Inhibiting CD164 Expression in Colon Cancer Cell Line HCT116 Leads to Reduced Cancer Cell Proliferation, Mobility, and Metastasis in Vitro and in Vivo

Total Page:16

File Type:pdf, Size:1020Kb

Inhibiting CD164 Expression in Colon Cancer Cell Line HCT116 Leads to Reduced Cancer Cell Proliferation, Mobility, and Metastasis in Vitro and in Vivo Cancer Investigation, 30:380–389, 2012 ISSN: 0735-7907 print / 1532-4192 online Copyright C 2011 Informa Healthcare USA, Inc. DOI: 10.3109/07357907.2012.666692 CELLULAR AND MOLECULAR BIOLOGY Inhibiting CD164 Expression in Colon Cancer Cell Line HCT116 Leads to Reduced Cancer Cell Proliferation, Mobility, and Metastasis in vitro and in vivo Jingqun Tang,1 Liyang Zhang,2 Xiaoling She,2 Guangqian Zhou,3 Fenglei Yu,1 Juanjuan Xiang,2 and Gang Li4,5 1Department of Cardiothoracic Surgery, Xiangya Second Hospital, Central South University, Changsha, Hunan, P.R. China, 2Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, P.R. China, 3School of Medicine, Shenzhen University, Shenzhen, P.R. China, 4Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, 5Stem Cell and Regeneration Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong served in human and other species (1–4). CD164 was first Background: CD164 (Endolyn) is a sialomucin, which has been identified in CD34+ human hematopoietic progenitor cells found to play roles in regulating proliferation, adhesion, and and bone marrow stromal reticular cells (2, 5, 6). CD164 differentiation of hematopoietic stem cells. Possible association has been implicated in adhesion, proliferation, and differen- of CD164 with solid cancer development remains unknown. tiation of hematopoietic stem and progenitor cells (5, 7), it Methods and Results: We first studied CD164 expression in was suggested to mediate the adhesion of CD34+ hematopoi- biopsies from colorectal cancer, breast, and ovary cancer etic progenitor cells to bone marrow stromal cells and SDF- patients by semi-quantitative immunohistochemistry, and 1 induced binding to bone marrow endothelial cell (2, 8.9). found that CD164 was strongly expressed in all the colorectal CD164 are thought to regulate hematopoiesis by facilitating cancer samples compared to the matching normal colon the adhesion of human CD34+ cells to bone marrow stroma For personal use only. tissues. The possible roles of CD164 in colon cancer (10). Knocking down CD164 expression in Drosophila S2 development were further investigated using a cells increased the cell apoptosis rate (1). Little is known well-established human colon cancer cell line HCT116. We about the relationship between CD164 and solid tumor de- found that knockdown of CD164 expression in HCT116 cells velopment till Havens et al. reported that CD164 may par- significantly inhibited cell proliferation, mobility, and ticipate in mediating prostate cancer bone metastasis in 2006 metastasis in vitro and in vivo. The knockdown of CD164 (11).ContinuousexposuretoanenvironmentofhighZn2+ expression was associated with decreased chemokine receptor canleadtotheupregulationofCD164inprostatecancercells, CXCR4 expression HCT116 cell surface and CD164 is considered to be a cancer promoting gene (12). Re- immunoprecipitation studies showed that CD164 formed cently, CD164 has also been recognized as a potential diag- complexes with CXCR4. nostic marker for acute lymphoblastic leukemia and allergy Conclusions: CD164 is highly expressed in the colon cancer (13, 14). sites, and it promotes HCT116 colon cancer cell proliferation Cancer Invest Downloaded from informahealthcare.com by Chinese University of Hong Kong on 05/29/12 Cancer metastasis is a complex process in which malig- and metastasis both in vitro and in vivo,andtheeffectsmayact nant cells break away from primary tumor, attach to the de- through regulating CXCR4 signaling pathway. Therefore, graded proteins from the surrounding extracellular matrix CD164 may be a new target for diagnosis and treatment for and migrate to other locations via the bloodstream or the colon cancer. lymphatic system. The tumor cell proliferation, adhesion, Keywords