Development Guide Volume 4: Server Development

Total Page:16

File Type:pdf, Size:1020Kb

Development Guide Volume 4: Server Development Red Hat JBoss Data Virtualization 6.3 Development Guide Volume 4: Server Development This guide is intended for developers Red Hat Customer Content Services Red Hat JBoss Data Virtualization 6.3 Development Guide Volume 4: Server Development This guide is intended for developers Red Hat Customer Content Services Legal Notice Copyright © 2016 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project. The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community. All other trademarks are the property of their respective owners. Abstract This document provides information for developers creating custom solutions. Table of Contents Table of Contents .C .h .a .p . t.e .r .1 .. .R . e. a. d. .M . e. .3 . 1.1. Back Up Your Data 3 1.2. Variable Name: EAP_HOME 3 1.3. Variable Name: MODE 3 1.4. Red Hat Documentation Site 3 .C .h .a .p . t.e .r .2 .. .D . e. v. e. l.o .p .i n. g. f.o .r .R . e. d. .H . a. t. J. B. .o .s .s . D. a. t. a. .V .i r. t.u .a .l i.z .a .t i.o .n . .4 . 2.1. Developing for Red Hat JBoss Data Virtualization 4 2.2. Red Hat JBoss Data Virtualization Connector Architecture 4 2.3. Translators in Red Hat JBoss Data Virtualization 4 2.4. Resource Adapters in Red Hat JBoss Data Virtualization 7 2.5. Other Red Hat JBoss Data Virtualization Development 7 2.6. Setting the Development Environment 8 2.7. Maven Repository Location 8 .C .h .a .p . t.e .r .3 .. .R . e. s. o. u. r. c. e. .A .d .a .p . t.e .r .D . e. v. e. l.o .p .m . e. n. .t . .9 . 3.1. Developing Custom Adapters 9 3.2. Define a Managed Connection Factory 9 3.3. Define a Connection Factory 10 3.4. Define a Connection 11 3.5. XA Transactions 11 3.6. Specify Configuration Properties in an ra.xml File 11 3.7. Packaging the Adapter 13 3.8. Adding Dependent Libraries 14 3.9. Deploying the Adapter 14 .C .h .a .p . t.e .r .4 .. .T .r .a .n .s .l a. t.o .r . D. e. v. e. l.o . p. m. .e .n .t . .1 .6 . 4.1. Environment Set-Up 16 4.2. Implementing the Framework 18 .C .h .a .p . t.e .r .5 .. .E . x. t.e .n .d .i n. g. t.h .e . J. D. .B .C . .T .r a. n. .s .l a. t.o .r . .4 .3 . 5.1. Extensions 43 5.2. Capabilities Extension 43 5.3. SQL Translation Extension 43 5.4. Results Translation Extension 43 5.5. Adding Function Support 44 5.6. Using Function Modifiers 44 5.7. Installing Extensions 46 .C .h .a .p . t.e .r .6 .. .D . e. l.e .g .a .t i.n .g . .4 .7 . 6.1. Delegating Translator 47 6.2. Adding Dependent Modules 48 .C .h .a .p . t.e .r .7 .. .P . a. c. k. a. g. i.n .g . a. n. d. D. e. p. l.o . y. i.n .g . t.h .e . T. .r a. n. s. l.a .t o. .r . .4 .9 . 7.1. Packaging 49 7.2. Translator Deployment Overview 49 7.3. Module Deployment 49 7.4. JAR Deployment 49 .C .h .a .p . t.e .r .8 .. .U . s. e. r. D. .e .f i.n .e .d . F. .u .n .c .t i.o .n . s. .5 .1 . 8.1. User Defined Functions 51 8.2. Support for Non-Pushdown User Defined Functions 51 8.3. Source Supported Functions 55 1 Development Guide Volume 4: Server Development .C .h .a .p . t.e .r .9 .. .A . d. m. .i n. .A . P. I. .5 .8 . 9.1. Admin API 58 9.2. Connecting 58 9.3. Administration Methods 58 .C .h .a .p . t.e .r .1 .0 .. .C . u. s. t.o .m . L. o. g. g. i.n . g. .5 .9 . 10.1. Customized Logging 59 10.2. Command Logging API 59 10.3. Audit Logging API 59 10.4. Configuration 60 .C .h .a .p . t.e .r .1 .1 .. .R . u. n. t.i m. e. .U .p .d . a. t.e .s . .6 .1 . ..
