Complement in Human Pre-Implantation Embryos: Attack 2 and Defense 3 4 5 Martin P

Total Page:16

File Type:pdf, Size:1020Kb

Complement in Human Pre-Implantation Embryos: Attack 2 and Defense 3 4 5 Martin P bioRxiv preprint doi: https://doi.org/10.1101/595561; this version posted April 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Complement in human pre-implantation embryos: attack 2 and defense 3 4 5 Martin P. Reichhardta,1, Karolina Lundinb, A. Inkeri Lokkic,d, Gaëlle Rechere, Sanna 6 Vuoristob, Shintaro Katayamaf, Juha Tapanainenb, Juha Keref,g,h , Seppo Meric,d,i,2, and 7 Timo Tuurib,2 8 9 aSir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom 10 11 bDepartment of Obstetrics and Gynecology, University of Helsinki and Helsinki University 12 Hospital, HUH, Helsinki, Finland 13 14 cDepartment of Bacteriology and Immunology, University of Helsinki, Helsinki Finland 15 16 dTranslational Immunology Research Program, Research Programs Unit, University of 17 Helsinki, Finland 18 19 eInstitut d’Optique Graduate School, CNRS - Université de Bordeaux, Talence, France 20 21 fDepartment of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden 22 23 gKing’s College London, School of Basic and Medical Biosciences, London, UK 24 25 hFolkhälsan Institute of Genetics, and University of Helsinki, Stem Cells and Metabolism 26 Research Program, Helsinki, Finland 27 28 iHumanitas University, Milan, Italy 29 30 31 32 33 1Corresponding author 34 35 2These authors share senior-authorship 36 37 38 1 bioRxiv preprint doi: https://doi.org/10.1101/595561; this version posted April 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 3 It is essential for early human life that immunological responses to developing embryos are 4 tightly regulated. An imbalance in the activation and regulation of the human complement 5 system occurs in pregnancy complications, such as pre-eclampsia and recurrent miscarriage. 6 We hereby present the first full analysis of the expression and deposition of complement 7 molecules in human pre-implantation embryos. Thus far, immunological imbalance has been 8 considered in stages of pregnancy following implantation. We here show that complement 9 activation and deposition takes place on developing human embryos already at the pre- 10 implantation stage. Using confocal microscopy, we observed deposition of activation products 11 such as C1q, C3 and C5 on healthy developing embryos, which highlights the need for strict 12 complement regulation. The early embryos express the complement membrane inhibitors 13 CD46, CD55 and CD59 and bind the soluble regulators C4bp and factor H. These findings 14 show that complement targets human embryos, and indicate potential adverse pregnancy 15 outcomes, if regulation of activation fails. In addition, single-cell RNA sequencing of embryos 16 at oocyte, zygote, 4-cell and 8-cell stages showed expression of complement genes, e.g. C1s, 17 C2, C3, C5, factor B and factor D. This shows that the embryonic cells themselves have the 18 capacity to express C3 and C5, which may become activated and function as mediators of 19 cellular signaling. The specific local embryonic expression of complement components, 20 regulators, and deposition of activation products on the surface of embryos suggests that 21 complement has immunoregulatory functions and may impact cellular homeostasis and 22 differentiation at the earliest stage of human life. 23 24 Keywords 25 Complement, embryo, development, pre-implantation 26 27 Statement of significance 28 While canonical functions of the complement system relate to pathogen-defence, it is known 29 to drive certain immune pathologies. The work here described shows, for the first time, 30 expression and localization of a full range of complement molecules in human pre-implantation 31 embryos. We demonstrate complement attack against early embryos, and show presence of 32 embryonic defence mechanisms. Furthermore, we reveal early embryonic production of 33 complement activators, suggesting non-canonical roles in cell signalling and development. Our 34 findings thus reveal a fundamental role for complement at the earliest stages of human 35 embryogenesis. Our data opens up for future studies into the role of complement, both in 36 relation to infertility and pregnancy complications, as well as basic cellular processes during 37 early human development. 