Amplitude and Frequency Modulations of Oscillation Modes in Hot B Subdwarf and White Dwarf Stars from Kepler Photometry Weikai Zong

Total Page:16

File Type:pdf, Size:1020Kb

Amplitude and Frequency Modulations of Oscillation Modes in Hot B Subdwarf and White Dwarf Stars from Kepler Photometry Weikai Zong Amplitude and frequency modulations of oscillation modes in hot B subdwarf and white dwarf stars from Kepler photometry Weikai Zong To cite this version: Weikai Zong. Amplitude and frequency modulations of oscillation modes in hot B subdwarf and white dwarf stars from Kepler photometry. Astrophysics [astro-ph]. Université Toulouse 3 Paul Sabatier, 2016. English. tel-01434986 HAL Id: tel-01434986 https://tel.archives-ouvertes.fr/tel-01434986 Submitted on 13 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 17/10/2016 par : Weikai ZONG Amplitude and frequency modulations of oscillation modes in hot B subdwarf and white dwarf stars from Kepler photometry JURY Dr. Marie-Jo Goupil Astronome Rapporteur Dr. Roberto Silvotti Chercheur Rapporteur Prof. Jianning FU Professeur Examinateur Prof. Sylvie VAUCLAIR Professeur d’Université Président Dr. Gérard VAUCLAIR Directeur de Recherche Co-Directeur de thèse Dr. Stéphane Chargé de Recherche Directeur de thèse CHARPINET École doctorale et spécialité : SDU2E : Astrophysique, Sciences de l’Espace, Planétologie Unité de Recherche : Institut de Recherche en Astrophysique et Planétologie (UMR 5277) Directeur de Thèse : Dr. Stéphane CHARPINET et Dr. Gérard VAUCLAIR Rapporteurs : Dr. Marie-Jo GOUPIL et Dr. Roberto SILVOTTI i Acknowledgements It is three years plus one month to fulfill the project aiming at searching for and charac- terizing amplitude and frequency modulations in oscillation modes in these fantasy stars that observed by the magnificent telescope KEPLER. I am very glad to see that our results may give a very tiny impetus on the way to see the nonlinear things in stellar pulsation theory. Now it is properly the time to thank many people who help me a lot during the last three years of being a Ph.d candidate in Toulouse, la Ville Rose. First and foremost, my thanks are given to my supervisor, Stéphane Charpinet, for his pa- tience, guidance, support, and inspiration that make this thesis possible. When I retrospect back the days, I am so grateful to be a student of Stéphane. He is a very special kind of su- pervisor, who always shows great passion on research. He is very knowledgable in our field and always answers my questions and inspires me with new ideas. I really learn quite a lot from him about how to become a good researcher. My great thanks are also given to Gérard Vauclair, my co-supervisor, who is a gracious person. He has many open minds on this field, or concretely, novel ideas on the nonlinear physics in stars. These knowledge brings me confidence on the way to firmly insist my research when I have to face to hard things. Both Stéphane and Gérard had never said any hard word on my works and always encourage me to progress in my study. I am very appreciate for this. This thesis cannot be accomplished without the unprecedented high-quality and long-duration data from the KEPLER space telescope. It is funded by the NASA’s Science Mission Directo- rate. I gratefully acknowledge the KEPLER Science Team and all those who have contributed to making the mission possible. The works presented in the thesis are also contributed by two other collaborators, Noemi Giammichele and Valerie Van Grootel. I must thank their independent calculation of theore- tical models on the white dwarf star that makes it comparing with the observed modulations possible. Noemi just joined our group as a postdoctoral around her defense in Montréal. I thank my thesis and candidacy defense committee, which is composed of Marie-jo Goupil, Roberto Silvotti, Sylvie Vauclair, Jianning Fu, Gérard and Stéphane, for their valuable time on evaluating the work and for their important suggestions and comments to my future career. I thank the reporters, Marie-jo and Roberto, for their well-written reviews, for the positive view on the discovered mode modulations and the theoretical interpretations. Sylvie, she is the pre- sident of my examinations for three times continuously, who see my progresses during these three years, from a freshmen to a senior student. Jianning, he is my supervisor guiding me the master project, who is the guide leading me to enter the new domain of stellar physics—asteroseimology. I must thank our team, PS2E, which consists of more than twenty researchers and about ii ten students, for their embrace. We have four defenses this year, Mathieu Gaurat, Giovanni Mirouh, Morgan Deal and me. It is a great pleasure to work with you and be your friend. I owe you thanks