Mesofaunal Assemblages in Soils of Selected Crops Under Diverse Cultivation Practices in Central South Africa, with Notes on Collembola Occurrence and Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Mesofaunal Assemblages in Soils of Selected Crops Under Diverse Cultivation Practices in Central South Africa, with Notes on Collembola Occurrence and Interactions MESOFAUNAL ASSEMBLAGES IN SOILS OF SELECTED CROPS UNDER DIVERSE CULTIVATION PRACTICES IN CENTRAL SOUTH AFRICA, WITH NOTES ON COLLEMBOLA OCCURRENCE AND INTERACTIONS by Hannelene Badenhorst Submitted in fulfilment of the requirements for the degree Magister Scientiae in Entomology Department of Zoology and Entomology Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein South Africa 2016 Supervisor: Prof. S.vd M. Louw “We know more about the movement of celestial bodies than about the soil underfoot” ~ Leonardo da Vinci (1452 – 1519) i Acknowledgements I extend my sincere gratitude to the following persons and institutions for their contributions towards this study: o Prof. S.vd M. Louw for his guidance and assistance in the identification of Coleoptera. o Dr. Charles Haddad (University of the Free State) for his assistance with identification of the Araneae. o Dr. Lizel Hugo Coetzee and Dr. Louise Coetzee (National Museum, Bloemfontein) for the identification of the Oribatida. o Dr. Pieter Theron (North-West Unniversity) for the identification of mites. o Dr. Charlene Janion-Scheepers (Monash University) for her assistance with the identification of the Collembola. o Dr. Vaughn Swart for the identification of the Diptera. o Mr. N.J. van der Schyff (Onmia, Kimberley) for his assistance in the interpretation of soil chemical analyses. o The farmers (G.F.R. Nel, W.J. Nel, J.A. Badenhorst, H.C. Kriel & Insig Ontwikkelingsvennootskap) that allowed us to conduct research on their farms and for their full cooperation in regards to information on the applied practices. o Jehane Smith for her motivation, friendship and assistance on field trips. o Deidré West for her friendship and encouragement throughout this study. o Esther Badenhorst, Ian Cloete and Jolene Coertzen for their friendship and for assisting in the final proofing. o My parents, André and Esther Badenhorst, for financial support and for their ever loving support and encouragement throughout this study. o My grandparents, Felie and Hanna Nel, for their encouragement and support. o The rest of my family and friends for their support throughout my studies. o Personnel, colleagues and friends at the Department of Zoology and Entomology for their support, encouragement and guidance, especially Dr. Candice, Isabel and Prof. Linda. o Thank you Lord for taking me on this journey and seeing it through. ‘I can do all things through Christ who strengthens me’ Phil. 4:13 ii TABLE OF CONTENTS ABSTRACT…………………………………………………………………………………vi UITTREKSEL…...…………………………………………………………………………viii CHAPTER 1: OVERVIEW OF THE IMPORTANCE OF SOIL FAUNA IN AGRO- ECOSYSTEMS AND THE FACTORS THAT INFLUENCE THEIR DIVERSITY…….1 a) Biotic component of soil………………………………………………………………….4 i) Spatial scales of biotic interactions……………………………………………5 ii) Soil biota (excluding higher plants)……………………………………………9 Bacteria……………………………………………………………………….…11 Fungi……………………………………………………………………………..11 Soil fauna…………………………………………..……………………………12 iii) Ecosystem services……………………………………………………………...23 Decomposition……………………………….………………………………...24 Nutrient cycling………………………………………………………………...24 Ecosystem engineering………………………….…………………………...25 b) Abiotic component of soil……………………………………………..………………...26 i) Soil types………………………………………………………………………..…26 Soil structure…………………………………………..………………….……26 Chemical composition…………………………………………………..……28 ii) Environmental influences………………………………………………………29 Climate (humidity and temperature)…………………………..……………29 c) Agricultural practices…………………………………………………………….………30 i) Crop and natural vegetation……………………………………………………31 ii) Physical / mechanical disturbances…………………………………………..33 Conventional tillage vs no-tillage systems………………………..………33 Controlled stubble-burning……………………………………………..……34 Field management……………………………………………………….…….35 iii) Pests and diseases………………………………………………..………..……36 iv) Chemical applications…………………………………………………...………38 d) Aim of the study……………………………………………………………………...……39 e) References…………………………………………………………………….……………40 iii CHAPTER 2: SAMPLING PROCEDURES AND DATA ANALYSIS…………….……57 a) Sampling procedure………………………………………………………………………57 i) Field sampling…………………………………………….………………………57 ii) Laboratory extraction, sorting and identification……………..