Frontal Lobe Functions Pivotal Case: Phineas Gage What Did Change?

Total Page:16

File Type:pdf, Size:1020Kb

Frontal Lobe Functions Pivotal Case: Phineas Gage What Did Change? Frontal Lobe Functions Fredric E. Rose, Ph.D. Winter 2006 Pivotal Case: Phineas Gage 9/13/1848 25 yo construction foreman for Rutland and Burlington RR in New England Used a tamping iron to fill holes in stones with sand over explosive powder in order to level the terrain Once forgot to put in sand… What did change? What did we learn from this? Pre-accident personality Responsible, intelligent, honest, well-liked by peers and elders, “the most efficient and capable man” according to employers Post-accident personality Disinhibited, irreverent, capricious, disrespectful of social conventions, unable to hold a job Equipotentiality v. Localization of Function Harlow (1868): some portion of the brain that was removed by the tamping rod was responsible for the restraint and well-mannered behavior that most people possess, and that Gage lost in the accident. 1 Gage Revisited (Science,1994) Damasio & Damasio Computer graphics to plot trajectory Ventromedial OFC region, sparing of Broca’s and other FL motor regions Region is responsible for decision-making regarding personal and social matters,as well as emotion processing Anatomy of the Frontal Lobes 3 prefrontal regions: Dorsolateral Orbitofrontal Mesial Frontal Lobe Circuitry Alexander, DeLong, & Strick (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357-381. Oculomotor Motor Dorsolateral Orbitofrontal Anterior Cingulate 2 Neurotransmitters Glutamate (corticostriatal, thalamocortical) GABA (basal ganglia) Dopamine (cortical, subcortical) Modulates all 3 circuits Acetylcholine (striatal) Open circuit influence) Serotonin (cortical, subcortical) Core Frontal Circuitry Frontal Cortex Glutamate (+) Glutamate (+) Thalamus Striatum GABA (-) GABA (-) Internal External Globus Pallidus GABA (-) Glutamate (+) Subthalamic Feifel (1999) Dorsolateral Circuit Functions Subserves executive function Behavioral responses to complex problems Activation of remote memories Environmental independence Shifting/maintaining cognitive sets Generating motor programs Verbal mediation of behavior 3 Executive Functions Planning Decision making Self-directed goal selection Monitoring, guiding, and directing behavior to achieve a goal Dorsolateral Circuit Dysfunction Poor organizational behavior Poor memory search strategies Environmental dependency Poor set shifting (perseveration) Verbal/manual dissociations Orbitofrontal Circuit Functions 2 parallel circuits: Lateral and Medial Personality Characteristics Empathy Civility Social appropriateness Environmental independence Emotional continence 4 Orbitofrontal Circuit Dysfunction Personality Changes Tactlessness Impulsivity Irritability Antisocial behavior Utilization/imitation behavior Mood disorders Obsessive-Compulsive disorder Orbitofrontal Syndrome Emotional lability (mood swings) Disinhibition Criminal behavior Unusual/impulsive sexual behavior Often lack awareness Anosmia Environmental Dependency Pseudopsychopathic Anterior Cingulate Functions Motivated Behavior Drive Spontaneity “Personhood” Creativity 5 Anterior Cingulate Dysfunction Akinetic mutism Indifference to pain Apathy Poverty of speech Psychic emptiness Excessive conformity Poor response inhibition Personality Changes Impairments in social skills inappropriate or bizarre social behavior “loosening" of normal social restraints Change in motivation apathy, withdrawal, lack of interest, and initiative Pseudodepression / pseudoretarded Summary of Personality/Behavioral Symptoms POSITIVE NEGATIVE Disinhibition Apathy Impulsivity Reduced initiative Vulgarity (Abulia) Irritability Reduced interest in daily activities/self- Emotional lability care Inappropriate laughter, crying Akinetic mutism Social withdrawal Bizarre behavior 6 Personality/Behavioral Assessment Observation Impulsive, disinhibited, environmentally dependent… Questionnaires Self-report Caregiver/family member Interviews Patient Family Secondary