Recommended publications
  • Assessment of Multiple Ingest Strategies for Accumulo Key-Value Store
    Assessment of Multiple Ingest Strategies for Accumulo Key-Value Store by Hai Pham A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 7, 2016 Keywords: Accumulo, noSQL, ingest Copyright 2016 by Hai Pham Approved by Weikuan Yu, Co-Chair, Associate Professor of Computer Science, Florida State University Saad Biaz, Co-Chair, Professor of Computer Science and Software Engineering, Auburn University Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering, Auburn University Abstract In recent years, the emergence of heterogeneous data, especially of the unstructured type, has been extremely rapid. The data growth happens concurrently in 3 dimensions: volume (size), velocity (growth rate) and variety (many types). This emerging trend has opened a new broad area of research, widely accepted as Big Data, which focuses on how to acquire, organize and manage huge amount of data effectively and efficiently. When coping with such Big Data, the traditional approach using RDBMS has been inefficient; because of this problem, a more efficient system named noSQL had to be created. This thesis will give an overview knowledge on the aforementioned noSQL systems and will then delve into a more specific instance of them which is Accumulo key-value store. Furthermore, since Accumulo is not designed with an ingest interface for users, this thesis focuses on investigating various methods for ingesting data, improving the performance and dealing with numerous parameters affecting this process. ii Acknowledgments First and foremost, I would like to express my profound gratitude to Professor Yu who with great kindness and patience has guided me through not only every aspect of computer science research but also many great directions towards my personal issues.
    [Show full text]
  • HDP 3.1.4 Release Notes Date of Publish: 2019-08-26
    Release Notes 3 HDP 3.1.4 Release Notes Date of Publish: 2019-08-26 https://docs.hortonworks.com Release Notes | Contents | ii Contents HDP 3.1.4 Release Notes..........................................................................................4 Component Versions.................................................................................................4 Descriptions of New Features..................................................................................5 Deprecation Notices.................................................................................................. 6 Terminology.......................................................................................................................................................... 6 Removed Components and Product Capabilities.................................................................................................6 Testing Unsupported Features................................................................................ 6 Descriptions of the Latest Technical Preview Features.......................................................................................7 Upgrading to HDP 3.1.4...........................................................................................7 Behavioral Changes.................................................................................................. 7 Apache Patch Information.....................................................................................11 Accumulo...........................................................................................................................................................
    [Show full text]
  • Licensing Information User Manual Release 4 (4.9) E87604-01
    Oracle® Big Data Appliance Licensing Information User Manual Release 4 (4.9) E87604-01 May 2017 Describes licensing and support for Oracle Big Data Appliance. Oracle Big Data Appliance Licensing Information User Manual, Release 4 (4.9) E87604-01 Copyright © 2011, 2017, Oracle and/or its affiliates. All rights reserved. Primary Author: Frederick Kush This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency- specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
    [Show full text]
  • Creación De Un Entorno Para El Análisis De Datos Geográficos Utilizando Técnicas De Big Data, Geomesa Y Apache Spark
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Telecomunicación CREACIÓN DE UN ENTORNO PARA EL ANÁLISIS DE DATOS GEOGRÁFICOS UTILIZANDO TÉCNICAS DE BIG DATA, GEOMESA Y APACHE SPARK TRABAJO FIN DE MÁSTER Alejandro Rodríguez Calzado 2017 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Telecomunicación Máster Universitario en Ingeniería de Redes y Servicios Telemáticos TRABAJO FIN DE MÁSTER CREACIÓN DE UN ENTORNO PARA EL ANÁLISIS DE DATOS GEOGRÁFICOS UTILIZANDO TÉCNICAS DE BIG DATA, GEOMESA Y APACHE SPARK Autor Alejandro Rodríguez Calzado Director Borja Bordel Sánchez Ponente Diego Martín de Andrés Departamento de Ingeniería de Sistemas Telemáticos 2017 Resumen Las nuevas tecnologías como el IoT y los smartphones han impulsado las cantidades de datos que generamos y almacenamos. Esto, junto al desarrollo de las técnicas y tecnologías de geolocalización, ha supuesto un aumento significativo de los datos asociados a posiciones geográficas. La utilidad de los datos geográficos es enorme y muy diversa, pero como todos los datos, precisan de un análisis para ser convertidos en información útil. Este análisis se ha llevado a cabo durante mucho tiempo con Sistemas de Información Geográfica (GIS) tradicionales que, debido al gran aumento de la cantidad de datos geográficos, han tenido que evolucionar para adaptarse a las técnicas y tecnologías de Big Data. El objetivo de este Trabajo Fin de Máster es el diseño y la implementación de un entorno para el procesamiento de datos, donde sea posible analizar flujos de información geográfica. Para ello se hará uso de técnicas de Big Data y se emplearán las soluciones tecnológicas Apache Spark y GeoMesa.
