Measuring the Evolutionary Rate of Cooling of ZZ Ceti

Total Page:16

File Type:pdf, Size:1020Kb

Measuring the Evolutionary Rate of Cooling of ZZ Ceti Publications 7-1-2013 Measuring the Evolutionary Rate of Cooling of ZZ Ceti Anjum S. Mukadam University of Washington - Seattle Campus Ted von Hippel Embry-Riddle Aeronautical University, [email protected] et al. Follow this and additional works at: https://commons.erau.edu/publication Part of the Stars, Interstellar Medium and the Galaxy Commons Scholarly Commons Citation Mukadam, A. S., von Hippel, T., & al., e. (2013). Measuring the Evolutionary Rate of Cooling of ZZ Ceti. The Astrophysical Journal, 771(1). https://doi.org/10.1088/0004-637X/771/1/17 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. The Astrophysical Journal, 771:17 (11pp), 2013 July 1 doi:10.1088/0004-637X/771/1/17 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti Anjum S. Mukadam1,2, Agnes Bischoff-Kim3, Oliver Fraser1,2,A.H.Corsico´ 4,5, M. H. Montgomery6,7,8, S. O. Kepler9, A. D. Romero9,D.E.Winget6,8, J. J. Hermes6,8, T. S. Riecken1,2, M. E. Kronberg1,2,K.I.Winget6,8, Ross E. Falcon6,8, D. W. Chandler10, J. W. Kuehne8, D. J. Sullivan11, D. Reaves6,8, T. von Hippel12, F. Mullally13, H. Shipman7,14, S. E. Thompson13, N. M. Silvestri1,2, and R. I. Hynes15 1 Department of Astronomy, University of Washington, Seattle, WA 98195, USA 2 Apache Point Observatory, 2001 Apache Point Road, Sunspot, NM 88349, USA 3 Georgia College & State University, Milledgeville, GA 31061, USA 4 Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Argentina 5 Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas´ (CONICET), Argentina 6 Department of Astronomy, University of Texas at Austin, Austin, TX 78759, USA 7 Delaware Asteroseismic Research Center, Mt. Cuba Observatory, Greenville, DE 19807, USA 8 McDonald Observatory, Fort Davis, TX 79734, USA 9 Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil 10 Meyer Observatory, Central Texas Astronomical Society, 3409 Whispering Oaks, Temple, TX 76504, USA 11 Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand 12 Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114, USA 13 SETI Institute, NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035, USA 14 Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA 15 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA Received 2012 December 28; accepted 2013 April 1; published 2013 June 11 ABSTRACT We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 ± 1.4) × 10−15 ss−1 employing the O − C method and (5.45 ± 0.79) × 10−15 ss−1 using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 ± 1.0) × 10−15 ss−1. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 ± 1.1) × 10−15 ss−1. This value is consistent within uncertainties with the measurement of (4.19 ± 0.73) × 10−15 ss−1 for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle. Key words: stars: evolution – stars: individual (ZZ Ceti, R548) – stars: oscillations (including pulsations) – stars: variables: general – white dwarfs Online-only material: color figure 1. INTRODUCTION around 650–1000 s, larger amplitudes (up to 30%), nonlinear pulse shapes, and greater amplitude modulation (e.g., Kleinman ZZ Ceti (Ross 548) is the prototype of the class of hydrogen et al. 1998). The hot ZZ Ceti stars show relatively few pulsation atmosphere variable (DAV) white dwarfs that are pulsationally modes, shorter periods around 100–350 s with low amplitudes ∼ unstable in the temperature range 10,800–12,300 K for log g ≈ ( 0.1%–3%), and only a small degree of amplitude modulation 8 (Koester & Holberg 2001; Bergeron et al. 2004; Gianninas (Clemens 1993; Mukadam et al. 2006, 2007). Typical of the class et al. 2005, 2006). The ZZ Ceti stars constitute the coolest class of hot DAV pulsators, ZZ Ceti exhibits short periods at 187 s, 213 s, 274 s, 318 s, and 334 s with amplitudes in the range of of