38 2 bioRxiv preprint doi: https://doi.org/10.1101/595561; this version posted April 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Introduction 2 3 The complement system is a part of the innate immune defense system, primarily involved in 4 anti-microbial defense, clearance of debris and immune regulation. This multi-lineage 5 enzymatic cascade functions as one of the earliest initiators of inflammation and a potent 6 inducer of adaptive immune responses. It may be initiated through the classical and lectin 7 pathways, driven by pattern-recognition (e.g. via C1q), or through the auto-activation of the 8 alternative pathway. All three pathways converge at the activation of C3 to C3a and C3b, with 9 the subsequent activation of C5 to C5a and C5b, and finally assembly of the pore-forming 10 membrane attack complex (MAC, C5b-C9). To avoid complement attack against self-tissue, 11 human surfaces express and/or recruit a number of membrane-bound and soluble regulators (1- 12 3). 13 14 Increased complement activation is observed in certain autoimmune diseases, but also during 15 pregnancy (4-6). Thus, the role of complement dysregulation has emerged as an important 16 contributing factor to pregnancy complications and infertility, e.g. in pre-eclampsia and 17 recurring miscarriage (7-10). Understanding how the clearance-function of complement is 18 regulated in the context of tolerating the “semiallograft” embryo is therefore of paramount 19 importance (11). 20 21 In addition to the manifest role of complement in immune targeting and clearance, novel 22 functions have been revealed in recent years. Studies across multiple species have revealed 23 unexpected roles of complement molecules in fertilization, embryonic growth and 24 organogenesis (12). The liver is the main site for synthesis of complement components, 25 however, these novel findings have been driven by the detection of local cell-derived 26 complement factors and functional links to basic cellular homeostasis and metabolism (3, 9, 27 13-19). Furthermore, a number of animal models have revealed an effect of complement on 28 mouse embryo hatching rate, Xenopus organogenesis as well as on rodent neuronal 29 development (20-24). 30 31 While our understanding of local cellular complement activities is increasing, knowledge of 32 complement expression and localization at the very early stages of human life, i.e. the pre- 33 implantation embryonic stage, is practically non-existing. To understand the impact of 34 complement on embryonic development, it is essential to investigate (i) potentially hazardous 35 embryonic targeting by maternal complement (complement clearance function), as well as (ii) 36 local embryonic production of complement components (cellular signaling and protection 37 against maternal complement attack). 38 39 In an effort to map the localization of complement molecules and understand the role of 40 complement activation in the early stages of human embryonic development, we here describe 41 the local cellular expression and surface deposition of complement components using single 42 cell RNA-transcriptomics and confocal microscopy of human non-fertilized oocytes, zygotes, 43 4-cell stage and 8-cell stage embryos. The current dogma in the field suggests that maternal 44 immune tolerance towards the conceptus is induced during and after implantation. However, 45 the findings presented here support a crucial role for innate immune mechanisms, such as 46 complement activation, already in the pre-implantation stage of human reproduction. 47 Furthermore, to the authors’ knowledge, these studies are the first to show the expression of 48 multiple activating and regulatory complement components during human embryogenesis. Our 49 findings thus suggest that complement signaling may be essential for early human 50 development, as observed in other mammals. 3 bioRxiv preprint doi: https://doi.org/10.1101/595561; this version posted April 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Results 2 3 Embryos express complement regulators, activators and receptors 4 To understand the role of complement during early embryogenesis, we analyzed single-cell 5 transcriptomes from embryos at different developmental stages. Included were non-fertilized 6 oocytes, zygotes, 4-cell stage embryos and 8-cell stage embryos. Using single-cell tagged 7 reverse-transcription sequencing (STRT), 5’- Transcript Far Ends (TFEs) were analyzed as 8 described previously (25). Specifically, transcripts from the 5’-untranslated region (UTR) and 9 upstream are reliable templates for proteins, and these were used for the analysis along with a 10 number of reliable reads from the coding sequences (CDs). Three separate libraries were 11 generated comparing oocyte to zygote, oocyte to 4-cell stage and 4-cell to 8-cell stage. To 12 avoid batch-bias, these libraries were not batch corrected. We analyzed the presence of specific 13 complement-related TFEs found in each of the four stages (Figure 1). 14 15 Single-cell RNA sequencing revealed expression of a varied set of complement related genes. 16 Transcripts correlating to a number of molecules known to protect cells from complement 17 attack were identified.