Motor Cortex Supplementary Motor Area Sequencing, timing, and proper initiation of voluntary movements. PET studies Specific vs random motor sequence magining this movement. Injury – disorder of motor planning, organization, and initiation Secondary Motor Cortex (cont.) Premotor Area Sequencing, timing, and proper initiation of voluntary movements. BUT… more in external cue readiness, such as the interval between CUE and GO. Cingulate Motor Area Emotional or motivational impetus for movement (when reward is involved) Injury – lack of spontaneous motor activity, reduced speech output 7 Measures of SMC Functioning Written Alternating Sequences Perseveration: the inability to stop behaviors once they have started •Motor Impersistence: a form of distractibility in which patients only briefly sustain a motor action in response to a command such as "Raise your arms" or "Look to the right." Measures of SMC Functioning (cont.) Luria 3-Step Fist, Edge, Palm Go-No Go (also Orbital-PFC – disinhibition) Multiple Loops 8 Apraxia Inability to execute purposeful, complex motor acts, despite physical ability, comprehension, and willingness. Ideomotor Apraxia: Gestures to command Motor representations in Parietal Lobe, but Premotor Cortex (including SMA) translates into movements Frontal Release Signs FL lesions (nonlocalized; dementia) can produce a return of primitive reflexes: Grasp Sucking/”Snout” Groping Utilization behavior 9 Summary of Motor Symptoms of FL Disorder Poor motor sequencing Poor initiation of movements Dysarthria Apraxia Frontal release signs Assessing Executive Functions Anatomy of the Frontal Lobes 3 prefrontal regions: Dorsolateral Orbitofrontal Mesial 10 Divide these 6 stimuli into 2 groups based on a shared characteristic. Now do it again based on another shared characteristic. Stroop Color-Word Test Red Blue Green Red Blue Red Blue Green Green Green Red Blue Blue Red Blue Red Green Blue Green Blue Red Green Blue Green Green Red Red Red Stroop Color-Word Test XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 11 Stroop Color-Word Test Red Blue Green Red Blue Red Blue Green Green Green Red Blue Blue Red Blue Red Green Blue Green Blue Red Green Blue Green Green Red Red Red Wisconsin Card Sorting Test Deck of cards with different stimuli on each Patient sorts the deck into 4 piles according to “key” cards Told only if right or wrong on each sort Letter Fluency Sec C F L 0 Cat F*ck! Lips Car Lever 15 Fudge Catch Fever List 30 Catching Fudge Lemon Caterpillar Fudge 45 Fever Crayon Fiddle SPEED FACTORS 60 Cabbage Flower -poor initiation -poor maintenance 12 F C Trail Making Test A G E B D H A D A Trail Making Test B 4 1 2 B C 3 Rey-Osterrieth Complex Figure copy 13 So, what are “Executive Functions”? Generate a list and identify the theme. Planning Organizing Selective attention What’s the common thread? Problem-solving Executive functions are complex functions that allow one to Initiating engage in effective and efficient Inhibiting goal-directed behavior. Self-monitoring Abstract thinking Mental flexibility FL Memory Functions Working Memory Retrieval Source Memory Working Memory Serial 7’s Put this in order with letters first, then numbers: “L-4-C-2-M-8”. Spell “WORLD” backwards. What does these have in common? Define ‘working memory.’ What are the 2 main components? an active system for temporarily storing and manipulating information needed in the execution of complex cognitive tasks 14 Working Memory (pp. 169-170) Baddeley (1986): WM has 3 components Central executive Articulatory phonological loop Visual-spatial sketch pad Goldman-Rakic (1988) Dorsolateral prefrontal cortex holds information “on line” while it is processed (monkey research). Confirmed by PET and fMRI Paced Auditory Serial Addition Task (PASAT) EXAMINER PATIENT 4 “7” 3 “11” Phonological Loop E 8 “10” M or I 2 T “5” Visual-spatial Sketchpad 3 “10” 7 “15” 8 N-back C me n Ti A N q 2-Back Q target X c 1-Back target 0-Back target Phonological Loop or Visual-spatial Sketchpad 15 Spatial Span Task Phonological Loop or Visual-spatial Sketchpad 16.