pulsating white dwarfs, with more than 150 members known 16 to date (e.g., Mukadam et al. 2004; Kepler & Castanheira 2009; 0.5–6.6 mma. The pulsation spectrum of ZZ Ceti exhibits a Castanheira et al. 2010;Greiss2012). very low degree of amplitude modulation over decades, making The pulsation characteristics of the hot ZZ Ceti stars closer it possible to measure the miniscule change of its pulsation to the blue edge of the instability strip are different from their period over that timespan to arrive at the rate of change of compatriots near the red edge. The distinct behavior of pulsation period with time, dP/dt. periods, amplitudes, and degree of amplitude modulation as Pulsation periods of model white dwarf stars increase as a function of temperature was demonstrated for a significant the star cools due to the increasing radius of the degeneracy sample of DAVs by Clemens (1993) and more recently by Kanaan et al. (2002) and Mukadam et al. (2006, 2007). Cool 16 One milli modulation amplitude (mma) equals 0.1% amplitude in intensity, ZZ Ceti stars typically show relatively longer pulsation periods corresponding to a 0.2% peak-to-peak change; 1 mma is equal to 1.085 mmag. 1 The Astrophysical Journal, 771:17 (11pp), 2013 July 1 Mukadam et al. 5.5 213s triplet Window 5 4.5 274s 4 triplet 3.5 3 2.5 2 1.5 de (mma) u 1 318s σ 334s 0.5 3 = 0.45 mma 187s Amplit 0 1 274.52s 212.95s 0.5 0 0.5 0 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Frequency (Hz) Figure 1. Discrete Fourier transform (DFT) of the 2007 August data on ZZ Ceti is shown in the top panel. The middle panel shows the prewhitened DFT obtained after subtracting two components of the 213 s and 274 s multiplets, as well as the 187 s, 318 s, and 334 s modes. The bottom panel shows the effect of additionally subtracting out the third low-amplitude component of the 213 s and 274 s triplets. boundary (Winget et al. 1983). Gravitational contraction de- Table 1 creases the periods, but is found to be very small in the tempera- High Signal-to-noise 2007 August ZZ Ceti Data Yield the Best-fit Periodicities Shown with the Listed Least Squares and Italicized Monte Carlo Uncertainties ture range of the ZZ Ceti instability strip compared to the hotter Computed using Period04 classes of pulsating white dwarfs (Kepler et al. 2000). Although this implies that the rate of change of period with time dP/dt Frequency Period Amplitude is governed by the rate of stellar cooling for the ZZ Ceti stars (μHz) (s) (mma) (Kepler et al. 2000), eigenmodes trapped in the outer hydrogen 4691.8904 ± 0.0055 213.13371 ± 0.00025 6.587 ± 0.070 envelope (e.g., 213 s) are still expected to show reduced values ± 0.0057 ± 0.00026 ± 0.082 of dP/dt due to first order effects from residual gravitational 4699.8685 ± 0.0090 212.77191 ± 0.00041 4.293 ± 0.069 contraction. ± 0.011 ± 0.00050 ± 0.079 4696.006 ± 0.031 212.9469 ± 0.0014 1.191 ± 0.069 ± 0.034 ± 0.0015 ± 0.075 ± ± ± 2. NEW OBSERVATIONS OF ZZ Ceti FROM 2002 TO 2012 3646.2442 0.0086 274.25481 0.00065 4.129 0.065 ± 0.010 ± 0.00077 ± 0.078 3639.321 ± 0.011 274.77652 ± 0.00087 3.146 ± 0.069 Since the last publication of this work in a refereed journal ± 0.013 ± 0.00097 ± 0.076 (Mukadam et al. 2003), we have obtained ten more years of 3642.694 ± 0.032 274.5221 ± 0.0024 1.206 ± 0.066 time-series photometry on ZZ Ceti. Most of these data were ± 0.035 ± 0.0027 ± 0.078 obtained at the 2.1 m Otto–Struve telescope at McDonald 3143.835 ± 0.038 318.0829 ± 0.0039 0.822 ± 0.061 Observatory with the time-series charge-coupled device (CCD) ± 0.043 ± 0.0043 ± 0.067 photometer named Argos (Nather & Mukadam 2004). The 2997.250 ± 0.038 333.6392 ± 0.0042 0.830 ± 0.061 journal of observations of these data is given in Table 5.We ± 0.050 ± 0.0056 ± 0.073 have not included data obtained in marginal weather or that 5351.703 ± 0.063 186.8564 ± 0.0022 0.502 ± 0.061 which was discarded due to timing problems.