……………59 Laboratory extraction…………………………………………………………59 Sorting during preliminary study (2011-2012)……………………………60 Sorting during primary study (2012-2014)…………...……………………61 Identification……………………………………………………………………62 iii) Trophic level analysis……………………………………………………………63 b) Statistical analysis……………………………………………………………..…………64 i) Shannon’s diversity and evenness index……………………………………64 ii) Bray-Curtis dissimilarity measure……………………………….……………66 c) References…………………………………………………………………………….……67 CHAPTER 3: STUDY SITES AND AGRICULTURAL APPLICATIONS…………..…69 a) Site descriptions and relevant observations…………………………………………69 i) Locality 1: Vaaldam farm………………………………………………….……70 ii) Locality 2: Koppieskraal farm…………………………………………………76 iii) Locality 3: Thornberry farm……………………………………………………79 iv) Locality 4: Paradys farm……………………………………………..…………83 v) Locality 5: Eureka farm…………………………………………………………87 vi) Locality 6: Klein Brittanje………………………………………………………94 vii) Agricultural disturbances………………………………………...……………100 b) References……………………………………………………………………………...…103 CHAPTER 4: SOIL MESOFAUNA RECORDED IN DIFFERENT AGRICULTURAL LANDSCAPES………………………………………………………………...…………………105 a) Environmental influences………………………………………………………………106 i) Soil organismal diversity in the porospheres of different plants………106 ii) Variation in soil organism diversity at different clay percentages….…111 iii) Diversity differences within a maize field on a topographical gradient……………………………………………………………………………119 b) Anthropogenic influences…………………………………………………………...…123 i) Influence of controlled stubble-burning and its alternative on mesofaunal diversity……………………………………………………………123 iv ii) Effect of mechanical disturbance in fields…………………………………131 iii) Mesofaunal diversity relative to conversion of natural veldt to maize field………………………………………………………………………………...133 iv) Soil organism diversity in fallow fields vs planted fields…………..……136 c) Conclusion…………………………………………………………………………..……141 d) References……………………………………………………………………..…………144 CHAPTER 5: POLLUTANTS, PESTICIDES AND AGRICULTURE – THE EFFECTS ON SOIL FAUNAL GROUPS AND HOW COLLEMBOLA FITS IN……147 a) Grassland pollution by a gold mine tailings dam……………………………….…148 i) Sampling points at spillage sites………………………………………….…149 ii) Sampling points as control (away from spillage sites) ………………….153 b) Pesticides in a grassland…………………………………………………………….…154 c) Collembolan incidence and observations……………………………………..……157 i) Koffiefontein district……………………………………………………………158 ii) Jacobsdal district…………………………………………………………….…162 iii) Bloemfontein district………………………………………………...…………167 iv) Odendaalsrus district…………………………………………..………………171 v) Bothaville district……………………………………………..…………………174 d) Conclusion…………………………………………………………………..……………178 e) References………………………………………………………………………………...180 CHAPTER 6: GENERAL CONCLUSION, RECOMMENDATIONS & FUTURE RESEARCH……………………………………………………………………………………….184 a) General conclusion……………………………………………………………………...184 b) Recommendations…………………………………………………………………….…188 c) Future research………………………………………………………………..…………189 i) Polluted sites………………………………………………………………….…189 ii) Pesticide application sites…………………………….………………………190 iii) Different fertilizer application methods……………………………..………190 iv) Sandstorms: Distribution due to ‘air borne’ topsoil………………..……191 v) Survey of South African Collembola……………………………………...…191 d) References…………………………………………………………………………...……192 ADDENDUM A……………………………………………………………………………………193 ADDENDUM B……………………………………………………………………………………208 v ABSTRACT Soil is a complex medium, comprised of both biotic and abiotic components. Interactions between these components are responsible for the beneficial services provided within different ecosystems. The biotic component, which is also referred to as the active role players in the soil, is responsible for these services. The incidence of these organisms is influenced by the abiotic factors, which act as filtering mechanisms that select for certain species to occur within certain areas. Considering an ever-increasing human population, these services could prove beneficial, since it could improve crop yields at minimal cost without exploiting the soil resource. Many farmers are now changing their farming methods to more sustainable and conservation focused practices to try and reduce the disruption of soil community structures and to optimize the complexity and resilience of these communities. Disturbances lower the complexity of soil communities and therefore limit the services that could be provided. This study focused on the fluctuations in diversity of selected role players within