Recommended publications
  • An Anticomplement Agent That Homes to the Damaged Brain and Promotes Recovery After Traumatic Brain Injury in Mice
    An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice Marieta M. Rusevaa,1,2, Valeria Ramagliab,1, B. Paul Morgana, and Claire L. Harrisa,3 aInstitute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and bDepartment of Genome Analysis, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands Edited by Douglas T. Fearon, Cornell University, Cambridge, United Kingdom, and approved September 29, 2015 (received for review July 15, 2015) Activation of complement is a key determinant of neuropathology to rapidly and specifically inhibit MAC at sites of complement and disability after traumatic brain injury (TBI), and inhibition is activation, and test its therapeutic potential in experimental TBI. neuroprotective. However, systemic complement is essential to The construct, termed CD59-2a-CRIg, comprises CD59a linked fight infections, a critical complication of TBI. We describe a to CRIg via the murine IgG2a hinge. CD59a prevents assembly targeted complement inhibitor, comprising complement receptor of MAC in cell membranes (16), whereas CRIg binds C3b/iC3b of the Ig superfamily (CRIg) fused with complement regulator CD59a, deposited at sites of complement activation (17). The IgG2a designed to inhibit membrane attack complex (MAC) assembly at hinge promotes dimerization to increase ligand avidity. CD59- sites of C3b/iC3b deposition. CRIg and CD59a were linked via the 2a-CRIg protected in the TBI model, demonstrating that site- IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b targeted anti-MAC therapeutics may be effective in prevention binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited of secondary neuropathology and improve neurologic recovery MAC formation and prevented complement-mediated lysis in vitro.
    [Show full text]
  • Supplement 1A Steffensen Et
    Liver Wild-type Knockout C T C T 1 2 4 7 8 9 1 2 4 5 7 9 1 1 1 1 1 1 C C C T T T C C C T T T W W W W W W K K K K K K IMAGE:793166 RIKEN cDNA 6720463E02 gene IMAGE:1447421 ESTs, Weakly similar to ZF37 MOUSE ZINC FINGER PROTEIN 37 [M.musculus] IMAGE:934291 RIKEN cDNA 2810418N01 gene IMAGE:1247525 small EDRK-rich f2actor IMAGE:1449402 expressed sequence AW321064 IMAGE:1279847 ESTs IMAGE:518737 expressed sequence AW049941 IMAGE:860231 a disintegrin and metalloproteinase domain 17 IMAGE:642836 CD86 antigen IMAGE:1003885 phosphoribosyl pyrophosphate sy1nthetase IMAGE:524862 RIKEN cDNA 5730469D23 gene IMAGE:1264473 protein inhibitor of activat1ed STAT IMAGE:847035 RIKEN cDNA 4833422F06 gene IMAGE:374550 requiem IMAGE:976520 nuclear receptor coact4ivator IMAGE:1264311 Unknown IMAGE:976735 expressed sequence AI987692 IMAGE:976659 cathepsLin IMAGE:1477580 RIKEN cDNA 1600010J02 gene IMAGE:1277168 ribosomal protein, large, P1 IMAGE:524842 RIKEN cDNA 0710008D09 gene IMAGE:373019 split hand/foot delete1d gene IMAGE:404428 expressed sequence AI413851 IMAGE:619810 RIKEN cDNA 1700003F10 gene IMAGE:1749558 caspase 3, apoptosis related cysteine protease IMAGE:718718 RIKEN cDNA 2810003F23 gene IMAGE:819789 Unknown IMAGE:524474 ATP-binding cassette, sub-family A ABC1, member IMAGE:804950 Mus musculus, Similar to ribosomal protein S20, clone MGC:6876 IMAGE:2651405, mRNA, complete cds IMAGE:806143 gap junction membrane channel prot2ein beta IMAGE:1745887 expressed sequence AI836376 IMAGE:779426 RIKEN cDNA 5230400G24 gene IMAGE:1125615 Unknown IMAGE:535025 DNA
    [Show full text]
  • Focused Transcription from the Human CR2/CD21 Core Promoter Is Regulated by Synergistic Activity of TATA and Initiator Elements in Mature B Cells
    Cellular & Molecular Immunology (2016) 13, 119–131 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi RESEARCH ARTICLE Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2, Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7 and Daniela Ulgiati1 Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.