    [Show full text]
  • Hortonworks Data Platform Date of Publish: 2018-09-21
    Release Notes 3 Hortonworks Data Platform Date of Publish: 2018-09-21 http://docs.hortonworks.com Contents HDP 3.0.1 Release Notes..........................................................................................3 Component Versions.............................................................................................................................................3 New Features........................................................................................................................................................ 3 Deprecation Notices..............................................................................................................................................4 Terminology.............................................................................................................................................. 4 Removed Components and Product Capabilities.....................................................................................4 Unsupported Features........................................................................................................................................... 4 Technical Preview Features......................................................................................................................4 Upgrading to HDP 3.0.1...................................................................................................................................... 5 Before you begin.....................................................................................................................................
    [Show full text]
  • Big Data Security Analysis and Secure Hadoop Server
    Big Data Security Analysis And Secure Hadoop Server Kripa Shanker Master’s thesis January 2018 Master's Degree in Information Technology 2 ABSTRACT Tampereen Ammattikorkeakoulu Tampere University of Applied Sciences Master's Degree in Information Technology Kripa Shanker Big data security analysis and secure hadoop server Master's thesis 62 pages, appendices 4 pages January 2018 Hadoop is a so influential technology that’s let us to do incredible things but major thing to secure informative data and environment is a big challenge as there are many bad guys (crackers, hackers) are there to harm the society using this data. Hadoop is now used in retail, banking, and healthcare applications; it has attracted the attention of thieves as well. While storing sensitive huge data, security plays an important role to keep it safe. Security was not that much considered when Hadoop was initially designed. Security is an important topic in Hadoop cluster. Plenty of examples are available in open media on data breaches and most recently was RANSOMEWARE which get access in server level which is more dangerous for an organizations. This is best time to only focus on security at any cost and time needed to secure data and platform. Hadoop is designed to run code on a distributed cluster of machines so without proper authentication anyone could submit code and it would be executed. Different projects have started to improve the security of Hadoop. In this thesis, the security of the system in Hadoop version 1, Hadoop version 2 and Hadoop version 3 is evaluated and different security enhancements are proposed, considering security improvements made by the two mentioned projects, Project Apache Knox Gateway, Project Apache Ranger and Apache Sentry, in terms of encryption, authentication, and authorization.
    [Show full text]
  • HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack
    HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack Geoffrey C. Fox, Judy Qiu, Supun Kamburugamuve Shantenu Jha, Andre Luckow School of Informatics and Computing RADICAL Indiana University Rutgers University Bloomington, IN 47408, USA Piscataway, NJ 08854, USA fgcf, xqiu, [email protected] [email protected], [email protected] Abstract—We review the High Performance Computing En- systems as they illustrate key capabilities and often motivate hanced Apache Big Data Stack HPC-ABDS and summarize open source equivalents. the capabilities in 21 identified architecture layers. These The software is broken up into layers so that one can dis- cover Message and Data Protocols, Distributed Coordination, Security & Privacy, Monitoring, Infrastructure Management, cuss software systems in smaller groups. The layers where DevOps, Interoperability, File Systems, Cluster & Resource there is especial opportunity to integrate HPC are colored management, Data Transport, File management, NoSQL, SQL green in figure. We note that data systems that we construct (NewSQL), Extraction Tools, Object-relational mapping, In- from this software can run interoperably on virtualized or memory caching and databases, Inter-process Communication, non-virtualized environments aimed at key scientific data Batch Programming model and Runtime, Stream Processing, High-level Programming, Application Hosting and PaaS, Li- analysis problems. Most of ABDS emphasizes scalability braries and Applications, Workflow and Orchestration. We but not performance and one of our goals is to produce summarize status of these layers focusing on issues of impor- high performance environments. Here there is clear need tance for data analytics. We highlight areas where HPC and for better node performance and support of accelerators like ABDS have good opportunities for integration.
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]
  • Identifying and Evaluating Software Architecture Erosion
    SCUOLA DI DOTTORATO UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Department of Informatics Systems and Communication PhD program Computer Science Cycle XXX IDENTIFYING AND EVALUATING SOFTWARE ARCHITECTURE EROSION Surname Roveda Name Riccardo Registration number 723299 Tutor: Prof. Alberto Ottavio Leporati Supervisor: Prof. Francesca Arcelli Fontana Coordinator: Prof. Stefania Bandini ACADEMIC YEAR 2016/2017 CONTENTS 1 introduction1 1.1 Main contributions of the thesis . 2 1.2 Research Questions . 4 1.3 Publications . 5 1.3.1 Published papers . 5 1.3.2 Submitted papers . 6 1.3.3 To be submitted papers . 6 1.3.4 Published papers not strictly related to the thesis . 6 2 related work8 2.1 Architectural smells definitions . 8 2.2 Architectural smells detection . 19 2.3 Code smells and architectural smells correlations . 20 2.3.1 Code smells correlations . 20 2.3.2 Code smells and architectural smell correlations . 21 2.4 Studies on software quality prediction and evolution . 22 2.4.1 Studies on software quality prediction . 22 2.4.2 Studies on software quality evolution . 23 2.5 Technical Debt Indexes . 23 2.5.1 CAST . 24 2.5.2 inFusion . 25 2.5.3 Sonargraph . 26 2.5.4 SonarQube . 26 2.5.5 Structure101 .......................... 27 2.6 Architectural smell refactoring . 27 3 experience reports on the detection of architectu- ral issues through different tools 29 3.1 Tools for evaluating code and architectural issues . 29 3.2 Tool support for evaluating architectural debt . 31 3.2.1 Evaluating the results inspection of the tools . 32 3.2.2 Evaluating the extracted data by the tools .