CD164; Colon cancer; CXCR4; Metastasis. and migration are involved and tightly regulated during tu- mor metastasis process. The relationship of CD164 and can- INTRODUCTION cer development especially metastasis remains unexplored. In this study, we have investigated the expression of CD164 CD164 (MGC-24v or endolyn) is a member of the sialomucin in human colon cancers and used a well-established human family a mucin containing sialic acid, which is highly con- colon cancer cell line HCT116 to evaluation the roles of Correspondence to: Gang Li, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong. email: [email protected] or Juanjuan Xiang, Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, P.R. China. email: [email protected] CD164 in Colon Cancer CD164 in cancer cell proliferation and migration (metastasis) Cell culture in vitro and in vivo. We also explored the possible underlin- HCT116 cell line was obtained from the European Col- ing mechanisms of CD164 in colon cancer development. lection of Cell Cultures. CD164 knockdown HCT116 (HCT116-CD164-shRNA), knockdown control clone (HCT116-shRNA control) were established by short hairpin MATERIALS AND METHODS RNA (shRNA) transduction method (see below). These cells were cultured in DMEM medium supplemented with Immunohistochemistry on human colon and other cancer penicillin G (100 U/mL Sigam, USA), streptomycin (100 specimens mg/mL),and10%fetalcalfserum.Cellsweregrownat37◦C Twenty (20) biopsies from colorectal cancer patients, 5 sam- in a humidified atmosphere of 5% CO2 and were routinely ples from breast cancer patients and 5 samples from ovary sub-cultured using 0.25% (w/v) trypsin-EDTA solution. cancer patients were obtained with patient’s consent follow- ing excision of the cancers. The specimens were coded and Lentiviral vector and cell transduction fixed in 10% buffered formalin pH 7.0 for 24 hr and then ViraPowerTM lentiviral expression system (Invitrogen, Pais- µ embedded in paraffin wax. The 5- mthicksectionswere ley, UK) was used to introduce Lenti-Luciferase-eGFP- cut using a rotary microtome (Microm HM315, Walldorf, TOPO construct into HCT116 cells. The ViraPowerTM pack- Germany) and the sections were placed on the poly-L-lysine aging mix and Lenti-Luciferase-eGFP-TOPO construct were (Sigma Chemical Co., Poole, UK) coated slides. For immuno- cotransfected using a gene carrier kit (Epoch-Biolabs, USA) histochemistry, sections were dewaxed in xylene and im- into the 293T cell line to produce a lentiviral stock. At 48-hr mersed in graded ethanol and distilled water. Endogenous post transfection, the virus-containing supernatant was har- peroxidase activity was inhibited by immersing the tissue sec- vested by collecting the medium. Viral particles were purified tions in 0.3% hydrogen peroxidase for 20 min at room tem- by ultracentrifugation through a 20% sucrose cushion. For perature. The sections were subsequently rinsed in phosphate infecting HCT116 cells, cells were cultured in 24 well plates buffer solution (PBS). The sections were then incubated with till 80% confluence, the lentivirus was added to the culture purified rabbit anti-human CD164 antibody (1:100 ratio in dishes and incubated for 48 hr, the medium was then replaced PBS) for 45 min at room temperature. Subsequently, the pri- by the selection medium containing 10 µg/mL Blasticidin. mary antibody was blotted and the tissues were rinsed with CD164 knockdown HCT116 (HCT116-CD164-shRNA) PBS. The secondary purified goat anti-rabbit biotinglated an- was established by short hairpin RNA (shRNA) transduction. tibody (DAKO, Dorset, UK, 1:100 in PBS) was applied to A set of MISSION shRNA lentiviral transduction particles thesections,andincubatedfor30minatroomtempera- specific to human CD164 gene was purchased from Sigma ture.SectionswererinsedinPBSandwerethenincubated Aldrich (Poole, UK). The set included five clones targeting For personal use only. with Streptavidin-peroxidase (1:50 in PBS, DAKO, Dorset, different parts of CD164 cDNA sequences. For transduction, UK) for 30 min at room temperature. Diaminobenzidine HCT116 cells were