelles takes 3-5 days. Normal RBC’s Reticulocytes • The stimulus for RBC production is the amount of OXYGEN in the blood not the NUMBER of RBC’s. • The rate of RBC production is controlled by the hormone ERYTHROPOIETIN. Leuko- and Thrombopoiesis • Leukopoesis = WBC production • Thrombopoesis = platelet production • Controlled by hormones Leukopoesis Thrombopoesis • (CSF) Colony • Thrombopoetin stimulating factor • Little is known • Interleukins about this – Prompts WBC process. production – Boosts other immune processes including inflammation. HEMOSTASIS Hemostasis • Hemo- means blood • -stasis means standing still – Stoppage of bleeding • Fast and localized reaction when a blood vessel breaks. • Involves a series of reactions. • Involves substances normally found in plasma but not activated. • Occurs in 3 main phases Phases of Hemostasis • Step 1: Vascular Spasm – Vasoconstriction, narrowing of blood vessels.
    [Show full text]
  • Products & Technology Wound Inflammation and the Role of A
    Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors.
    [Show full text]
  • Notch and TLR Signaling Coordinate Monocyte Cell Fate and Inflammation
    RESEARCH ARTICLE Notch and TLR signaling coordinate monocyte cell fate and inflammation Jaba Gamrekelashvili1,2*, Tamar Kapanadze1,2, Stefan Sablotny1,2, Corina Ratiu3, Khaled Dastagir1,4, Matthias Lochner5,6, Susanne Karbach7,8,9, Philip Wenzel7,8,9, Andre Sitnow1,2, Susanne Fleig1,2, Tim Sparwasser10, Ulrich Kalinke11,12, Bernhard Holzmann13, Hermann Haller1, Florian P Limbourg1,2* 1Vascular Medicine Research, Hannover Medical School, Hannover, Germany; 2Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany; 3Institut fu¨ r Kardiovaskula¨ re Physiologie, Fachbereich Medizin der Goethe-Universita¨ t Frankfurt am Main, Frankfurt am Main, Germany; 4Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany; 5Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; 6Mucosal Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; 7Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; 8Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; 9German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany; 10Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg- University of Mainz, Mainz, Germany; 11Institute for Experimental Infection Research, TWINCORE, Centre for
    [Show full text]
  • Human Alveolar Macrophages Synthesize Factor VII in Vitro
    Human alveolar macrophages synthesize factor VII in vitro. Possible role in interstitial lung disease. H A Chapman Jr, … , O L Stone, D S Fair J Clin Invest. 1985;75(6):2030-2037. https://doi.org/10.1172/JCI111922. Research Article Both fibrin and tissue macrophages are prominent in the histopathology of chronic inflammatory pulmonary disease. We therefore examined the procoagulant activity of freshly lavaged human alveolar macrophages in vitro. Intact macrophages (5 X 10(5) cells) from 13 healthy volunteers promoted clotting of whole plasma in a mean of 65 s. Macrophage procoagulant activity was at least partially independent of exogenous Factor VII as judged by a mean clotting time of 99 s in Factor VII-deficient plasma and by neutralization of procoagulant activity by an antibody to Factor VII. Immunoprecipitation of extracts of macrophages metabolically labeled with [35S]methionine by Factor VII antibody and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a labeled protein consistent in size with the known molecular weight of blood Factor VII, 48,000. The addition of 50 micrograms of unlabeled, purified Factor VII blocked recovery of the 48,000-mol wt protein. In addition, supernatants of cultured macrophages from six normal volunteers had Factor X-activating activity that was suppressed an average of 71% after culture in the presence of 50 microM coumadin or entirely by the Factor VII antibody indicating that Factor VII synthesized by the cell was biologically active. Endotoxin in vitro induced increases in cellular tissue factor but had no consistent effect on macrophage Factor VII activity. We also examined the tissue factor and Factor VII activities […] Find the latest version: https://jci.me/111922/pdf Human Alveolar Macrophages Synthesize Factor VII In Vitro Possible Role in Interstitial Lung Disease Harold A.
    [Show full text]
  • Ferric Sulfate Hemostasis: Effect on Osseous Wound Healing, II, with Curettage and Irrigation
    0099-2399/93/1904-0174/$03.00/0 JOURNAL OF ENDODONTICS Printed in U.S.A. Copyright © 1993 by The American Association of Endodontists VOL. 19, No. 4, APRIL 1993 Ferric Sulfate Hemostasis: Effect on Osseous Wound Healing, II, With Curettage and Irrigation Billie G. Jeansonne, DDS, PhD, William S. Boggs, DDS, MS, and Ronald R. Lemon, DMD Hemorrhage control is often a problem for the clini- MATERIALS AND METHODS cian during osseous surgery. Ferric sulfate is an effective hemostatic agent, but with prolonged ap- The experiments were performed in 12 New Zealand White plication to an osseous defect can cause persistent rabbits (2.3 to 3.7 kg). Anesthesia was obtained by the intra- inflammation and delayed healing. The purpose of muscular injection of a combination of xylazine (7 mg/kg), ketamine (30 mg/kg), and atropine (0.3 mg/kg). On both this investigation was to evaluate the effectiveness sides of the mandible, an incision was made along the alveolar of ferric sulfate as a hemostatic agent and to deter- crest in the naturally edentulous space between the incisor mine its effect on healing after thorough curettage and premolar teeth. An envelope flap was reflected to expose and irrigation from osseous surgical wounds. Stand- the alveolar cortical bone. An osseous defect (3 mm in di- ard size osseous defects were created bilaterally in ameter, 2 mm into cancellous bone) was created on each side the mandibles of rabbits. Ferric sulfate was placed with a #8 round bur. All defects were curetted and irrigated in one defect until hemostasis was obtained; the with saline.
    [Show full text]