Recommended publications
  • Persistent Neurobehavioral Problems Following Mild Traumatic Brain Injury
    Archives of Clinical Neuropsychology 16 (2001) 561–570 Downloaded from https://academic.oup.com/acn/article/16/6/561/2043 by guest on 23 September 2021 Persistent neurobehavioral problems following mild traumatic brain injury Lawrence C. Hartlagea,*, Denise Durant-Wilsona, Peter C. Patcha,b aAugusta Neuropsychology Center, 4227 Evans to Locks Road, Evans, GA 30809, USA bUS Penitentiary, Atlanta, GA, USA Accepted 9 May 2000 Abstract Accumulating research documents typical rates in the range of 85% of mild traumatic brain injury (MTBI) showing prompt, complete resolution with 15% suffering from persistent neurobehavioral impairments. Studies of neurobehavioral symptoms of MTBI have not separated these two populations, resulting in either inconclusive or contradictory conclusions concerning the relationship of MTBI with residual behavioral problems. This project studied 70 MTBI patients with persistent neurobehavioral problems at two time intervals post-injury to determine whether there are consistent neurobehavioral patterns considered to be sequelae of MTBI. A matched group of 40 normal subjects provided control data. While most behavioral problems showed improvement, 21% tended to show significant behavioral impairment compared to controls at 12 or more months post-injury. Neurochemical bases of neuronal degeneration may account for some of the behavioral deterioration following MTBI. D 2001 National Academy of Neuropsychology. Published by Elsevier Science Ltd. Keywords: Persistent neurobehavioral problems; Brain; MTBI The scientific
    [Show full text]
  • Phineas Gage, Neuroscience's Most Famous Patient
    SCIENCE THE STATE OF THE UNIVERSE. MAY 6 2014 11:32 PM Phineas Gage, Neuroscience’s Most Famous Patient Each generation revises his myth. Here’s the true story. By Sam Kean 1 From a virtuous foreman to a sociopathic drifter n Sept. 13, 1848, at around 4:30 p.m., the time of day when the mind might start wandering, a O railroad foreman named Phineas Gage filled a drill hole with gunpowder and turned his head to check on his men. It was the last normal moment of his life. Other victims in the annals of medicine are almost always referred to by initials or pseudonyms. Not Gage: His is the most famous name in neuroscience. How ironic, then, that we know so little else about the man—and that much of what we think we know, especially about his life unraveling after his accident, is probably bunk. Gage's exhumed skull and tamping iron, 1870. Image via J.B.S. Jackson/A Descriptive Catalog of the Warren Anatomical Museum The Rutland and Burlington Railroad had hired Gage’s crew that fall to clear away some tough black rock near Cavendish, Vermont, and it considered Gage the best foreman around. Among other tasks, a foreman sprinkled gunpowder into blasting holes, and then tamped the powder down, gently, with an iron rod. This completed, an assistant poured in sand or clay, which got tamped down hard to confine the bang to a tiny space. Gage had specially commissioned his tamping iron from a blacksmith. Sleek like a javelin, it weighed 13¼ pounds and stretched 3 feet 7 inches long.
    [Show full text]
  • PHINEAS GAGE the Man with a Hole in His Head
    CHAPTER THREE PHINEAS GAGE The Man With a Hole in His Head Phineas Gage was the 25-year-old foreman of a construction crew preparing the path for a railroad track in the late summer of 1848. By all accounts he was reliable and friendly, both a good worker and a pleasant companion. But in an instant his life was changed through a terrible accident that would haunt him until his premature death at age 36. Gage’s accident also had ramifications for scientists who were tryingdistribute to under- stand the relationship between the brain and behavior. Although the implications of his accident were not immediately appreciated, his case became a common fixture in basic textbooks in psychology, neurology, and related fields. His caseor has also been used to demonstrate the role of the brain in determining personality. But the account of the acci- dent has also been filled with errors and exaggeration, sometimes making it difficult to separate the facts from fiction. THE ACCIDENT post, Late in the afternoon of September 13, 1848, Phineas Gage was working with his crew near Cavendish, Vermont, preparing the way for a new track bed for the Rutland and Burlington Railroad. The crew was using explosives to blast away rock. It was a slow process thatcopy, required precision in determining where to bore the holes and estimating how much explosive powder to use. Gage would place a fuse in the hole, followed by gunpowder, and then fill the rest of the hole with sand. Gage had a long iron rod, a tamping iron, which he used to pack down the sand.
