Complement Regulatory Proteins: Are They Important in Disease?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Susceptibility to Chronic Wasting Disease in Free-Ranging White-Tailed Deer: Complement Component C1q and Prnp Polymorphisms Julie A
Natural Resource Ecology and Management Natural Resource Ecology and Management Publications 12-2009 Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms Julie A. Blanchong Iowa State University, [email protected] Dennis M. Heisey United States Geological Survey Kim T. Scribner Michigan State University Scot V. Libants Michigan State University Chad Johnson UFonilvloerwsit ythi of sW aiscondn asiddn - itMionadisoaln works at: http://lib.dr.iastate.edu/nrem_pubs Part of the Animal Diseases Commons, Genetics Commons, Natural Resources Management See next page for additional authors and Policy Commons, Veterinary Infectious Diseases Commons, and the Zoology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ nrem_pubs/84. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Natural Resource Ecology and Management at Iowa State University Digital Repository. It has been accepted for inclusion in Natural Resource Ecology and Management Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genetic susceptibility to chronic wasting disease in free-ranging white- tailed deer: Complement component C1q and Prnp polymorphisms Abstract The eg netic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. -
Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview -
An Anticomplement Agent That Homes to the Damaged Brain and Promotes Recovery After Traumatic Brain Injury in Mice
An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice Marieta M. Rusevaa,1,2, Valeria Ramagliab,1, B. Paul Morgana, and Claire L. Harrisa,3 aInstitute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and bDepartment of Genome Analysis, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands Edited by Douglas T. Fearon, Cornell University, Cambridge, United Kingdom, and approved September 29, 2015 (received for review July 15, 2015) Activation of complement is a key determinant of neuropathology to rapidly and specifically inhibit MAC at sites of complement and disability after traumatic brain injury (TBI), and inhibition is activation, and test its therapeutic potential in experimental TBI. neuroprotective. However, systemic complement is essential to The construct, termed CD59-2a-CRIg, comprises CD59a linked fight infections, a critical complication of TBI. We describe a to CRIg via the murine IgG2a hinge. CD59a prevents assembly targeted complement inhibitor, comprising complement receptor of MAC in cell membranes (16), whereas CRIg binds C3b/iC3b of the Ig superfamily (CRIg) fused with complement regulator CD59a, deposited at sites of complement activation (17). The IgG2a designed to inhibit membrane attack complex (MAC) assembly at hinge promotes dimerization to increase ligand avidity. CD59- sites of C3b/iC3b deposition. CRIg and CD59a were linked via the 2a-CRIg protected in the TBI model, demonstrating that site- IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b targeted anti-MAC therapeutics may be effective in prevention binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited of secondary neuropathology and improve neurologic recovery MAC formation and prevented complement-mediated lysis in vitro. -
In Vitro Selection for Adhesion of Plasmodium Falciparum-Infected Erythrocytes to ABO Antigens Does Not Affect Pfemp1 and RIFIN
www.nature.com/scientificreports OPEN In vitro selection for adhesion of Plasmodium falciparum‑infected erythrocytes to ABO antigens does not afect PfEMP1 and RIFIN expression William van der Puije1,2, Christian W. Wang 4, Srinidhi Sudharson 2, Casper Hempel 2, Rebecca W. Olsen 4, Nanna Dalgaard 4, Michael F. Ofori 1, Lars Hviid 3,4, Jørgen A. L. Kurtzhals 2,4 & Trine Staalsoe 2,4* Plasmodium falciparum causes the most severe form of malaria in humans. The adhesion of the infected erythrocytes (IEs) to endothelial receptors (sequestration) and to uninfected erythrocytes (rosetting) are considered major elements in the pathogenesis of the disease. Both sequestration and rosetting appear to involve particular members of several IE variant surface antigens (VSAs) as ligands, interacting with multiple