Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography [AA66] Vadim M. Adamjan and Damir Z. Arov, Unitary couplings of semi- unitary operators, (Russian) Mat. Issled. 1 (1966), no. 2, 3–64. [AA68] Vadim M. Adamjan and Damir Z. Arov, A general solution of a cer- tain problem in the linear prediction of stationary processes, (Rus- sian) Teor. Verojatnost. i Primenen. 13 (1968) 419–431; English translation: Theor. Probability Appl. 13 (1968), 394–407 [AAK71] Vadim M. Adamjan, Damir Z. Arov and Mark G. Krein, Analytic properties of Schmidt pairs of a Hankel operator and the generalized Schur–Takagi problem, (Russian) Mat. Sb. (N.S.) 86(128) (1971), 34– 75; English translation: Math USSR Sbornik 15 (1971), no. 1, 31–73. [AR68] Naum I. Ahiezer, and Alexander M. Rybalko, Continual analogues of polynomials orthogonal on a circle, (Russian) Ukrain.Mat.Z.20 (1968), no. 1, 3–24. [AlD84] Daniel Alpay and Harry Dym, Hilbert spaces of analytic functions, in- verse scattering and operator models, I., Integral Equations Operator Theory 7 (1984), no. 5, 589–641. [AlD85] Daniel Alpay and Harry Dym, Hilbert spaces of analytic functions, in- verse scattering and operator models, II., Integral Equations Operator Theory 8 (1985), no. 2, 145–180. [AlD93] Daniel Alpay and Harry Dym, On a new class of structured repro- ducing kernel spaces, J. Functional Analysis 111 (1993), no. 1, 1–28. [AlG95] Daniel Alpay and Israel Gohberg, Inverse spectral problem for differ- ential operators with rational scattering matrix functions, J. Differ- ential Equations 118 (1995), no. 1, 1–19. [AlG97] Daniel Alpay and Israel Gohberg, State space method for inverse spec- tral problems, in: Systems and Control in the Twenty-first Century (St. Louis, MO, 1996), Progr. Systems Control Theory 22, Birkh¨auser Boston, Boston, MA, 1997, pp. 1–16. [AlG01] Daniel Alpay and Israel Gohberg, Inverse problems associated to a canonical differential system, in: Recent Advances in Operator The- ory and Related Topics (Szeged, 1999), Operator Theory: Advances Applications 127, Birkh¨auser, Basel, 2001, pp. 1–27. © Springer International Publishing AG, part of Springer Nature 2018 385 D. Z. Arov, H. Dym, Multivariate Prediction, de Branges Spaces, and Related Extension and Inverse Problems, Operator Theory: Advances and Applications 266, https://doi.org/10.1007/978-3-319-70262-9 386 Bibliography [AGKS00] Daniel Alpay, Israel Gohberg, Marinus A. Kaashoek, Leonid Lerer and Alexander Sakhnovich, Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential, Math. Nachr. 215 (2000), 5–31. (Reviewer: Hendrik S. V. de Snoo) [AGKLS09] Daniel Alpay, Israel Gohberg, Marinus A. Kaashoek, Leonid Lerer and Alexander Sakhnovich, Krein systems, in: Modern Analysis and Applications. The Mark Krein Centenary Conference. Vol. 2: Differ- ential operators and mechanics, Operator Theory: Advances Applica- tions 191, Birkh¨auser, Basel, 2009, pp. 19–36. [AGKLS10] Daniel Alpay, Israel Gohberg, Marinus A. Kaashoek, Leonid Lerer and Alexander L. Sakhnovich, Krein systems and canonical systems on a finite interval: accelerants with a jump discontinuity at the origin and continuous potentials, Integral Equations Operator Theory 68 (2010), no. 1, 115–150. [Arn50] Nachman Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. [Ar74] Damir Z. Arov, Scattering theory with dissipation of energy, (Rus- sian) Dokl. Akad. Nauk SSSR 216 (1974), 