Recommended publications
  • Toward an Empirical Determination of the Zz Ceti Instability Strip A
    The Astrophysical Journal, 631:1100–1112, 2005 October 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. TOWARD AN EMPIRICAL DETERMINATION OF THE ZZ CETI INSTABILITY STRIP A. Gianninas, P. Bergeron, and G. Fontaine De´partement de Physique, Universite´ de Montre´al, C.P. 6128, Succursale Centreville, Montreal, PQ H3C 3J7, Canada; [email protected], [email protected], [email protected] Received 2005 April 22; accepted 2005 June 17 ABSTRACT We present atmospheric parameters for a large sample of DA white dwarfs that are known to be photometrically constant. For each star, we determine the effective temperature and surface gravity by comparing high signal-to-noise ratio optical spectra to the predictions of detailed model atmosphere calculations. We also report the successful prediction and detection of photometric variability in G232À38 based on similar Teff and log g determinations. The atmospheric parameters derived for this sample of constant stars, as well as those for the known sample of bright ZZ Ceti stars (now boosted to a total of 39), have been obtained in a highly homogeneous way. We combine them to study the empirical red and blue edges, as well as the purity of the ZZ Ceti instability strip. We find that the red edge is rather well constrained, whereas there exists a rather large range of possibilities for the slope of the blue edge. Furthermore, the ZZ Ceti instability strip that results from our analysis contains no nonvariable white dwarfs. Our sample of constant stars is part of a much broader spectroscopic survey of bright (V < 17) DAwhite dwarfs, which we have recently undertaken.
    [Show full text]
  • Arxiv:1706.07020V1 [Astro-Ph.SR] 21 Jun 2017
    Pulsating White Dwarfs S. O. Kepler1;? and Alejandra D. Romero1;?? 1Departamento de Astronomia, Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS - Brasil Abstract. The Sloan Digital Sky Survey has allowed us to increase the number of known white dwarfs by a factor of five and consequently the number of known pulsating white dwarfs also by a factor of five. It has also led to the discovery of new types of variable white dwarfs, as the variable hot DQs, and the pulsating Extremely Low Mass white dwarfs. With the Kepler Mission, it has been possible to discover new phenomena, the outbursts present in a few pulsating white dwarfs. 1 Introduction White dwarf stars are the final evolutionary state of stars with initial masses up to 8.5–10.6 M [1], corresponding to 95 – 97 % of all stars. The fraction depends on the stellar metallicity, which affects both the Initial-Mass-Function and the Initial-to-Final-Mass Relation. For single stars, the minimum mass of a present day white dwarf is around 0.30–0.45 M [2], because progenitors that would become lower mass white dwarfs have main sequence evolution time larger than the age of the Universe. Such masses correspond, considering the mass-radius relation of white dwarfs, to a minimal log g ' 6:5. Evolutionary models e.g. by Ref. [3] indicate that the maximum surface gravity for main sequence A stars, which have similar optical spectra to DA white dwarfs, corresponds to log g ≤ 4:75, including very low metallicity.