for many helps and, especially, for being a translator. Rohit Kumar came to our lab not too long, while, you help me quite a lot to prepare for the defense. Thank you very much. I would like to thank our great young researchers, Sebastien Deheuvels, for whom organize the Journal Club and Workshop, and especially for the happy hour party, Clément Baruteau, for the vivid memory of the red wine from a chateau in the dark, Jérôme Ballot and Pascal Petit, for their charge of our group working well, ..., they are many. I also grateful to thank the excellent senior researchers, François Lignières, the director of PE2E team, for his discussion about the guideline to be a qualified student in the team, Michel Rieutord, for his discussion of physics and life, ..., they are many. I also thank the administrative staffs in the lab and the doctoral school. They are Emillie Dupin and Josette Garcia, the secretary of the IRAP, Isabelle Moro, the accountant of the PS2E team, Martin Giard and Philippe Louarn, the previous and current director of the IRAP, Marie-Claude Cathala, the secretary of the doctoral school, Genevieve Soucail, the director of the doctoral school... I would like to thank the China Government for providing the fund to support me living and study in France. Without it, I cannot pursue my study in Université de Toulouse and conduct my research in the lab IRAP (CNRS). I would also like to thank the funds from the Programme National de Physique Stellaire (PNPS, CNRS/INSU, France) and the Centre National d’Études Spatiales (CNES, France) that support me to attend many international conferences. Then it makes me learn many researchers in white dwarf stars and hot subdwarf stars possible. Gilles Fontaine is a kind of such people whom I first met in a white dwarf meeting even I heard his name before. Gille is very knowledgable in many research aspects, and more importantly, a gracious friend, for whom I thank the encouraging me to persist my research with confidence. I cannot image that there is no friend for one living in an exotic country. I owe much from my dear friends, most of them are also Ph.d students in Toulouse. I share joys and sorrows with them, go skiing and hiking with them, have parties and communicate many different living skills with them.... They are Chen couple, Chen Chunxian, Gao Congzhang, Ke Diandian, Leng Faqiang, Lin Zifeng, Tian Feng, Wang Renjie, Zhao Xuefei... and many. Finally, I am very grateful to my family, my father and mother, my younger brother and sister, for their supporting and understanding me that let me purchase my doctor degree in a foreign environment and culture, six or seven hours time lagging behind, many thousands miles away from them, almost across the entire continent, a long-haul trip of one transfer flight and one corresponding train to home. iii Résumé Les interactions non linéaires entre modes de pulsation, induisant des modulations d’ampli- tude et de fréquence, sont difficiles à mettre en évidence avec les télescopes au sol en raison des temps caractéristiques en jeu, de l’ordre de la semaine, du mois, ou même de l’année. L’avène- ment des télescopes spatiaux comme KEPLER (opéré par la NASA) a considérablement changé la donne en apportant de nouvelles données pour ce domaine de recherche. Dans cette thèse, nous analysons les données photométriques obtenues avec KEPLER pour 24 étoiles compactes pulsantes, incluant 18 étoiles sous-naines de type B (sdB) et 6 naines blanches. Nous établissons que les modulations d’amplitude et de fréquence des modes d’oscillation sont un phénomène courant dans ces étoiles. Nous étudions en particulier deux étoiles : KIC 0862602, une naine blanche pulsante de type DB, et KIC 10139564, une étoile sdB variable à courtes périodes. KIC 0862602 et KIC 10139564 ont été observées sans interruption par KEPLER en cadence ra- pide pendant deux années pour la première et plus de trois ans pour la seconde. En analysant en détail ces données photométriques de très haute précision, nous mettons en évidence différents types de comportements affectant les composantes de triplets induits par la rotation stellaire. Les fréquences et amplitudes de ces modes montrent des variations soi périodiques soi irrégu- lières, ou demeurent constantes. Ces comportements peuvent être connectés à ceux prédits par les équations d’amplitude dans le cas de couplages non linéaires résonants entre modes, en par- ticulier pour les temps caractéristiques des modulations. De plus, nous montrons que les modes en résonance constituant les triplets peuvent également interagir avec des modes extérieurs par le biais d’autres formes de résonances telle que la résonance à trois modes ν0 ∼ ν1 + ν2, une situation qui n’est pas prise en compte dans le cadre théorique existant.