plated in 96-well plate the day to allow chromagen solution (0.5 mg/mL 2,4,2 ,4 –tetrabiphenyl hy- 50% confluence, 100 µLmediumcontaining15µLofthawed drochloride, Sigma Chemical Co., Poole, UK) in 0.1 m im- MISSION shRNA lentiviral particles (MOI 30∼40) as well as idazole in PBS, containing 0.3% hydrogen peroxidase was 8 µg/mL Polybrene were added to the cells for 48 hr. The added to the sections, and incubated at room temperature medium was then changed to media containing 2.5 µg/mL for 5 min. Following a brief rinse in distilled water the tis- Puromysin for stable clone selection. The mock knockdown sue sections were counterstained in Gill’s No. 3 hematoxylin clone was used as control (HCT116-shRNA control). (Sigma Chemical Co., Poole, UK) at a dilution of 1:3 for 5 min, rinsed in distilled water and dehydrated through a RT-PCR series of graded ethanol solutions to xylene, mounted in The RNA samples and cDNA samples were prepared us- DPX and examined by light microscopy. Primary antibody Cancer Invest Downloaded from informahealthcare.com by Chinese University of Hong Kong on 05/29/12
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • R&D Day for Investors and Analysts
    R&D Day for Investors and Analysts November 16, 2020 Seagen 2020 R&D Day Clay Siegall, Ph.D. Roger Dansey, M.D. Nancy Whiting, Pharm.D Megan O’Meara, M.D. Shyra Gardai, Ph.D. President & Chief Chief Medical Officer EVP, Corporate Strategy VP, Early Stage Executive Director, Executive Officer Alliances and Development Immunology Communications 2 Forward-Looking Statements Certain of the statements made in this presentation are forward looking, such as those, among others, relating to the Company’s potential to achieve the noted development and regulatory milestones in 2021 and in future periods; anticipated activities related to the Company’s planned and ongoing clinical trials; the potential for the Company’s clinical trials to support further development, regulatory submissions and potential marketing approvals in the U.S. and other countries; the opportunities for, and the therapeutic and commercial potential of ADCETRIS, PADCEV, TUKYSA, tisotumab vedotin and ladiratuzumab vedotin and the Company’s other product candidates and those of its licensees and collaborators; the potential to submit a BLA for accelerated approval of tisotumab vedotin; the potential for data from the EV-301 and EV-201 cohort 2 clinical trials to support additional regulatory approvals of PADCEV; the potential for the approval of TUKYSA by the EMA; the therapeutic potential of the Company’s SEA technology and of the Company’s early stage pipeline agents including SGN-B6A, SGN-STNV, SGN-CD228A, SEA-CD40, SEA-TGT, SEA-BCMA and SEA-CD70; as well as other statements that are not historical fact. Actual results or developments may differ materially from those projected or implied in these forward-looking statements.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • CAR- T Cell Immunotherapies
    CAR T Therapy Current Status Future Challenges Introduction Basics of CAR T Therapy Cytotoxic T Lymphocytes are Specific and Potent Effector Cells Ultrastructure of CTL-mediated apoptosis The CTL protrudes deeply into cytoplasm of melanoma cell 3 Peter Groscurth, and Luis Filgueira Physiology 1998;13:17-21 What is CAR T Therapy? • CAR T therapy is the name given to chimeric antigen receptor (CAR) genetically modified T cells that are designed to recognize specific antigens on tumor cells resulting in their activation and proliferation eventually resulting in significant and durable destruction of malignant cells • CAR T cells are considered “a living drug” since they tend to persist for long periods of time • CAR T cells are generally created from the patients own blood cells although this technology is evolving to develop “off the shelf” CAR T cells 4 CAR T cells: Mechanism of Action T cell Tumor cell CAR enables T cell to Expression of recognize tumor cell antigen CAR Viral DNA Insertion Antigen Tumor cell apoptosis CAR T cells multiply and release cytokines 5 Chimeric Antigen Receptors Antigen binding VH Antigen Binding Domain domain scFv Single-chain variable fragment (scFv) bypasses MHC antigen presentation, allowing direct activation of T cell by cancer cell antigens VL Hinge region Hinge region Essential for optimal antigen binding Costimulatory Domain: CD28 or 4-1BB Costimulatory Enhances proliferation, cytotoxicity and domain persistence of CAR T cells Activation Domains Signaling Domain: CD3-zeta chain CD3-zeta chain Proliferation