    [Show full text]
  • A Hardwired Neo-Cortex – What Role for Neuroplasticity and Developmental
    Book Review Page 1 of 2 A hardwired neo-cortex – What role for BOOK TITLE: neuroplasticity and developmental processes? Beyond evolutionary psychology: How and why neuropsychological Is the neo-cortex of the brain hardwired or not? This is the central question George Ellis and Mark Solms of the modules arise University of Cape Town set out to answer in the seven chapters and 177 pages of this book. Regardless of which side of the argument one is on, there is a guarantee of a fulfilling read, with the latest information about the modern BOOK COVER: brain and its evolution. The main point of this book is that there is no language or any other instinctual system in the neo-cortex. Evolutionary psychologists claim that the mind is a product of evolution and natural selection.1,2 We have adapted successfully to our environments because the mind (specifically the neo-cortex) is modular and hardwired for specific functions, which provides us with innate knowledge from birth and equips us for survival in an environment with a ‘poverty of stimulus’. An example is that of Chomsky’s innate module for grammar which Pinker3 later argued was a ‘language instinct’ (see Rose4). We required such a mind in the context of an ‘environment of evolutionary adaptedness’ to the African savannah but would it help us survive modern life? The gene took central position from about the mid-20th century – the period of the new synthesis of Darwin’s theory (in 1859) with modern genetics – with a convergence of ideas of heredity from several sources5-8: the (‘selfish’) gene was the unit for natural selection8, the meme its cultural counterpart and gene-culture coevolution the new idea9.
    [Show full text]
  • The Return of Phineas Gage: Clues About the Brain from the Skull of a Famous Patient
    The Return of Phineas Gage: Clues About the Brain from the Skull of a Famous Patient Hanna Damaslo, Thomas Grabowski, Randall Frank, Albert M. Galaburda, Antonio R. Damasio* When the landmark patient Phineas Gage died in 1861, no autopsy was performed, but language, motor function, and perception, his skull was later recovered. The brain lesion that caused the profound personality and now Gage's case indicated something changes for which his case became famous has been presumed to have involved the left even more surprising: Perhaps there were frontal region, but questions have been raised about the involvement of other regions and structures in the human brain dedicated to about the exact placement of the lesion within the vast frontal territory. Measurements from the planning and execution of personally Gage's skull and modern neuroimaging techniques were used to reconstitute the accident and socially suitable behavior, to the aspect and determine the probable location of the lesion. The damage involved both left and right of reasoning known as rationality. prefrontal cortices in a pattern that, as confirmed by Gage's modern counterparts, causes Given the power of this insight, Har- a defect in rational decision making and the processing of emotion. low's observation should have made the scientific impact that the comparable sug- gestions based on the patients of Broca and Wernicke made (2). The suggestions, al- On 13 September 1848, Phineas P. Gage, profound change in personality were al- though surrounded by controversy, became a 25-year-old construction foreman for the ready evident during the convalescence un- the foundation for the understanding of the Rutland and Burlington Railroad in New der the care of his physician, John Harlow.