713–716; English transla- tion: Soviet Math. Dokl. 15 (1974), 848–854. [Ar79a] Damir Z. Arov, Optimal and stable passive systems, (Russian) Dokl. Akad Nauk SSSR 247 (1979 ), no. 2, 265–268; English translation: Soviet Math. Dokl. 20 (1979), no. 4, 676–680. [Ar79b] Damir Z. Arov, Passive linear steady-state dynamical systems, (Rus- sian) Sibirsk. Mat. Zh. 20 (1979), no. 2, 211–228; English translation: Siberian Math. J. 20 (1979), no. 2, 149–162. [Ar90] Damir Z. Arov, Regular J-inner matrix-functions and related contin- uation problems, in: Linear Operators in Function Spaces (Timi¸soara, 1988), Operator Theory: Advances Applications 43, Birkh¨auser, Basel, 1990, pp. 63–87. [Ar93] Damir Z. Arov, The generalized bitangent Carath´eodory–Nevanlinna- Pick problem and (j, J0)-inner matrix functions, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 1, 3–32; English translation: Russian Acad. Sci. Izv. Math. 42 (1994), no. 1, 1–26. [ArD98] Damir Z. Arov and Harry Dym, On three Krein extension prob- lems and some generalizations, Integral Equations Operator Theory 31 (1998), no. 1, 1–91. [ArD02] Damir Z. Arov and Harry Dym, J-inner matrix functions, interpola- tion and inverse problems for canonical systems, V. The inverse input scattering problem for Wiener class and rational p × q input scatter- ing matrices, Integral Equations Operator Theory 43 (2002), no. 1, 68–129. Bibliography 387 [ArD05b] Damir Z. Arov and Harry Dym, Strongly regular J-inner matrix- valued functions and inverse problems for canonical systems, in: Recent Advances in Operator Theory and its Applications (M.A. Kaashoek, S. Seatzu and C. van der Mee, eds.), Operator Theory: Advances Applications 160, Birkh¨auser, Basel, 2005, pp. 101–160. [ArD05c] Damir Z. Arov and Harry Dym, Direct and inverse problems for differ- ential systems connected with Dirac systems and related factorization problems, Indiana Univ. Math. J. 54 (2005), no. 6, 1769–1815. [ArD07] Damir Z. Arov and Harry Dym, Direct and inverse asymptotic scattering problems for Dirac–Krein systems, (Russian) Funktsional. Anal. i Prilozhen. 41 (2007), no. 3, 17–33; English translation: Func- tional Anal. Appl. 41 (2007), no. 3, 181–195. [ArD07b] Damir Z. Arov and Harry Dym, Bitangential direct and inverse prob- lems for systems of differential equations, in: Probability, geometry and integrable systems (M. Pinsky and B. Birnir, eds.) Math. Sci. Res. Inst. Publ. 55, Cambridge University Press, Cambridge, 2008, pp. 1–28. [ArD08] Damir Z. Arov and Harry Dym, J-contractive Matrix Valued Func- tions and Related Topics, Encyclopedia of Mathematics and its Ap- plications 116, Cambridge University Press, Cambridge, 2008. [ArD12] Damir Z. Arov and Harry Dym, Bitangential Direct and Inverse Prob- lems for Systems of Integral and Differential Equations, Encyclope- dia of Mathematics and its Applications 145, Cambridge University Press, Cambridge, 2012. [ArK81] Damir Z. Arov and Mark G. Krein, The problem of finding the min- imum entropy in indeterminate problems of continuation, (Russian) Funktsional. Anal. i Prilozhen. 