Recommended publications
  • The Most Massive Pulsating White Dwarf Stars Barbara G
    Precision Asteroseismology Proceedings IAU Symposium No. 301, 2013 c International Astronomical Union 2014 J. A. Guzik, W. J. Chaplin, G. Handler & A. Pigulski, eds. doi:10.1017/S1743921313014452 The most massive pulsating white dwarf stars Barbara G. Castanheira1 and S. O. Kepler2 1 Department of Astronomy and McDonald Observatory, University of Texas Austin, TX 78712, USA email: [email protected] 2 Instituto de F´ısica, Universidade Federal do Rio Grande do Sul 91501-970 Porto Alegre, RS, Brazil email: [email protected] Abstract. Massive pulsating white dwarf stars are extremely rare, because of their small size and because they are the final product of high-mass stars, which are less common. Because of their intrinsic smaller size, they are fainter than the normal size white dwarf stars. The motivation to look for this type of stars is to be able to study in detail their internal structure and also derive generic properties for the sub-class of variables, the massive ZZ Ceti stars. Our goal is to investigate whether the internal structures of these stars differ from the lower-mass ones, which in turn could have been resultant from the previous evolutionary stages. In this paper, we present the ensemble seismological analysis of the known massive pulsating white dwarf stars. Some of these pulsating stars might have substantial crystallized cores, which would allow us to probe solid physics in extreme conditions. Keywords. stars: oscillations (including pulsations), stars: white dwarfs 1. Introduction According to the best current evolutionary models, all single stars with masses below 9–10M will end up their lives as white dwarf stars.
    [Show full text]
  • Gamma-Ray Pulsars: Models and Predictions
    Gamma-Ray Pulsars: Models and Predictions Alice K. Harding NASA Goddard Space Ftight'Center, Greenbelt MD 20771, USA Abstract. Pulsed emission from 7-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair pro- duction above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 101_ - 1013 G are expected to have high energy cutoffs around several Ge_, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensi- tive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms. INTRODUCTION The last decade has seen a large increase in the number of detected 7-ray pulsars. At GeV energies, the number has grown from two to at least six (and possibly nine) pulsar detections by the EGRET telescope on the Compton Gamma Ray Obser- vatory (CGRO) (Thompson 2000).
    [Show full text]
  • Single Star – Sylvie D
    ASTRONOMY AND ASTROPHYSICS – Single Star – Sylvie D. Vauclair and Gerard P. Vauclair SINGLE STARS Sylvie D. Vauclair Institut de Recherches en Astronomie et Planétologie, Université de Toulouse, Institut Universitaire de France, 14 avenue Edouard Belin, 31400 Toulouse, France Gérard P. Vauclair Institut de Recherches en Astronomie et Planétologie, Université de Toulouse, Centre National de la Recherche Scientifique, 14 avenue Edouard Belin, 31400 Toulouse, France Keywords: stars, stellar structure, stellar evolution, magnitudes, HR diagrams, asteroseismology, planetary nebulae, White Dwarfs, supernovae Contents 1. Introduction 2. Stellar observational data 2.1. Distances 2.1.1. Direct Methods 2.1.2. Indirect Methods 2.2. Stellar Luminosities 2.2.1. Apparent Magnitude 2.2.2. Absolute Magnitude 2.3. Surface Temperatures 2.3.1. Brightness Temperatures 2.3.2 Color Temperatures, Color Indices 2.3.3 Effective Temperatures 2.4 Stellar Spectroscopy 2.4.1. Spectral Types 2.4.2. Chemical Composition 2.4.3. Stellar Rotation and Magnetic Fields 2.6. Masses and Radii 3. Stellar structure and evolution 3.1. Color-Magnitude Diagrams 3.2. Stellar Structure 3.2.1. CharacteristicUNESCO Stellar Time Scales – EOLSS 3.2.2. The Basic Equations of the Stellar Structure 3.2.3. ApproximateSAMPLE Solutions CHAPTERS 3.3. Stellar Evolution 3.3.1. Stellar Evolutionary Codes 3.3.2. Stellar Evolution before the Main Sequence 3.3.3 The Main Sequence 3.3.4 Post Main Sequence Tracks 3.3.5 HR Diagrams of Stellar Clusters 3.4. Stars and Stellar Environment: Recent Developments 3.4.1 Atomic Diffusion 3.4.2 Rotation and Rotational Braking ©Encyclopedia of Life Support Systems (EOLSS) ASTRONOMY AND ASTROPHYSICS – Single Star – Sylvie D.