    [Show full text]
  • Causes of Mental Illness Phineas Gage (1848)
    8/26/2019 What is Mental Illness? Mental Illness: a mental, behavioral or emotional disorder that interferes in the way that we think, feel or function. • Impairments can be mild, moderate or severe. • Mental illness can affect how we handle stress, relate to others or make healthy choices. • Mental health is important at every stage of life: childhood, adolescence, the adult life span. • Mental health can change over time. • Mental health can change after a traumatic brain injury (CDC; Learn About Mental Health) How Common is Mental Illness? Causes of Mental Illness • In 2016, there were an estimated 44.7 million adults • Biological factors (genetics or a chemical imbalance) aged 18 or older with a mental illness • Chronic medical condition • This is about 1 in 5 Americans per year (cancer/brain injury and so forth) • The number (1 in 5) is the same for children • Use of alcohol or recreational drugs • The rate of diagnosis is higher for women (21%) • Early childhood trauma than men (15%) • Feeling lonely or isolated • Young adults ages 18-25 had the highest prevalence of mental illness compared to other adult groups (NIMH; Statistics: Mental Illness) Phineas Gage (1848) Neuroscience’s Most Famous Patient • Iron bar through frontal lobe: Tamping iron-43 inches long; 1.25 inches in diameter and 13 pounds • Penetrated left cheek, shot through skull and landed several dozen feet away • Responsible and well adjusted- model foreman • Negligent, irreverent, profane, unable to take responsibility • Lost his job • Died at age 36 after a series of seizures (Smithsonianmag; Phineas Gage) (Smithsonianmag; Phineas Gage) 1 8/26/2019 Depression Depression is more than ups and downs.
    [Show full text]
  • Brain-Based Rehab the Past
    Brain-Based Rehab John B. Arden, PhD Agenda • The Prefrontal Cortex • Affect Asymmetry • Neuroplasticity and Neurogenesis • The Memory Systems • Anxiety and PTSD • Hints for Forensic Neuroscience Neuropsychology The Past Attachment Transference Neurology Epigenetics Client-Centered Empathy Trust Diagnosis Alliance Psychopharm DSM V EBP-- Panic Psychotherapy Research Memory CBT EBP-- ACT, DBT EBP-- OCD Narrative GAD Psychodynamics EMDR, EFT EBP-- EBP-- Depression OCD 1 Where is the anxiety? Here is the DMN Brain-Based Therapy NEUROSCIENCE EVIDENCE-BASED PRACTICE PSYCHOLOGICAL THERAPEUTIC THEORIES ALLIANCE The BASE of BBT Brain Alliance Evidence-Based Systems Practice 2 Worth a Thousand Words Psychotherapy changes the brain Goldapple, Segal, et al. (2004). Arch. Gen. Psych., 61, 34–41. Psychotherapy and the Brain Direct, observable links between successful CBT/IPT and brain changes – Reduced amygdalar activity in treated phobics ( Straube, et al., 2006), panickers (Prasko et al., 2004), and social phobics (Furmark et.al, 2002) – Reduced frontal activity in treated depressives (Goldapple et al., 2004) – Increased ACC activation in PTSD clients (Felmingham et al., 2007) – Increased hippocampal activity in depressives (Goldapple et al., 2004) – Decreased caudate activity in OCD (Baxter, et al., 1992) Brain-Based Therapy • BBT changes how we think about the relationship and change: –Need a “Safe emergency.” –Experience creates brain biology –Brain biology effects experience (e.g. depression) 3 Mind/Brain and communication Brain-Based Therapy
    [Show full text]
  • Evolution, Cognition, Consciousness, Intelligence and Creativity
    J35 d. 73 303 SEVENTY-THIRD c>py * JAMES ARTHUR LECTURE ON THE EVOLUTION OF THE HUMAN BRAIN 2003 EVOLUTION, COGNITION, CONSCIOUSNESS, INTELLIGENCE AND CREATIVITY RODNEY COTTERILL AMERICAN MUSEUM OF NATURAL HISTORY NEW YORK : 2003 SEVENTY-THIRD JAMES ARTHUR LECTURE ON THE EVOLUTION OF THE HUMAN BRAIN 2003 SEVENTY-THIRD JAMES ARTHUR LECTURE ON THE EVOLUTION OF THE HUMAN BRAIN 2003 EVOLUTION, COGNITION, CONSCIOUSNESS, INTELLIGENCE AND CREATIVITY Rodney Cotterill Danish Technical University Wagby, Denmark AMERICAN MUSEUM OF NATURAL HISTORY NEW YORK : 2003 JAMES ARTHUR LECTURES ON THE EVOLUTION OF THE HUMAN BRAIN Frederick Tilney. The Brain in Relation to Behavior; March 15, 1932 C. Judsoil Herrick, Brains </s Instruments of Biological Values; April 6. 1933 D. M. S. Watson. The Story of Fossil Brains front fish to Matt; April 24, 1934 C. U. Ariens Kappers. Structural Principles in the Nervous System; The Devel- opment of the Forehrain in Animals anil Prehistoric Human Races; April 25. 1935 Samuel T. Orton. The Language Area of the Human Brain and Some of Its Dis- orders; May 15. 1936 R. W. Gerard. Dynamic Neural Patterns; April 15. 1937 Franz Weidenreich. The Phylogenetic Development of the Hominid Brain and Its Connection with the Transformation of the Skull; May 5, 1938 G. Kingsley Noble. The Neural Basis of Social Behavior of Vertebrates; May 1 1, 1939 John F. Fulton. A Functional Approach to the Evolution of the Primate Brain; May 2. 1940 Frank A. Beach. Central Nervous Mechanisms Involved in the Reproductive Be- havior of Vertebrates; May 8, 1941 George Pinkley. A History of the Human Brain; May 14.