15 (1981), no. 2, 61–64; English trans- lation: Functional Anal. Appl. 1 15 (1981), no. 2, 123–126. [ArK83] Damir Z. Arov and Mark G. Krein, Calculation of entropy functionals and their minima in indeterminate continuation problems, (Russian) Acta Sci. Math. (Szeged) 45 (1983), no. 1–4, 33–50. [ArN96] Damir Z. Arov and Mark A. Nudelman, Passive linear stationary dy- namical scattering systems with continuous time, Integral Equations Operator Theory 24 (1996), no. 1, 1–45. [ArN02] Damir Z. Arov and Mark A. Nudelman, Conditions for the similarity of all minimal passive realizations of a given transfer function (scat- tering and resistance matrices), (Russian) Mat. Sb. 193 (2002), no. 6, 3–24; English translation Sb. Math. 193 (2002), no. 5–6, 791–810. [AS17] DamirZ.ArovandOlofJ.Staffans,Linear Stationary In- put/State/Output and State/Signal Systems, preprint available at http://users.abo.fi/staffans 388 Bibliography [ArR12] Damir Z. Arov and Natalia A. Rozhenko, Realizations of stationary stochastic processes: applications of passive system theory, Methods Functional Anal. Topology 18 (2012), no. 4, 305–331. [Art84] A.P. Artemenko, Hermitian positive functions and positive function- als, I, II, (Russian) Teor.FunktsiiFunktsional.Anal.iPrilhozen.41 (1984), 3–16; 42 (1984), 3–21. [BKSZ15] Joseph A. Ball, Mikael Kurula, Olof J. Staffans and Hans Zwart, De Branges–Rovnyak realizations of operator-valued Schur functions on the complex right half-plane, Complex Anal. Oper. Theory 9 (2015), no. 4, 723–792. [BG002] Laurent Baratchart, Andrea Gombani and Martine Olivi, Parameter determination for surface acoustic wave filters, in: Proceedings of the 39th IEEE Conference on Decision and Control (Sydney, Australia, 2000), 2002, pp. 2011–2016. [BEGO07] Laurent Baratchart, Per Enqvist, Andrea Gombani and Martine Olivi, Minimal symmetric Darlington synthesis, Math. Control Sig- nals Systems 19 (2007), no. 4, 283–311. [BGK82] Harm Bart, Israel Gohberg and Marinus A. Kaashoek, Convolution equations and linear systems, Integral Equations Operator Theory 5 (1982), no. 3, 283–340. [B12] Nicholas H. Bingham, Multivariate prediction and matrix Szeg˝othe- ory, Probab. Surv. 9 (2012), 325–339. [Br59] Louis de Branges, Some Hilbert spaces of entire functions, Proc. Amer. Math. Soc. 10 (1959), 840–846. [Br60] Louis de Branges, Some Hilbert spaces of entire functions, Trans. Amer. Math. Soc. 96 (1960), 259–295. [Br61a] Louis de Branges, Some Hilbert spaces of entire functions. II, Trans. Amer. Math. Soc. 99 (1961), 118–152. [Br61b] Louis de Branges, Some Hilbert spaces of entire functions. III, Trans. Amer. Math. Soc. 100 (1961), 73–115. [Br61c] Louis de Branges, Some Hilbert spaces of entire functions, Bull. Amer. Math. Soc. 67 (1961) 129–134. [Br62] Louis de Branges, Some Hilbert spaces of entire functions. IV, Trans. Amer. Math. Soc. 105 (1962), 43–83. [Br63] Louis de Branges, Some Hilbert spaces of analytic functions I, Trans. Amer. Math. Soc. 106 (1963), 445–468. [Br65] Louis de Branges, Some Hilbert spaces of analytic functions II, J. Math. Anal. Appl. 11 (1965), 44–72. [Br68a] Louis de Branges, Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs, 1968. Bibliography 389 [Br68b] Louis de Branges, The expansion theorem for Hilbert spaces of en- tire functions, in: Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math. (La Jolla, Calif., 1966), Amer. Math. Soc., Providence, 1968, pp. 79–148. [Br83] Louis de Branges, The comparison theorem for Hilbert spaces of entire functions, Integral Equations Operator Theory 6 (1983), no. 5, 603– 646. [CP93] Raymond Cheng and Mohsen Pourahmadi, Baxter’s inequality and convergence of finite predictors of multivariate stochastic processes, Probab.