    [Show full text]
  • A New Initiative for Tiling, Stitching and Processing Geospatial Big Data in Distributed Computing Environments
    ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic A NEW INITIATIVE FOR TILING, STITCHING AND PROCESSING GEOSPATIAL BIG DATA IN DISTRIBUTED COMPUTING ENVIRONMENTS A. Olasz a*, B. Nguyen Thai b, D. Kristóf a a Department of Geoinformation, Institute of Geodesy, Cartography and Remote Sensing (FÖMI),5. Bosnyák sqr. Budapest, 1149 (olasz.angela, kristof.daniel)@fomi.hu b Department of Cartography and Geoinformatics, Eötvös Loránd University (ELTE), 1/A Pázmány Péter sétány, Budapest, 1117 Hungary, [email protected] Commission ICWG IV/II KEYWORDS: Distributed computing, GIS processing, raster data tiling, data assimilation, remote sensing data analysis, geospatial big data, spatial big data ABSTRACT Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer. Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data types (often in binary formats) are also strongly required. This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept (https://github.com/posseidon/IQLib/) developed in the frame of the IQmulus EU FP7 research and development project (http://www.iqmulus.eu).
    [Show full text]
  • Bright Cluster Manager 8.0 Big Data Deployment Manual
    Bright Cluster Manager 8.0 Big Data Deployment Manual Revision: 97e18b7 Date: Wed Sep 29 2021 ©2017 Bright Computing, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Bright Computing, Inc. Trademarks Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. SUSE is a registered trademark of Novell, Inc. PGI is a registered trademark of NVIDIA Corporation. FLEXlm is a registered trademark of Flexera Software, Inc. ScaleMP is a registered trademark of ScaleMP, Inc. All other trademarks are the property of their respective owners. Rights and Restrictions All statements, specifications, recommendations, and technical information contained herein are current or planned as of the date of publication of this document. They are reliable as of the time of this writing and are presented without warranty of any kind, expressed or implied. Bright Computing, Inc. shall not be liable for technical or editorial errors or omissions which may occur in this document. Bright Computing, Inc. shall not be liable for any damages resulting from the use of this document. Limitation of Liability and Damages Pertaining to Bright Computing, Inc. The Bright Cluster Manager product principally consists of free software that is licensed by the Linux authors free of charge. Bright Computing, Inc. shall have no liability nor will Bright Computing, Inc. provide any warranty for the Bright Cluster Manager to the extent that is permitted by law.
    [Show full text]
  • Koverse Release 2.7
    Koverse Release 2.7 Sep 12, 2018 Contents 1 Quick Start Guide 1 2 Usage Guide 17 3 Administration Guide 75 4 Developer Documentation 113 5 Access Control 169 i ii CHAPTER 1 Quick Start Guide This Quick Start guide for Koverse is intended for users who want to get up and running quickly with Koverse. It steps through the installation of Koverse, ingesting data and executing queries. Check out the Koverse User Guide for complete documentation of all features and installation instructions. 1.1 Recommendations The recommended Operating System is RHEL 6.x or Centos 6.x. Recommended Hadoop Release is Cloudera Manager 5.5 with Accumulo 1.7 Parcel and Service installed. See http: //www.cloudera.com/documentation/other/accumulo/latest/PDF/Apache-Accumulo-Installation-Guide.pdf for more details. Recommended Koverse release can be found at http://repo.koverse.com/latest/csd 1.1.1 Infrastructure and Software Koverse and the open source software it leverages must be run on a system with no less than 10 GB of memory. For workloads beyond simple examples and testing we recommend a properly provisioned Hadoop cluster with five or more nodes. Using the Cloudera QuickStart VM is not recommended. See http://www.koverse.com/question/ using-the-cloudera-quick-start-vim-and-the-koverse-parcel for more information. 1 Koverse, Release 2.7 1.2 Installation 1.2.1 Amazon Web Services Installation Using Koverse with AWS Marketplace The paid AMI available in the AWS marketplace is an easy way to get a Koverse instance up and running if you do not need to install on existing infrastructure.
    [Show full text]