    [Show full text]
  • TESS First Look at Evolved Compact Pulsators: Known ZZ Ceti Stars Of
    Astronomy & Astrophysics manuscript no. 18DAVs c ESO 2020 March 26, 2020 TESS first look at evolved compact pulsators: Known ZZ Ceti stars of the southern ecliptic hemisphere as seen by TESS Zs. Bognár1, 2, 3,⋆, S. D. Kawaler4, K. J. Bell5, 6, C. Schrandt4, A. S. Baran7, P. A. Bradley8, J. J. Hermes9, S. Charpinet10, G. Handler11, S. E. Mullally12, S. J. Murphy13, R. Raddi14, 15, Á. Sódor1, 2, P.-E. Tremblay16 M. Uzundag17, and W. Zong18 1 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, H–1121, Budapest, Hungary 2 MTA CSFK Lendület Near-Field Cosmology Research Group 3 ELTE Eötvös Loránd University, Institute of Phyiscs, Pázmány Péter sétány 1/A, H-1171, Budapest, Hungary 4 Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA 5 DIRAC Institute, Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA 6 NSF Astronomy and Astrophysics Fellow and DIRAC Fellow 7 ARDASTELLA Research Group, Institute of Physics, Pedagogical University of Cracow, ul. Podchora¸˙zych 2, 30-084 Kraków, Poland 8 XCP-6, MS F-699 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 9 Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 - USA 10 Institut de Recherche en Astrophysique et Planétologie, CNRS, Université de Toulouse, CNES, 14 avenue Edouard Belin, F-31400 Toulouse, France 11 Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland 12 Space Telescope Science Institute, 3700 San Martin Dr., Baltimore MD 21212 13 Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia 14 Dr.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • Amplitude and Frequency Modulations of Oscillation Modes in Hot B Subdwarf and White Dwarf Stars from Kepler Photometry Weikai Zong
    Amplitude and frequency modulations of oscillation modes in hot B subdwarf and white dwarf stars from Kepler photometry Weikai Zong To cite this version: Weikai Zong. Amplitude and frequency modulations of oscillation modes in hot B subdwarf and white dwarf stars from Kepler photometry. Astrophysics [astro-ph]. Université Toulouse 3 Paul Sabatier, 2016. English. tel-01434986 HAL Id: tel-01434986 https://tel.archives-ouvertes.fr/tel-01434986 Submitted on 13 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 17/10/2016 par : Weikai ZONG Amplitude and frequency modulations of oscillation modes in hot B subdwarf and white dwarf stars from Kepler photometry JURY Dr. Marie-Jo Goupil Astronome Rapporteur Dr. Roberto Silvotti Chercheur Rapporteur Prof. Jianning FU Professeur Examinateur Prof. Sylvie VAUCLAIR Professeur d’Université Président Dr. Gérard VAUCLAIR Directeur de Recherche Co-Directeur de thèse Dr. Stéphane Chargé de Recherche Directeur de thèse CHARPINET École doctorale et spécialité : SDU2E : Astrophysique, Sciences de l’Espace, Planétologie Unité de Recherche : Institut de Recherche en Astrophysique et Planétologie (UMR 5277) Directeur de Thèse : Dr.
    [Show full text]
  • Pulsating White Dwarfs: New Insights
    The Astronomy and Astrophysics Review (2019) 27:7 https://doi.org/10.1007/s00159-019-0118-4 REVIEW ARTICLE Pulsating white dwarfs: new insights Alejandro H. Córsico1,2 · Leandro G. Althaus1,2 · Marcelo M. Miller Bertolami1,2 · S. O. Kepler3 Received: 11 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Stars are extremely important astronomical objects that constitute the pillars on which the Universe is built, and as such, their study has gained increasing interest over the years. White dwarf stars are not the exception. Indeed, these stars constitute the final evolutionary stage for more than 95% of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components—including the star formation history of the Milky Way. Several important studies have emphasized the advantage of using white dwarfs as reliable clocks to date a variety of stellar populations in the solar neighborhood and in the nearest stellar clusters, including the thin and thick disks, the Galactic spheroid and the system of globular and open clusters. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Not less relevant than these applications, the study of matter at high densities has benefited from our detailed knowledge about evolutionary and observational properties of white dwarfs. In this sense, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model, that is, neutrino physics, axion physics and also radiation from “extra dimensions”, and even B Alejandro H.