    [Show full text]
  • Structural Insight on the Recognition of Surface-Bound Opsonins by the Integrin I Domain of Complement Receptor 3
    Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3 Goran Bajica, Laure Yatimea, Robert B. Simb, Thomas Vorup-Jensenc,1, and Gregers R. Andersena,1 Departments of aMolecular Biology and Genetics and cBiomedicine, Aarhus University, DK-8000 Aarhus, Denmark; and bDepartment of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom Edited by Douglas T. Fearon, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom, and approved August 28, 2013 (received for review June 13, 2013) Complement receptors (CRs), expressed notably on myeloid and degranulation, and changes in leukocyte cytokine production (2, lymphoid cells, play an essential function in the elimination of 5–7). CR3, and to a lesser degree CR4, are essential for the complement-opsonized pathogens and apoptotic/necrotic cells. In phagocytosis of complement-opsonized particles or complexes addition, these receptors are crucial for the cross-talk between the (6, 8, 9). Complement-opsonized immune complexes are cap- innate andadaptive branches ofthe immune system. CR3 (also known tured in the lymph nodes by CR3-positive subcapsular sinus as Mac-1, integrin α β , or CD11b/CD18) is expressed on all macro- macrophages (SSMs) and conveyed directly to naïve B cells or M 2 γ phages and recognizes iC3b on complement-opsonized objects, en- through follicular dendritic cells (10) using CR1, CR2, and Fc abling their phagocytosis. We demonstrate that the C3d moiety of receptors for antigen capture (11, 12). Hence, antigen-presenting iC3b harbors the binding site for the CR3 αI domain, and our structure cells such as SSMs may act as antigen storage and provide B of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b.
    [Show full text]
  • Genetic Defects in B-Cell Development and Their Clinical Consequences H Abolhassani,1,2 N Parvaneh,1 N Rezaei,1 L Hammarström,2 a Aghamohammadi1
    REVIEWS Genetic Defects in B-Cell Development and Their Clinical Consequences H Abolhassani,1,2 N Parvaneh,1 N Rezaei,1 L Hammarström,2 A Aghamohammadi1 1Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran 2Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden n Abstract Expression of selected genes in hematopoietic stem cells has been identified as a regulator of differentiation of B cells in the liver and bone marrow. Moreover, naïve B cells expressing surface immunoglobulin need other types of genes for antigen-dependent development in secondary lymphoid organs. Many advanced molecular mechanisms underlying primary antibody deficiencies in humans have been described. We provide an overview of the mutations in genes known to be involved in B-cell development and their clinical consequences. Key words: Genetic disorder. B-cell development. Primary antibody deficiencies. Clinical phenotypes. n Resumen Se ha identificado la expresión de genes seleccionados en las células pluripotenciales de médula ósea como reguladores de la diferenciación de las células B en el hígado y en médula ósea. Sin embargo, las células B naïve que expresan inmunoglubulinas de superficie, necesitan otros tipos de genes para su desarrollo en los órganos linfoides secundarios dependienteS de antígeno. Se han descrito muchos mecanismos moleculares avanzados que subrayan las inmunodeficiencias en humanos y esta revisión constituye una visión general de la mutación en todos los genes conocidos involucrados en el desarrollo de las células B y sus consecuencias clínicas. Palabras clave: Alteraciones genéticas. Desarrollo de las células B.