the soil medium due to the presence of certain agricultural practices and environmental changes. Sampling for this project was conducted at six localities in the Free State Province between 2011 and 2014. Three of the localities are located in the Nama Karoo Biome and the other three in the Grassland Biome. The farms Vaaldam, Koppieskraal, Thornberry and Klein Brittanje were selected due to the diversity of agricultural practices and management strategies applied. The rest of the localities were the Paradys Experimental Farm, which is the experimental farm of the University of the Free State, where a pesticide trial was conducted and the farm Eureka, which was exposed to pollutants from a goldmine tailings dam. The variation in events
Recommended publications
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Checklist of Springtails (Collembola) from the Republic of Moldova
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 149–160 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0011-x CHECKLIST OF SPRINGTAILS (COLLEMBOLA) FROM THE REPUBLIC OF MOLDOVA GALINA BUªMACHIU Abstract. The checklist of Collembola from the Republic of Moldova including 223 species is presented. The list is based on literature sources and personal collecting. Résumé. Ce travail présente la liste des 223 espèces de collemboles de la République de Moldova. Cette liste fut réalisée en utilisant des références littéraires et des collections personnelles. Key words: Collembola, checklist, Republic of Moldova. INTRODUCTION The records on Collembola from the Republic of Moldova started about 50 years ago with the first two species included by Martynova in “The key to insects of the European part of the USSR. Collembola” (1964). Some more information on species diversity of Collembola from the soil of Moldavian vineyards was included in Stegãrescu’s work (1967). During the last twenty years, this group has been studied more systematically, with more than 200 species recorded (Buºmachiu 2001, 2004, 2006 a, b, 2008). Since 2002, eleven species new to science were described from the Republic of Moldova by da Gama & Buºmachiu (2002, 2004); Buºmachiu & Deharveng (2008) and Buºmachiu & Weiner (2008). Until now, the faunistic data on Collembola from the Republic of Moldova have not been summarised in the form of a checklist. The present paper includes the complete list of Collembola from the Republic of Moldova using the modern nomenclature. Totally, 223 species are listed. Some problematic and dubious species, such as Pseudanurida clysmae Jackson, 1927, Onychiurus fimetarius (Linnaeus, 1758) and Orchesella divergens Handschin, 1929 recorded by Stegãrescu (1967) and Pseudosinella wahlgrei Börner, 1907, are not included in the list.
    [Show full text]
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • Folsomia Candida and the Results of a Ringtest
    Toxicity testing with the collembolans Folsomia fimetaria and Folsomia candida and the results of a ringtest P.H. Krogh DMU/AU, Denmark Department of Terrestrial Ecology With contributions from: Mónica João de Barros Amorim, Pilar Andrés, Gabor Bakonyi, Kristin Becker van Slooten, Xavier Domene, Ine Geujin, Nobuhiro Kaneko, Silvio Knäbe, Vladimír Kocí, Jan Lana, Thomas Moser, Juliska Princz, Maike Schaefer, Janeck J. Scott-Fordsmand, Hege Stubberud, Berndt-Michael Wilke August 2008 1 Contents 1 PREFACE 3 2 BIOLOGY AND ECOTOXICOLOGY OF F. FIMETARIA AND F. CANDIDA 4 2.1 INTRODUCTION TO F. FIMETARIA AND F. CANDIDA 4 2.2 COMPARISON OF THE TWO SPECIES 6 2.3 GENETIC VARIABILITY 7 2.4 ALTERNATIVE COLLEMBOLAN TEST SPECIES 8 2.5 DIFFERENCES IN SUSCEPTIBILITY OF THE TWO SPECIES 8 2.6 VARIABILITY IN REPRODUCTION RATES 8 3 TESTING RESULTS OBTAINED AT NERI, 1994 TO 1999 10 3.1 INTRODUCTION 10 3.2 PERFORMANCE 10 3.3 INFLUENCE OF SOIL TYPE 10 3.4 CONCLUSION 11 4 RINGTEST RESULTS 13 4.1 TEST GUIDELINE 13 4.2 PARTICIPANTS 13 4.3 MODEL CHEMICALS 14 4.4 RANGE FINDING 14 4.5 STATISTICAL ANALYSIS 14 4.6 EXPERIMENTAL DESIGN 15 4.7 TEST CONDITIONS 15 4.8 CONTROL MORTALITY 15 4.9 CONTROL REPRODUCTION 16 4.10 VARIABILITY OF TESTING RESULTS 17 4.11 CONCLUSION 18 5 SUMMARY AND CONCLUSIONS 27 6 ACKNOWLEDGEMENTS 29 7 REFERENCES 30 ANNEX 1 PARTICIPANTS 36 ANNEX 2 LABORATORY CODE 38 ANNEX 3 BIBLIOMETRIC STATISTICS 39 ANNEX 4 INTRALABORATORY VARIABILITY 40 ANNEX 5 CONTROL MORTALITY AND REPRODUCTION 42 ANNEX 6 DRAFT TEST GUIDELINE 44 2 1 Preface Collembolans have been used for ecotoxicological testing for about 4 decades now but they have not yet had the privilege to enter into the OECD test guideline programme.