    [Show full text]
  • Galectin-3 Promotes Aβ Oligomerization and Aβ Toxicity in a Mouse Model of Alzheimer’S Disease
    Cell Death & Differentiation (2020) 27:192–209 https://doi.org/10.1038/s41418-019-0348-z ARTICLE Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of Alzheimer’s disease 1,2 1,3 1 1 1,2 4,5 Chih-Chieh Tao ● Kuang-Min Cheng ● Yun-Li Ma ● Wei-Lun Hsu ● Yan-Chu Chen ● Jong-Ling Fuh ● 4,6,7 3 1,2,3 Wei-Ju Lee ● Chih-Chang Chao ● Eminy H. Y. Lee Received: 1 October 2018 / Revised: 13 April 2019 / Accepted: 2 May 2019 / Published online: 24 May 2019 © ADMC Associazione Differenziamento e Morte Cellulare 2019. This article is published with open access Abstract Amyloid-β (Aβ) oligomers largely initiate the cascade underlying the pathology of Alzheimer’s disease (AD). Galectin-3 (Gal-3), which is a member of the galectin protein family, promotes inflammatory responses and enhances the homotypic aggregation of cancer cells. Here, we examined the role and action mechanism of Gal-3 in Aβ oligomerization and Aβ toxicities. Wild-type (WT) and Gal-3-knockout (KO) mice, APP/PS1;WT mice, APP/PS1;Gal-3+/− mice and brain tissues from normal subjects and AD patients were used. We found that Aβ oligomerization is reduced in Gal-3 KO mice injected with Aβ, whereas overexpression of Gal-3 enhances Aβ oligomerization in the hippocampi of Aβ-injected mice. Gal-3 expression shows an age-dependent increase that parallels endogenous Aβ oligomerization in APP/PS1 mice. Moreover, Aβ oligomerization, Iba1 expression, GFAP expression and amyloid plaque accumulation are reduced in APP/ PS1;Gal-3+/− mice compared with APP/PS1;WT mice.
    [Show full text]
  • MUC1-C Oncoprotein As a Target in Breast Cancer: Activation of Signaling Pathways and Therapeutic Approaches
    Oncogene (2013) 32, 1073–1081 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc REVIEW MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches DW Kufe Mucin 1 (MUC1) is a heterodimeric protein formed by two subunits that is aberrantly overexpressed in human breast cancer and other cancers. Historically, much of the early work on MUC1 focused on the shed mucin subunit. However, more recent studies have been directed at the transmembrane MUC1-C-terminal subunit (MUC1-C) that functions as an oncoprotein. MUC1-C interacts with EGFR (epidermal growth factor receptor), ErbB2 and other receptor tyrosine kinases at the cell membrane and contributes to activation of the PI3K-AKT and mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathways. MUC1-C also localizes to the nucleus where it activates the Wnt/b-catenin, signal transducer and activator of transcription (STAT) and NF (nuclear factor)-kB RelA pathways. These findings and the demonstration that MUC1-C is a druggable target have provided the experimental basis for designing agents that block MUC1-C function. Notably, inhibitors of the MUC1-C subunit have been developed that directly block its oncogenic function and induce death of breast cancer cells in vitro and in xenograft models. On the basis of these findings, a first-in-class MUC1-C inhibitor has entered phase I evaluation as a potential agent for the treatment of patients with breast cancers who express this oncoprotein. Oncogene (2013) 32, 1073–1081; doi:10.1038/onc.2012.158; published online 14 May 2012 Keywords: MUC1; breast cancer; oncoprotein; signaling pathways; targeted agents INTRODUCTION In breast tumor cells with loss of apical–basal polarity, the The mucin (MUC) family of high-molecular-weight glycoproteins MUC1-N/MUC1-C complex is found over the entire cell mem- 2 8 evolved in metazoans to provide protection for epithelial cell brane.