    [Show full text]
  • Arxiv:1907.00115V1 [Astro-Ph.SR] 28 Jun 2019
    Noname manuscript No. (will be inserted by the editor) Pulsating white dwarfs: new insights Alejandro H. C´orsico, Leandro G. Althaus, Marcelo M. Miller Bertolami, S. O. Kepler Received: July 2, 2019/ Accepted: July 2, 2019 Abstract Stars are extremely important astronomical objects that constitute the pillars on which the Universe is built, and as such, their study has gained increasing interest over the years. White dwarf stars are not the exception. Indeed, these stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components — including the star formation history of the Milky Way. Several important studies have emphasized the advantage of using white dwarfs as reliable clocks to date a variety of stellar populations in the solar neighborhood and in the nearest stellar clusters, including the thin and thick disks, the Galactic spheroid and the system of globular and open clusters. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Not less relevant than these applications, the study of matter at high densities has benefited from our detailed knowledge about evolutionary and observational properties of white dwarfs. In this sense, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model, that is, neutrino physics, axion physics and also radiation from “extra dimensions”, and even crystallization.
    [Show full text]
  • White Dwarf Stars from the 4.5 Million SDSS Spectra Through Their Colors, Automated Spectra fitting by the SDSS Pipeline, and Targeted Search of Template Spectra
    February 7, 2017 1:27 WSPC/INSTRUCTION FILE kepler International Journal of Modern Physics: Conference Series c The Authors White Dwarf Stars S. O. Kepler, Alejandra Daniela Romero, Ingrid Pelisoli & Gustavo Ourique Departamento de Astronomia, Instituto de F´ısica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil [email protected] Received 3 Feb 2017 White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5 000 to 39 000. This number includes only white dwarf stars with log g ≥ 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction. Keywords: white dwarf; magnetic field; pulsar. PACS numbers: 1. Introduction White dwarf stars are the final evolutionary state of stars with initial masses up 1 to 8.5–10.6 M⊙ , corresponding to 95 – 97 % of all stars. The fraction depends on the stellar metallicity, which affects both the Initial-Mass-Function and the Initial- to-Final-Mass Relation. For single stars, the minimum mass of a present day white 2 arXiv:1702.01134v1 [astro-ph.SR] 3 Feb 2017 dwarf is around 0.30–0.45 M⊙ , because progenitors that would become lower mass white dwarfs have main sequence evolution time larger than the age of the Universe.
    [Show full text]
  • Frequency Analysis of DAV Pulsators Using TESS Data
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Frequency analysis of DAV pulsators using TESS data Cory Daniel Schrandt Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Astrophysics and Astronomy Commons Recommended Citation Schrandt, Cory Daniel, "Frequency analysis of DAV pulsators using TESS data" (2019). Graduate Theses and Dissertations. 17558. https://lib.dr.iastate.edu/etd/17558 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Frequency analysis of DAV pulsators using TESS data by Cory Daniel Schrandt A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Astrophysics Program of Study Committee: Steven Kawaler, Major Professor Massimo Marengo Soeren Prell Dae-Young Lee The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright c Cory Daniel Schrandt, 2019. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my soon-to-be wife, Amanda, without whose support I would not have been able to complete this work.