    [Show full text]
  • Complement Receptor 1 Therapeutics for Prevention of Immune Hemolysis
    Review: complement receptor 1 therapeutics for prevention of immune hemolysis K.YAZDANBAKHSH The complement system plays a crucial role in fighting infections biological activities, it has to be activated. Activation and is an important link between the innate and adaptive immune occurs in a sequence that involves proteolytic cleavage responses. However, inappropriate complement activation can cause tissue damage, and it underlies the pathology of many of the complement components, resulting in the diseases. In the transfusion medicine setting, complement release of active biological mediators and the assembly sensitization of RBCs can lead to both intravascular and of active enzyme molecules that result in cleavage of extravascular destruction. Moreover, complement deficiencies are 1 associated with autoimmune disorders, including autoimmune the next downstream complement component. hemolytic anemia (AIHA). Complement receptor 1 (CR1) is a large Depending on the nature of the activators, three single-pass glycoprotein that is expressed on a variety of cell types complement activation pathways have been described: in blood, including RBCs and immune cells. Among its multiple the antibody-dependent classical pathway and the functions is its ability to inhibit complement activation. Furthermore, gene knockout studies in mice implicate a role for antibody-independent alternative and lectin pathways CR1 (along with the alternatively spliced gene product CR2) in (Fig. 1).1 Common to all three pathways are two prevention of autoimmunity. This review discusses the possibility critical steps: the assembly of the C3 convertase that the CR1 protein may be manipulated to prevent and treat AIHA. In addition, it will be shown in an in vivo mouse model of enzymes and the activation of C5 convertases.
    [Show full text]
  • Leukemia Cells by THP-1 Monocytes Lymphoma and Chronic Lymphocytic Complexes Are Removed from Mantle Cell the Shaving Reaction
    The Shaving Reaction: Rituximab/CD20 Complexes Are Removed from Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Cells by THP-1 Monocytes This information is current as of September 25, 2021. Paul V. Beum, Adam D. Kennedy, Michael E. Williams, Margaret A. Lindorfer and Ronald P. Taylor J Immunol 2006; 176:2600-2609; ; doi: 10.4049/jimmunol.176.4.2600 http://www.jimmunol.org/content/176/4/2600 Downloaded from References This article cites 86 articles, 44 of which you can access for free at: http://www.jimmunol.org/content/176/4/2600.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Shaving Reaction: Rituximab/CD20 Complexes Are Removed from Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Cells by THP-1 Monocytes1 Paul V. Beum,* Adam D.
    [Show full text]
  • Complement in Tumourigenesis and the Response to Cancer Therapy
    cancers Review Complement in Tumourigenesis and the Response to Cancer Therapy Rebecca M. O’Brien 1,2, Aoife Cannon 1, John V. Reynolds 1, Joanne Lysaght 1,2 and Niamh Lynam-Lennon 1,* 1 Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; [email protected] (R.M.O.); [email protected] (A.C.); [email protected] (J.V.R.); [email protected] (J.L.) 2 Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland * Correspondence: [email protected] Simple Summary: Increasing evidence supports a role for complement in the development of cancer and the response to cancer treatments. Dysregulated complement expression within the tumour microenvironment has been linked to the suppression of anti-tumour immunity and poor clinical outcomes. Complement signals have been demonstrated to alter the immune milieu, promote proliferation and facilitate metastasis. Targeting complement signalling in combination with current treatments may have the potential to achieve improved control of tumour growth. Abstract: In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour Citation: O’Brien, R.M.; Cannon, A.; Reynolds, J.V.; Lysaght, J.; microenvironment.
    [Show full text]
  • The Complement System
    The Role of Intravenous Immunoglobulin Anti-A and Anti-B in Complement Activation and Red Blood Cell Phagocytosis By Daniella Perri A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Daniella Perri 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-59437-7 Our file Notre référence ISBN: 978-0-494-59437-7 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Complement Regulatory Proteins: Are They Important in Disease?