    [Show full text]
  • Membrane-Bound Mucins: the Mechanistic Basis for Alterations in the Growth and Survival of Cancer Cells
    Oncogene (2010) 29, 2893–2904 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc REVIEW Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells S Bafna1, S Kaur1 and SK Batra1,2 1Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA and 2Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA Mucins (MUC) are high molecular weight O-linked tethered mucins are quite distinct from the classic glycoproteins whose primary functions are to hydrate, extracellular complex mucins forming the mucous layers protect, and lubricate the epithelial luminal surfaces of the of the gastrointestinal and respiratory tracts. These ducts within the human body. The MUC family is epithelial membrane-tethered mucins are the transmem- comprised of large secreted gel forming and transmem- brane (TM) molecules, expressed by most glandular and brane (TM) mucins. MUC1, MUC4, and MUC16 are the ductal epithelial cells (Taylor-Papadimitriou et al., well-characterized TM mucins and have been shown to be 1999). Several TM mucins (MUC1, MUC3A, MUC3B, aberrantly overexpressed in various malignancies includ- MUC4, MUC 12, MUC13, MUC15, MUC16, MUC17, ing cystic fibrosis, asthma, and cancer. Recent studies MUC20, and MUC21) (human mucins are designated have uncovered the unique roles of these mucins in the as MUC, whereas other species mucins are designated as pathogenesis of cancer. These mucins possess specific Muc) have been identified so far (Moniaux et al., 2001; domains that can make complex associations with various Chaturvedi et al., 2008a; Itoh et al., 2008).
    [Show full text]
  • (EMA) Is Preferentially Expressed by ALK Positive Anaplastic Large Cell Lymphoma, in The
    J Clin Pathol 2001;54:933–939 933 MUC1 (EMA) is preferentially expressed by ALK positive anaplastic large cell lymphoma, in the normally glycosylated or only partly J Clin Pathol: first published as on 1 December 2001. Downloaded from hypoglycosylated form R L ten Berge*, F G M Snijdewint*, S von MensdorV-Pouilly, RJJPoort-Keesom, J J Oudejans, J W R Meijer, R Willemze, J Hilgers, CJLMMeijer Abstract 30–50% of cases, a chromosomal aberration Aims—To investigate whether MUC1 such as the t(2;5)(p23;q35) translocation gives mucin, a high molecular weight trans- rise to expression of the anaplastic lymphoma membrane glycoprotein, also known as kinase (ALK) protein,2 identifying a subgroup epithelial membrane antigen (EMA), dif- of patients with systemic ALCL with excellent fers in its expression and degree of glyco- prognosis.3–6 ALK expression seems specific for sylation between anaplastic large cell systemic nodal ALCL; it is not found in classic lymphoma (ALCL) and classic Hodgkin’s Hodgkin’s disease (HD)7–11 or primary cutane- disease (HD), and whether MUC1 ous ALCL.7101213Morphologically, these lym- immunostaining can be used to diVerenti- phomas may closely resemble systemic ALCL, ate between CD30 positive large cell being also characterised by CD30 positive lymphomas. tumour cells with abundant cytoplasm, large Methods/Results—Using five diVerent irregular nuclei, and a prominent single monoclonal antibodies (E29/anti-EMA, nucleolus or multiple nucleoli.1 Clinically, DF3, 139H2, VU-4H5, and SM3) that however, classic HD and primary cutaneous distinguish between various MUC1 glyco- ALCL have a more favourable prognosis than 12 14–16 Department of forms, high MUC1 expression (50–95% of ALK negative systemic ALCL.