    [Show full text]
  • Mites of the Family Parasitidae Oudemans, 1901 (Acari: Mesostigmata) from Japan: a New Species of Vulgarogamasus Tichomirov, 1969, and a Key to Japanese Species
    Zootaxa 4429 (2): 379–389 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4429.2.12 http://zoobank.org/urn:lsid:zoobank.org:pub:077BEC50-3983-414A-95CE-A5E5B4C44F6F Mites of the family Parasitidae Oudemans, 1901 (Acari: Mesostigmata) from Japan: a new species of Vulgarogamasus Tichomirov, 1969, and a key to Japanese species MOHAMED W. NEGM1,2,3,4 & TETSUO GOTOH1 1Laboratory of Applied Entomology & Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300–0393, Japan. ORCID: T. Gotoh http://orcid.org/0000-0001-9108-7065 2Department of Plant Protection, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt. [email protected], [email protected], ORCID: https://orcid.org/0000–0003–3479–0496 3Japan Society for the Promotion of Science, Chiyoda, Tokyo 102–0083, Japan. 4Corresponding author Abstract Vulgarogamasus edurus sp. nov. (Acari: Parasitidae) is described based on females, deutonymphs and males extracted from leaf litter and soil in Ami, Ibaraki Prefecture, Japan. Morphological differences between the new species and its closely related species, Vulgarogamasus fujisanus (Ishikawa, 1972), are recorded based on the examination of type mate- rials. Information about parasitid mites reported in Japanese literature is reviewed, and a key to species is provided. Key words: Parasitiformes, morphology, Parasitoidea, Japan, new species, Vulgarogamasus, taxonomy Introduction Mites of the family Parasitidae Oudemans, 1901 (Acari, Mesostigmata) are important predators in soil, feeding on microarthropods, collembolans and nematodes (Lindquist et al., 2009). The family comprises 35 genera and about 426 described species (Beaulieu et al., 2011).
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • With Special Emphasis on the Equatorial Oceanic Islands
    insects Article Synthesis of the Brazilian Poduromorpha (Collembola: Hexapoda) with Special Emphasis on the Equatorial Oceanic Islands Estevam C. A. de Lima 1,2,* , Maria Cleide de Mendonça 1, Gabriel Costa Queiroz 1 , Tatiana Cristina da Silveira 1 and Douglas Zeppelini 2 1 Laboratório de Apterygotologia, Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; [email protected] (M.C.d.M.); [email protected] (G.C.Q.); [email protected] (T.C.d.S.) 2 Laboratório de Sistemática de Collembola e Conservação—Coleção de Referência de Fauna de Solo—CCBSA—Universidade Estadual da Paraíba Campus V, João Pessoa 58070-450, Brazil; [email protected] * Correspondence: [email protected] Simple Summary: Endemic Collembola species are bioindicators of environmental quality since native species abundance is particularly sensitive to environmental disturbances. Oceanic island biota generally present high percentages of endemic species, and the vulnerability of these species is higher than those of the continents. The objective of this work was to carry out a survey of the Collembola species of the order Poduromorpha in the Brazilian oceanic islands and synthesize a distribution list of this order for Brazil. Our results reveal four new species of Collembola Poduromorpha for Brazilian oceanic islands that may be useful for the conservation strategies of these island regions and a contributor to the knowledge of the order in Brazil. Citation: de Lima, E.C.A.; de Mendonça, M.C.; Queiroz, G.C.; da Silveira, T.C.; Abstract: We present new species and records of Poduromorpha for the Brazilian oceanic islands and Zeppelini, D.