    EDITORIALS J Am Soc Nephrol 14: 2411–2413, 2003 Complement Regulatory Proteins: Are They Important in Disease? MASAOMI NANGAKU Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan. In this issue of JASN, Turnberg et al. (1) report that the deletion in the CD59 gene expressed a severe PNH-like phe- manifestations of disease in an immune complex-mediated notype (12,13). Given that his is the only known case of glomerulonephritis model are exacerbated in Cd59a knockout selective CD59 deficiency, however, the evidence supporting a mice. Exacerbation was associated with an increase in C9 critical role of CD59 in vivo remains flimsy. deposition in glomeruli, suggesting that the deficiency of Using a neutralizing antibody, Matsuo and colleagues Cd59a allowed greater C5b-9 deposition, which in turn led to (14,15) performed various studies to elucidate the biologic role more severe renal disease. of CD59 in the kidney in rodents. Neutralization of renal CD59 These findings are potentially of great importance. Comple- function alone did not induce complement-mediated injury in ment activation plays a critical role in tissue injury, including healthy rats. However, any interpretation of experiments in rats various forms of glomerulonephritis (2,3) and tubulointerstitial and mice is confounded by the presence of Crry, a rodent- injury (4,5). Against this, the host is endowed with rigorous specific analog of DAF and membrane cofactor protein (MCP) regulatory mechanisms (6). The balance between acceleration that inhibits early complement activation; therefore, these data and inhibition of complement activation is critical to whether do not necessarily exclude a crucial role of complement acti- complement activation leads to host defense or tissue injury of vation regulation at the C5b-9 formation level.
    [Show full text]
  • Anti-CD21 Antibody [LT21] (ARG62771)
    Product datasheet [email protected] ARG62771 Package: 100 μg anti-CD21 antibody [LT21] Store at: -20°C Summary Product Description Mouse Monoclonal antibody [LT21] recognizes CD21 Tested Reactivity Hu, Bov, Dog, Pig Tested Application FACS, IHC-Fr Specificity The clone LT21 reacts with CD21 (CR2), a 145 kDa transmembrane glycoprotein (complement C3d receptor - C3dR) expressed on B lymphocytes, follicular dendritic cells, some epithelial cells and a subsets of T lymphocytes. It is not expressed on immature B cells. HLDA VI; WS Code B CD21.1 Host Mouse Clonality Monoclonal Clone LT21 Isotype IgG1 Target Name CD21 Species Human Immunogen IM9 human B-lymphoblastoid cell line Conjugation Un-conjugated Alternate Names Cr2; Complement C3d receptor; C3DR; CD21; CD antigen CD21; Complement receptor type 2; SLEB9; CR; CVID7; Epstein-Barr virus receptor; EBV receptor Application Instructions Application table Application Dilution FACS 2 µg/ml IHC-Fr Assay-dependent Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Properties Form Liquid Purification Purified from ascites by precipitation methods and ion exchange chromatography. Purity > 95% (by SDS-PAGE) Buffer PBS (pH 7.4) and 15 mM Sodium azide Preservative 15 mM Sodium azide Concentration 1 mg/ml www.arigobio.com 1/2 Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
    [Show full text]
  • Complement Receptors 1 and 2 HECTOR MOLINA*T, V
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 3357-3361, April 1996 Immunology Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2 HECTOR MOLINA*t, V. MICHAEL HOLERSt, BIN LI*, YI-FU FANG*, SANJEEV MARIATHASAN§, JOSEPH GOELLNER¶, JENA STRAUSS-SCHOENBERGER¶, ROBERT W. KARR1, AND DAVID D. CHAPLIN*§ *Department of Internal Medicine and Center for Immunology, and §Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; tDepartments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO 80262; and ¶Department of Immunology, G. D. Searle & Co., St. Louis, MO 63198 Communicated by Stanley J. Korsmeyer, Washington University School of Medicine, St. Louis, MO, December 26, 1995 (received for review November 8, 1995) ABSTRACT Complement receptor 1 (CR1, CD35) and Mouse CR2 is 67% homologous in nucleotide sequence to complement receptor 2 (CR2, CD21) have been implicated as its human counterpart (7). Mouse CR2 is present on the regulators of B-cell activation. We explored the role of these surface of FDC and B cells, and binds human and mouse C3d receptors in the development of humoral immunity by gener- with similar affinities (8). Mouse CR1 is also present on B cells, ating CR1- and CR2-deficient mice using gene-targeting tech- binds mouse C3b with high affinity, and has cofactor activity niques. These mice have normal basal levels of IgM and of IgG for C3b cleavage by murine factor I (9). In spite of these isotypes. B- and T-cell are normal. Never- striking functional similarities, certain structural differences development overtly are B-cell to low and doses of a T-cell- evident between the two species.
    [Show full text]