    [Show full text]
  • Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
    Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9).
    [Show full text]
  • Epithelial Mucin-1 (MUCI) Expression and MA5 Anti-MUC1 Monoclonal Antibody Targeting in Multiple Myeloma I
    Vol. 5, 3065s-3072s, October 1999 (Suppl.) Clinical Cancer Research 3065s Epithelial Mucin-1 (MUCI) Expression and MA5 Anti-MUC1 Monoclonal Antibody Targeting in Multiple Myeloma I J. Burton, z D. Mishina, T. Cardillo, K. Lew, cGy/mCi of injected dose compared with 3099 cGy/mCi of A. Rubin, D. M. Goldenberg, and D. V. Gold tumor-absorbed dose delivered by nonspecific antibody. Garden State Cancer Center, Belleville, New Jersey 07109 [J. B., D. M., T. C., K. L., D. M. G., D. V. G.], and St. Joseph's Hospital and Introduction Medical Center, Paterson, New Jersey 07503 [A. R.] MM 3 is a B-cell malignancy that appears to result from the transformation and monoclonal expansion of a cell with char- acteristics of a plasma cell, i.e., a terminally differentiated B cell Abstract (1, 2). The expression by MM cells of certain non-B-cell anti- Multiple myeloma (MM) is the second most common gens also raises the possibility of the transformation of an hematological cancer in the United States. It is typically earlier, more multipotent lymphoid precursor cell. As with nor- incurable, even with myeloablative chemotherapy and stem- mal plasma cells, this degree of terminal differentiation is as- cell transplantation. The epithelial mucin-1 (MUC1) glyco- sociated with the complete or partial loss of certain B-cell- protein is expressed by normal and malignant epithelial cells associated antigens, such as surface immunoglobulin and CDs but has also been shown to be expressed by MM cells. MUC1 19-22 (CD19 is expressed on normal plasma cells; Ref. 3).
    [Show full text]
  • PSGL-1 (KPL1): Sc-13535
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . PSGL-1 (KPL1): sc-13535 BACKGROUND STORAGE PSGL-1 (P-Selectin glycoprotein ligand, also designated CD162), exists as Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of a disulfide-linked homodimer. PSGL-1 is a type 1 membrane protein that shipment. Non-hazardous. No MSDS required. localizes on the tips of microvilli of leukocytes. Its extracellular domain is rich in serines, threonines and prolines, and includes a series of 15 and 16 DATA ecameric repeats in HL-60 and U-937 cells, and human leukocytes, respec - A B tively. Although PSGL-1 appears to be the sole receptor for P-Selectin on ABCD human hematopoietic cells, it also interacts with E-Selectin through a unique binding site. In order to bind PSGL-1 to either E-Selectin or P-Selectin, PSGL-1 215K– must be sialylated and fucosylated. PSLG-1 is a mucin-like molecule, much PSGL-1 like leukosialin (CD43), CD164 and CD34. These proteins belong to an emerg - ing family of cell adhesion receptors called sialomucins, which transduce negative signals in hematopoietic cells. 114K– CHROMOSOMAL LOCATION PSGL-1 (KPL1) HRP: sc-13535 HRP. Direct western PSGL-1 (KPL1): sc-13535. Immunofluorescence staining blot analysis of PSGL-1 expression in MOLT-4 (A), of methanol-fixed CCRF-CEM cells showing membrane Genetic locus: SELPLG (human) mapping to 12q24.11. AML-193 (B), Jurkat (C) and CCRF-CEM (D) whole staining ( A). Immunoperoxidase staining of formalin cell lysates. fixed, paraffin-embedded human lymph node tissue showing membrane and cytoplasmic staining of cells SOURCE in non-germinal center ( B).
    [Show full text]