    [Show full text]
  • Pulsating White Dwarfs
    EPJ Web of Conferences 152, 01011 (2017) DOI: 10.1051/ epjconf/201715201011 Wide-Field Variability Surveys: A 21st Century Perspective Pulsating white dwarfs S. O. Kepler1, and Alejandra D. Romero1, 1Departamento de Astronomia, Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil Abstract. The Sloan Digital Sky Survey has allowed us to increase the number of known white dwarfs by a factor of five and consequently the number of known pulsating white dwarfs also by a factor of five. It has also led to the discovery of new types of variable white dwarfs, as the variable hot DQs, and the pulsating Extremely Low Mass white dwarfs. With the Kepler Mission, it has been possible to discover new phenomena, the outbursts present in a few pulsating white dwarfs. 1 Introduction White dwarf stars are the final evolutionary state of stars with initial masses up to 8.5 − 10.6 M ([1]), corresponding to 95–97 % of all stars. The fraction depends on the stellar metallicity, which affects both the Initial-Mass-Function and the Initial-to-Final-Mass Relation. For single stars, the minimum mass of a present day white dwarf is around 0.30 − 0.45 M ([2]), because progenitors that would become lower mass white dwarfs have main sequence evolution time larger than the age of the Universe. Such masses correspond, considering the mass-radius relation of white dwarfs, to a minimal log g 6.5. Evolutionary models e.g. by [3] indicate that the maximum surface gravity for main sequence A stars, which have similar optical spectra to DA white dwarfs, corresponds to log g ≤ 4.75, including very low metallicity.
    [Show full text]
  • Exploring the Final Stages of Stars in Our Milky Way Using Large Sky
    Exploring the final stages of stars in our Milky Way using large sky surveys by Sandra Magdy Kamel Greiss Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Physics July 2014 Contents List of Tables iv List of Figures vi Acknowledgments xiv Declarations xvi Abstract xvii Chapter 1 Motivation 1 Chapter 2 Compact stars 5 2.1 TheHertzsprung-Russelldiagram . 5 2.2 Stellar evolution in a nutshell . 5 2.2.1 Nuclearprocesses......................... 5 2.2.2 Shell-hydrogen burning and red-giant phase . 7 2.2.3 Death of stars like the Sun . 9 2.2.4 Death of massive stars . 10 2.3 WhiteDwarfs............................... 11 2.3.1 Spectraltypes .......................... 12 2.3.2 Massdistribution. .. .. .. .. .. .. .. 12 2.3.3 Whyaretheyuseful? ...................... 12 2.3.4 Pulsatingwhitedwarfs. 16 2.3.4.1 Theoretical context . 17 2.4 NeutronStars............................... 23 2.5 Blackholes ................................ 25 2.6 Compactbinarysystems. 25 2.6.1 Cataclysmic variables . 26 2.6.2 Low-massX-raybinaries. 28 Chapter 3 Astronomical tools and methods 30 3.1 Charge-coupleddevices . 30 3.2 Photometry ................................ 30 3.2.1 Colour-colour and colour-magnitude diagrams . 34 3.2.2 Time-series photometry . 34 i 3.3 Spectroscopy ............................... 36 3.3.1 Biasremoval ........................... 36 3.3.2 FlatFielding ........................... 37 3.3.3 Spectrum extraction . 37 3.3.4 Wavelength calibration . 37 3.3.5 Flux calibration . 37 3.4 Summary ................................. 38 Chapter 4 Large Sky Surveys 39 4.1 X-raysurvey ............................... 39 4.1.1 Galactic Bulge Survey (GBS) . 39 4.2 Thenear-infraredsurveys . 41 4.2.1 The Two Micron All Sky Survey (2MASS) .
    [Show full text]
  • White Dwarf Rotation As a Function of Mass and a Dichotomy of Mode Line Widths: Keplerobservations of 27 Pulsating DA White Dwarfs Through K2 Campaign 8
    Manuscript version: Published Version The version presented in WRAP is the published version (Version of Record). Persistent WRAP URL: http://wrap.warwick.ac.uk/112839 How to cite: The repository item page linked to above, will contain details on accessing citation guidance from the publisher. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: Please refer to the repository item page, publisher’s statement section, for further information. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications The Astrophysical Journal Supplement Series, 232:23 (28pp), 2017 October https://doi.org/10.3847/1538-4365/aa8bb5 © 2017. The American Astronomical Society. All rights reserved. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: KeplerObservations of 27 Pulsating DA White Dwarfs through K2 Campaign 8 J. J.
    [Show full text]