    [Show full text]
  • Massive Fast Rotating Highly Magnetized White Dwarfs: Theory and Astrophysical Applications
    Massive Fast Rotating Highly Magnetized White Dwarfs: Theory and Astrophysical Applications Thesis Advisors Ph.D. Student Prof. Remo Ruffini Diego Leonardo Caceres Uribe* Dr. Jorge A. Rueda *D.L.C.U. acknowledges the financial support by the International Relativistic Astrophysics (IRAP) Ph.D. program. Academic Year 2016–2017 2 Contents General introduction 4 1 Anomalous X-ray pulsars and Soft Gamma-ray repeaters: A new class of pulsars 9 2 Structure and Stability of non-magnetic White Dwarfs 21 2.1 Introduction . 21 2.2 Structure and Stability of non-rotating non-magnetic white dwarfs 23 2.2.1 Inverse b-decay . 29 2.2.2 General Relativity instability . 31 2.2.3 Mass-radius and mass-central density relations . 32 2.3 Uniformly rotating white dwarfs . 37 2.3.1 The Mass-shedding limit . 38 2.3.2 Secular Instability in rotating and general relativistic con- figurations . 38 2.3.3 Pycnonuclear Reactions . 39 2.3.4 Mass-radius and mass-central density relations . 41 3 Magnetic white dwarfs: Stability and observations 47 3.1 Introduction . 47 3.2 Observations of magnetic white dwarfs . 49 3.2.1 Introduction . 49 3.2.2 Historical background . 51 3.2.3 Mass distribution of magnetic white dwarfs . 53 3.2.4 Spin periods of isolated magnetic white dwarfs . 53 3.2.5 The origin of the magnetic field . 55 3.2.6 Applications . 56 3.2.7 Conclusions . 57 3.3 Stability of Magnetic White Dwarfs . 59 3.3.1 Introduction . 59 3.3.2 Ultra-magnetic white dwarfs . 60 3.3.3 Equation of state and virial theorem violation .
    [Show full text]
  • Gamma-Ray Pulsars: Models and Predictions
    Gamma-Ray Pulsars: Models and Predictions Alice K. Harding NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Abstract. Pulsed emission from γ-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B =1012 1013 G are expected to have high energy cutoffs around several GeV, the gamma-ray− spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma- ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms. INTRODUCTION The last decade has seen a large increase in the number of detected γ-ray pulsars. At GeV energies, the number has grown from two to at least six (and possibly nine) pulsar detections by the EGRET telescope on the Compton Gamma Ray Obser- vatory (CGRO) (Thompson 2000). However, even with the advance of imaging Cherenkov telescopes in both northern and southern hemispheres, the number of detections of pulsed emission at energies above 20 GeV (Weekes et al.
    [Show full text]
  • Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
    A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218,
    [Show full text]
  • Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae
    SLAC-PUB-12126 astro-ph/0601111 September 2006 Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae Shigehiro Nagataki1,2, Akira Mizuta3, Katsuhiko Sato4,5 ABSTRACT Two-dimensional hydrodynamic simulations are performed to investigate ex- plosive nucleosynthesis in a collapsar using the model of MacFadyen and Woosley (1999). It is shown that 56Ni is not produced in the jet of the collapsar suffi- ciently to explain the observed amount of a hypernova when the duration of the explosion is ∼10 sec, which is considered to be the typical timescale of explosion in the collapsar model. Even though a considerable amount of 56Ni is synthesized if all explosion energy is deposited initially, the opening angles of the jets become too wide to realize highly relativistic outflows and gamma-ray bursts in such a case. From these results, it is concluded that the origin of 56Ni in hypernovae associated with GRBs is not the explosive nucleosynthesis in the jet. We consider that the idea that the origin is the explosive nucleosynthesis in the accretion disk is more promising. We also show that the explosion becomes bi-polar naturally due to the effect of the deformed progenitor. This fact suggests that the 56Ni synthesized in the accretion disk and conveyed as outflows are blown along to the rotation axis, which will explain the line features of SN 1998bw and double peaked line features of SN 2003jd. Some fraction of the gamma-ray lines from 56Ni decays in the jet will appear without losing their energies because the jet becomes optically thin before a considerable amount of 56Ni decays as long as the jet is a relativistic flow, which may be observed as relativistically Lorentz boosted line profiles in future.