vascular host receptors, including the ABO blood group antigens. In this study, we subjected genetically distinct P. falciparum parasites to in vitro selection for increased IE adhesion to ABO antigens in the absence of potentially confounding receptors. The selection resulted in IEs that adhered stronger to pure ABO antigens, to erythrocytes, and to various human cell lines than their unselected counterparts. However, selection did not result in marked qualitative changes in transcript levels of the genes encoding the best-described VSA families, PfEMP1 and RIFIN. Rather, overall transcription of both gene families tended to decline following selection. Furthermore, selection-induced increases in the adhesion to ABO occurred in the absence of marked changes in immune IgG recognition of IE surface antigens, generally assumed to target mainly VSAs. Our study sheds new light on our understanding of the processes and molecules involved in IE sequestration and rosetting. -
Supplement 1A Steffensen Et
Liver Wild-type Knockout C T C T 1 2 4 7 8 9 1 2 4 5 7 9 1 1 1 1 1 1 C C C T T T C C C T T T W W W W W W K K K K K K IMAGE:793166 RIKEN cDNA 6720463E02 gene IMAGE:1447421 ESTs, Weakly similar to ZF37 MOUSE ZINC FINGER PROTEIN 37 [M.musculus] IMAGE:934291 RIKEN cDNA 2810418N01 gene IMAGE:1247525 small EDRK-rich f2actor IMAGE:1449402 expressed sequence AW321064 IMAGE:1279847 ESTs IMAGE:518737 expressed sequence AW049941 IMAGE:860231 a disintegrin and metalloproteinase domain 17 IMAGE:642836 CD86 antigen IMAGE:1003885 phosphoribosyl pyrophosphate sy1nthetase IMAGE:524862 RIKEN cDNA 5730469D23 gene IMAGE:1264473 protein inhibitor of activat1ed STAT IMAGE:847035 RIKEN cDNA 4833422F06 gene IMAGE:374550 requiem IMAGE:976520 nuclear receptor coact4ivator IMAGE:1264311 Unknown IMAGE:976735 expressed sequence AI987692 IMAGE:976659 cathepsLin IMAGE:1477580 RIKEN cDNA 1600010J02 gene IMAGE:1277168 ribosomal protein, large, P1 IMAGE:524842 RIKEN cDNA 0710008D09 gene IMAGE:373019 split hand/foot delete1d gene IMAGE:404428 expressed sequence AI413851 IMAGE:619810 RIKEN cDNA 1700003F10 gene IMAGE:1749558 caspase 3, apoptosis related cysteine protease IMAGE:718718 RIKEN cDNA 2810003F23 gene IMAGE:819789 Unknown IMAGE:524474 ATP-binding cassette, sub-family A ABC1, member IMAGE:804950 Mus musculus, Similar to ribosomal protein S20, clone MGC:6876 IMAGE:2651405, mRNA, complete cds IMAGE:806143 gap junction membrane channel prot2ein beta IMAGE:1745887 expressed sequence AI836376 IMAGE:779426 RIKEN cDNA 5230400G24 gene IMAGE:1125615 Unknown IMAGE:535025 DNA -
Focused Transcription from the Human CR2/CD21 Core Promoter Is Regulated by Synergistic Activity of TATA and Initiator Elements in Mature B Cells
Cellular & Molecular Immunology (2016) 13, 119–131 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi RESEARCH ARTICLE Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2, Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7 and Daniela Ulgiati1 Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window. -
Structural Insight on the Recognition of Surface-Bound Opsonins by the Integrin I Domain of Complement Receptor 3
Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3 Goran Bajica, Laure Yatimea, Robert B. Simb, Thomas Vorup-Jensenc,1, and Gregers R. Andersena,1 Departments of aMolecular Biology and Genetics and cBiomedicine, Aarhus University, DK-8000 Aarhus, Denmark; and bDepartment of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom Edited by Douglas T. Fearon, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom, and approved August 28, 2013 (received for review June 13, 2013) Complement receptors (CRs), expressed notably on myeloid and degranulation, and changes in leukocyte cytokine production (2, lymphoid cells, play an essential function in the elimination of 5–7). CR3, and to a lesser degree CR4, are essential for the complement-opsonized pathogens and apoptotic/necrotic cells. In phagocytosis of complement-opsonized particles or complexes addition, these receptors are crucial for the cross-talk between the (6, 8, 9). Complement-opsonized immune complexes are cap- innate andadaptive branches ofthe immune system. CR3 (also known tured in the lymph nodes by CR3-positive subcapsular sinus as Mac-1, integrin α β , or CD11b/CD18) is expressed on all macro- macrophages (SSMs) and conveyed directly to naïve B cells or M 2 γ phages and recognizes iC3b on complement-opsonized objects, en- through follicular dendritic cells (10) using CR1, CR2, and Fc abling their phagocytosis. We demonstrate that the C3d moiety of receptors for antigen capture (11, 12). Hence, antigen-presenting iC3b harbors the binding site for the CR3 αI domain, and our structure cells such as SSMs may act as antigen storage and provide B of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b. -