    [Show full text]
  • Assessing the Elusive Cognitive Deficits Associated with Ventromedial Prefrontal Damage: a Case of a Modern-Day Phineas Gage
    Journal of the International Neuropsychological Society (2004), 10, 453–465. Copyright © 2004 INS. Published by Cambridge University Press. Printed in the USA. DOI: 10.10170S1355617704103123 CASE STUDY Assessing the elusive cognitive deficits associated with ventromedial prefrontal damage: A case of a modern-day Phineas Gage M. ALLISON CATO,1,2 DEAN C. DELIS,1 TRACY J. ABILDSKOV,3 and ERIN BIGLER3 1San Diego Veteran Affairs Healthcare System and University of California, San Diego, School of Medicine, San Diego, California 2Department of Clinical and Health Psychology and Malcom Randall VA RR&D Brain Rehabilitation Research Center, University of Florida, Gainesville, Florida 3Department of Psychology, Brigham Young University, Provo, Utah (Received April 7, 2003; Revised July 17, 2003; Accepted September 5, 2003) Abstract Cognitive deficits following ventromedial prefrontal damage (VM-PFD) have been elusive, with most studies reporting primarily emotional and behavioral changes. The present case illustrates the utility of a process approach to assessing cognitive deficits following VM-PFD. At age 26, C.D. acquired bilateral VM-PFD, more so in the left frontal region, following a penetrating head injury. Despite exemplary premorbid academic and military performances, his subsequent history suggests dramatic occupational and social changes, reminiscent of Phineas Gage. In fact, lesion analysis revealed similar structural damage to that estimated of Gage. C.D.’s scores on the vast majority of neuropsychological measures were average to superior (e.g., Verbal IQ 5 119). However, on several new process measures, particularly those that quantify error rates on multilevel executive function and memory tasks, C.D. exhibited marked impairments. From his pattern of deficits, C.D.
    [Show full text]
  • The Irish Phineas Gage: Frontal Lobe Traumatic Brain Injury
    Issue: Ir Med J; Vol 113; No. 9; P188 The Irish Phineas Gage: Frontal Lobe Traumatic Brain Injury R. Durcan1, E. Mulroy1, 2, E. Kavanagh3, T. Lynch1,4,5 1. Centre for Brain Health, Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland. 2. UCL Queen Square Institute of Neurology, London WC1N 3BG, UK. 3. Radiology Department, Mater Misericordiae University Hospital, Dublin, Ireland. 4. Health Affairs, University College Dublin, Ireland. 5. Ireland East Hospital Group, Ireland. Abstract Presentation We describe the clinical case of a gentleman who suffered a traumatic brain injury, following a fall on a building site. He was impaled with an iron rod through his left temple, sustaining significant injury to his frontal lobe. Diagnosis Frontal lobe traumatic brain injury with resultant behavioural change and cognitive impairment, which is discussed in detail in the manuscript and supplementary material. Treatment Emergency neurosurgical intervention, with removal of the rod and haematoma evacuation. Discussion Phineas Gage remains the archetypal example of frontal lobe dysfunction in medical education. A previously placid, mild-tempered railway foreman, Gage’s frontal brain injury irrevocably changed his personality and engendered much interest in the functions of the frontal lobes. We describe Gage’s modern-day Irish counterpart. Introduction Phineas Gage was a 25-year-old railway foreman, a “shrewd businessman with a well-balanced mind”1. In 1848, an accidental explosion caused a 3cm-wide tamping rod to be propelled upward through Gage’s facial bones and frontal skull, causing predominant left frontal lobe injuries (The Boston Crowbar Case) 2, 3. Gage recovered physically, but psychological deficits rendered him unable to resume his former position as a foreman.