    [Show full text]
  • Toward an Empirical Determination of the Zz Ceti Instability Strip A
    The Astrophysical Journal, 631:1100–1112, 2005 October 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. TOWARD AN EMPIRICAL DETERMINATION OF THE ZZ CETI INSTABILITY STRIP A. Gianninas, P. Bergeron, and G. Fontaine De´partement de Physique, Universite´ de Montre´al, C.P. 6128, Succursale Centreville, Montreal, PQ H3C 3J7, Canada; [email protected], [email protected], [email protected] Received 2005 April 22; accepted 2005 June 17 ABSTRACT We present atmospheric parameters for a large sample of DA white dwarfs that are known to be photometrically constant. For each star, we determine the effective temperature and surface gravity by comparing high signal-to-noise ratio optical spectra to the predictions of detailed model atmosphere calculations. We also report the successful prediction and detection of photometric variability in G232À38 based on similar Teff and log g determinations. The atmospheric parameters derived for this sample of constant stars, as well as those for the known sample of bright ZZ Ceti stars (now boosted to a total of 39), have been obtained in a highly homogeneous way. We combine them to study the empirical red and blue edges, as well as the purity of the ZZ Ceti instability strip. We find that the red edge is rather well constrained, whereas there exists a rather large range of possibilities for the slope of the blue edge. Furthermore, the ZZ Ceti instability strip that results from our analysis contains no nonvariable white dwarfs. Our sample of constant stars is part of a much broader spectroscopic survey of bright (V < 17) DAwhite dwarfs, which we have recently undertaken.
    [Show full text]
  • Evolution and Radiation in Pulsar Polar Cap Models M
    EVOLUTION AND RADIATION IN PULSAR POLAR CAP MODELS M. Ruderman Department of Physics, Columbia University ABSTRACT Positively charged particle emission from pulsar polar caps evolves through many stages as the cap temperature cools. In "infant" pulsars, stripped Fe ions interact with secondary e~ from a 10^ V discharge maintained just above the cap to give coherent radio emission at very high frequencies in a very broad beam. In "adolescent" pulsars such as the Crab and Vela, lower energy Fe ions interact with streams of protons produced in the surface by photonuclear reactions to give lower frequency highly linearly polarized radiation. There is no cap e-^ dis­ charge. In mature "adult" pulsars proton and/or Fe ion streams from discharge heated patches on the polar cap interact with a relativistic e~ plasma to give coherent radio subpulse beams which can drift, have strong submillisecond modulations, and orthogonal polarization mode switching. Young pulsars, and some older ones, can support additional more energetic e- discharges on some open field lines in the outer an magnetosphere. These all give strong double beams of GeV y-rays d + weaker y-ray beams above ^ 10^ eV. With Crab pulsar parameters an e~ plasma associated with such a discharge also can give optical and X-ray double beams. If illuminated by the normal pulsar beam (precursor) coherent inverse Compton scattering also contributes a double beam of harder radio frequencies. 1. RADIO EMISSION AND POLAR CAP EVOLUTION Polar cap models (PCMfs) are based upon the presumption that large currents flow from the polar caps of spinning magnetized neutron stars, and move along "open" field lines through the magnetosphere into the region near the "light cylinder" where corotation must fail.
    [Show full text]
  • A Pulsating White Dwarf in an Eclipsing Binary
    This is a repository copy of A pulsating white dwarf in an eclipsing binary. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158498/ Version: Accepted Version Article: Parsons, S.G. orcid.org/0000-0002-2695-2654, Brown, A.J. orcid.org/0000-0002-3316-7240, Littlefair, S.P. et al. (8 more authors) (2020) A pulsating white dwarf in an eclipsing binary. Nature Astronomy. ISSN 2397-3366 https://doi.org/10.1038/s41550-020-1037-z This is a post-peer-review, pre-copyedit version of an article published in Nature Astronomy. The final authenticated version is available online at: http://dx.doi.org/10.1038/s41550-020-1037-z. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A pulsating white dwarf in an eclipsing binary Steven G. Parsons1,*, Alexander J. Brown1, Stuart P. Littlefair1, Vikram S. Dhillon1,2, Thomas R. Marsh3, J.
    [Show full text]
  • Cataclysmic Variables
    Cataclysmic variables Article (Accepted Version) Smith, Robert Connon (2006) Cataclysmic variables. Contemporary Physics, 47 (6). pp. 363-386. ISSN 0010-7514 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/2256/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Cataclysmic variables Robert Connon Smith Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK E-mail: [email protected] Abstract. Cataclysmic variables are binary stars in which a relatively normal star is transferring mass to its compact companion.
    [Show full text]
  • Variable Star
    Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.
    [Show full text]