Genetic Defects in B-Cell Development and Their Clinical Consequences H Abolhassani,1,2 N Parvaneh,1 N Rezaei,1 L Hammarström,2 a Aghamohammadi1
REVIEWS Genetic Defects in B-Cell Development and Their Clinical Consequences H Abolhassani,1,2 N Parvaneh,1 N Rezaei,1 L Hammarström,2 A Aghamohammadi1 1Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran 2Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden n Abstract Expression of selected genes in hematopoietic stem cells has been identified as a regulator of differentiation of B cells in the liver and bone marrow. Moreover, naïve B cells expressing surface immunoglobulin need other types of genes for antigen-dependent development in secondary lymphoid organs. Many advanced molecular mechanisms underlying primary antibody deficiencies in humans have been described. We provide an overview of the mutations in genes known to be involved in B-cell development and their clinical consequences. Key words: Genetic disorder. B-cell development. Primary antibody deficiencies. Clinical phenotypes. n Resumen Se ha identificado la expresión de genes seleccionados en las células pluripotenciales de médula ósea como reguladores de la diferenciación de las células B en el hígado y en médula ósea. Sin embargo, las células B naïve que expresan inmunoglubulinas de superficie, necesitan otros tipos de genes para su desarrollo en los órganos linfoides secundarios dependienteS de antígeno. Se han descrito muchos mecanismos moleculares avanzados que subrayan las inmunodeficiencias en humanos y esta revisión constituye una visión general de la mutación en todos los genes conocidos involucrados en el desarrollo de las células B y sus consecuencias clínicas. Palabras clave: Alteraciones genéticas. Desarrollo de las células B. -
Complement Receptor 1 Therapeutics for Prevention of Immune Hemolysis
Review: complement receptor 1 therapeutics for prevention of immune hemolysis K.YAZDANBAKHSH The complement system plays a crucial role in fighting infections biological activities, it has to be activated. Activation and is an important link between the innate and adaptive immune occurs in a sequence that involves proteolytic cleavage responses. However, inappropriate complement activation can cause tissue damage, and it underlies the pathology of many of the complement components, resulting in the diseases. In the transfusion medicine setting, complement release of active biological mediators and the assembly sensitization of RBCs can lead to both intravascular and of active enzyme molecules that result in cleavage of extravascular destruction. Moreover, complement deficiencies are 1 associated with autoimmune disorders, including autoimmune the next downstream complement component. hemolytic anemia (AIHA). Complement receptor 1 (CR1) is a large Depending on the nature of the activators, three single-pass glycoprotein that is expressed on a variety of cell types complement activation pathways have been described: in blood, including RBCs and immune cells. Among its multiple the antibody-dependent classical pathway and the functions is its ability to inhibit complement activation. Furthermore, gene knockout studies in mice implicate a role for antibody-independent alternative and lectin pathways CR1 (along with the alternatively spliced gene product CR2) in (Fig. 1).1 Common to all three pathways are two prevention of autoimmunity. This review discusses the possibility critical steps: the assembly of the C3 convertase that the CR1 protein may be manipulated to prevent and treat AIHA. In addition, it will be shown in an in vivo mouse model of enzymes and the activation of C5 convertases. -
Microglia Receptors and Their Implications in the Response to Amyloid Β for Alzheimer’S Disease Pathogenesis Deborah Doens1,2 and Patricia L Fernández1*