    [Show full text]
  • The Amazing Case of Phineas Gage 06/11/02 12:36
    Sabbatini, R.M.E.: The Amazing Case of Phineas Gage 06/11/02 12:36 The Amazing Case of Phineas Gage Phineas Gage was a young railroad construction supervisor in the Rutland and Burland Railroad site, in Vermont. In September 1848, while preparing a powder charge for blasting a rock, he inadvertently tamped a steel rod into the hole. The ensuing explosion projected the tamping rod, with 2.5 cm of diameter and more than one meter of lenght against his skull, at a high speed. The rod entered his head trhough his left cheek, destroyed his eye, traversed the frontal part of the brain, and left the top of the skull at the other side. Gage lost consciousness immediately and started to have convulsions. However, he recovered conscience moments later, and was taken to a local doctor, Jonh Harlow, who took care of him. Amazingly, he was talking and could walk. He lost a lot of blood, but after a bout with infection, he not only survived to the ghastly lesion, but recovered well, too. Months later, however, Gage began to have startling changes in personality in mood. He became extravagant and anti-social, a fullmouth and a liar with bad manners, and could no longer hold a job or plan his future. "Gage was no longer Gage", said his friends of him. He died in 1861, thirtheen years after the accident, penniless and epileptic, and no autopsy was performed on his brain. His former physician, John Harlow, interviewed his friends and relatives, and wrote two, reporting Gage's reconstructed medical history, one in 1948, entitled "Passage of an Iron Rod Through the Head", and another in 1868, titled "Recovery from the Passage of an Iron Rod Through the Head".
    [Show full text]
  • Social Neuroscience: the Footprints of Phineas Gage
    Social Cognition, Vol. 28, No. 6, 2010, pp. 757–783 FOOTPRINTS OF PHINEAS GAGE KIHLSTROM SOCIAL NEUROSCIENCE: THE FootpRINTS OF PHINEAS GAGE John F. Kihlstrom University of California, Berkeley Social neuroscience is the most important development in social psychol- ogy since the “cognitive revolution” of the 1960s and 1970s. Modeled after cognitive neuroscience, the social neuroscience approach appears to entail a rhetoric of constraint, in which biological facts are construed as constraining theory at the psychological level of analysis, and a doctrine of modularity, which maps particular mental and behavioral functions onto discrete brain locations or systems. The rhetoric of constraint appears to be mistaken: psychological theory informs the interpretation of biological data, but not the reverse. And the doctrine of modularity must be qualified by an acceptance of a domain-general capacity for learning and problem- solving. While offering tremendous promise, the social neuroscience ap- proach also risks accepting a version of reductionism that dissolves social reality into biological processes, and thus threatens the future status of the social sciences themselves. Lives of great men all remind us / We can make our lives sublime And, departing, leave behind us / Footprints on the sands of time. Henry Wadsworth Longfellow, “A Psalm of Life” (1838) Phineas Gage was not a great man in the way that Goethe and George Washing- ton (whom Longfellow likely had in mind when he wrote his poem) were great men, but he left his mark on history nonetheless—as the index case stimulating the most important development in social psychology since the Cognitive Revolution: its embrace of neuropsychological and neuroscientific methodologies and data (Adolphs, 1999; Cacioppo, Berntson, & McClintock, 2000; Klein & Kihlstrom, 1998; This paper is based on a keynote address presented at a conference on Neural Systems of Social Behavior held at the University of Texas, Austin, in May 2007.
    [Show full text]