Doens and Fernández Journal of Neuroinflammation 2014, 11:48 JOURNAL OF http://www.jneuroinflammation.com/content/11/1/48 NEUROINFLAMMATION REVIEW Open Access Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis Deborah Doens1,2 and Patricia L Fernández1* Abstract Alzheimer’s disease (AD) is a major public health problem with substantial economic and social impacts around the world. The hallmarks of AD pathogenesis include deposition of amyloid β (Aβ), neurofibrillary tangles, and neuroinflammation. For many years, research has been focused on Aβ accumulation in senile plaques, as these aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD, microglia play a dual role in disease progression, being essential for clearing Aβ deposits and releasing cytotoxic mediators. Aβ activates microglia through a variety of innate immune receptors expressed on these cells. The mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is believed that these receptors cooperate in the recognition, internalization, and clearance of Aβ and in cell activation. In this review, we discuss the role of several receptors expressed on microglia in Aβ recognition, uptake, and signaling, and their implications for AD pathogenesis. Keywords: Cytokines, Inflammation, Microglia, Receptor Background Microglia constitute the lesser portion of the total glial Alzheimer’s disease (AD) is a neurodegenerative disorder cell population within the brain and are found in a rest- characterized by a progressive decline in cognitive and ing state in the healthy central nervous system (CNS) functional abilities. -
Leukemia Cells by THP-1 Monocytes Lymphoma and Chronic Lymphocytic Complexes Are Removed from Mantle Cell the Shaving Reaction
The Shaving Reaction: Rituximab/CD20 Complexes Are Removed from Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Cells by THP-1 Monocytes This information is current as of September 25, 2021. Paul V. Beum, Adam D. Kennedy, Michael E. Williams, Margaret A. Lindorfer and Ronald P. Taylor J Immunol 2006; 176:2600-2609; ; doi: 10.4049/jimmunol.176.4.2600 http://www.jimmunol.org/content/176/4/2600 Downloaded from References This article cites 86 articles, 44 of which you can access for free at: http://www.jimmunol.org/content/176/4/2600.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Shaving Reaction: Rituximab/CD20 Complexes Are Removed from Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Cells by THP-1 Monocytes1 Paul V. Beum,* Adam D. -
A Role for CD36 in the Regulation of Dendritic Cell Function
A role for CD36 in the regulation of dendritic cell function Britta C. Urban*†, Nick Willcox*, and David J. Roberts‡ *Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; and ‡National Blood Service, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom Edited by Philippa Marrack, National Jewish Medical and Research Center, Denver, CO, and approved May 14, 2001 (received for review January 18, 2001) Dendritic cells (DC) are crucial for the induction of immune responses peated infections despite large amounts of circulating antigen and thus an inviting target for modulation by pathogens. We have during the acute phases of the disease (11, 12). P. falciparum- previously shown that Plasmodium falciparum-infected erythrocytes infected erythrocytes (iRBC) express a clonally variant protein inhibit the maturation of DCs. Intact P. falciparum-infected erythro- (PfEMP-1) in the erythrocyte membrane that mediates binding cytes can bind directly to CD36 and indirectly to CD51. It is striking that to host cells (reviewed in ref. 13). Almost all variants of PfEMP1 these receptors, at least in part, also mediate the phagocytosis of analyzed so far bind to CD36 and͞or thrombospondin (TSP), apoptotic cells. Here we show that antibodies against CD36 or CD51, and individual variants may bind additionally to a variety of other as well as exposure to early apoptotic cells, profoundly modulate DC host receptors such as CD31 [platelet-endothelial cell adhesion maturation and function in response to inflammatory signals. Al- molecule (PECAM-1)], CD35 (complement receptor 1), CD51 ␣ ␣ though modulated DCs still secrete tumor necrosis factor- , they fail ( v integrin chain), or CD54 [intercellular adhesion molecule-1 to activate T cells and now secrete IL-10.