    [Show full text]
  • First Record of the Genus Spinaethorax Papáč & Palacios-Vargas, 2016 (Collembola, Neelipleona, Neelidae) in Asia, with a New Species from a Vietnamese Cave
    European Journal of Taxonomy 363: 1–20 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.363 www.europeanjournaloftaxonomy.eu 2017 · Schneider C. & Deharveng L. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:5720CF48-37A8-4814-93F3-192493488435 First record of the genus Spinaethorax Papáč & Palacios-Vargas, 2016 (Collembola, Neelipleona, Neelidae) in Asia, with a new species from a Vietnamese cave Clément SCHNEIDER 1,* & Louis DEHARVENG 2 1 Mécanismes Adaptatifs & Evolution, MECADEV - UMR 7179 - CNRS, MNHN, Dpt Systematics & Evolution, Muséum national d'Histoire naturelle, CP50 Entomology, 45 rue Buffon, 75005 Paris, France. 2 Institut de Systématique, Evolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France. *Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:C0BEC337-0235-4E4B-8EFB-134B3EED1B90 2 urn:lsid:zoobank.org:author:D8F5C679-C30C-442C-8621-D3B8EDB17EF7 Abstract. A new species of the genus Spinaethorax Papáč & Palacios-Vargas, 2016, recently erected for two cave species of Mexico, is described from a Vietnamese cave. It differs from the Mexican species most noticeably by the dorsal chaetotaxy of the head (number and morphology of chaetae), the shape of S-chaetae on the third antennomere, the dorsal chaetotaxy of the abdomen and the chaetotaxy of the dens. The pattern of special τ-chaetae is described for the first time in the genus. The affinities between Spinaethorax and the other genera of Neelipleona are discussed.
    [Show full text]
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • Manual De Identificação De Invertebrados Cavernícolas
    MINISTÉRIO DO MEIO AMIENTE INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS DIRETORIA DE ECOSSISTEMAS CENTRO NACIONAL DE ESTUDO, PROTEÇÃO E MANEJO DE CAVERNAS SCEN Av. L4 Norte, Ed Sede do CECAV, CEP.: 70818-900 Telefones: (61) 3316.1175/3316.1572 FAX.: (61) 3223.6750 Guia geral de identificação de invertebrados encontrados em cavernas no Brasil Produto 6 CONSULTOR: Franciane Jordão da Silva CONTRATO Nº 2006/000347 TERMO DE REFERÊNCIA Nº 119708 Novembro de 2007 MINISTÉRIO DO MEIO AMIENTE INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS DIRETORIA DE ECOSSISTEMAS CENTRO NACIONAL DE ESTUDO, PROTEÇÃO E MANEJO DE CAVERNAS SCEN Av. L4 Norte, Ed Sede do CECAV, CEP.: 70818-900 Telefones: (61) 3316.1175/3316.1572 FAX.: (61) 3223.6750 1. Apresentação O presente trabalho traz informações a respeito dos animais invertebrados, com destaque para aqueles que habitam o ambiente cavernícola. Sem qualquer pretensão de esgotar um assunto tão vasto, um dos objetivos principais deste guia básico de identificação é apresentar e caracterizar esse grande grupo taxonômico de maneira didática e objetiva. Este guia de identificação foi elaborado para auxiliar os técnicos e profissionais de várias áreas de conhecimento nos trabalhos de campo e nas vistorias técnicas realizadas pelo Ibama. É preciso esclarecer que este guia não pretende formar “especialista”, mesmo porque para tanto seriam necessários muitos anos de dedicação e aprendizado contínuo. Longe desse intuito, pretende- se apenas que este trabalho sirva para despertar o interesse quanto à conservação dos invertebrados de cavernas (meio hipógeo) e também daqueles que vivem no ambiente externo (meio epígeo).
    [Show full text]
  • A Review of Phylogenetic Hypotheses Regarding Aphodiinae (Coleoptera; Scarabaeidae)
    STATE OF KNOWLEDGE OF DUNG BEETLE PHYLOGENY - a review of phylogenetic hypotheses regarding Aphodiinae (Coleoptera; Scarabaeidae) Mattias Forshage 2002 Examensarbete i biologi 20 p, Ht 2002 Department of Systematic Zoology, Evolutionary Biology Center, Uppsala University Supervisor Fredrik Ronquist Abstract: As a preparation for proper phylogenetic analysis of groups within the coprophagous clade of Scarabaeidae, an overview is presented of all the proposed suprageneric taxa in Aphodiinae. The current knowledge of the affiliations of each group is discussed based on available information on their morphology, biology, biogeography and paleontology, as well as their classification history. With this as a background an attempt is made to estimate the validity of each taxon from a cladistic perspective, suggest possibilities and point out the most important questions for further research in clarifying the phylogeny of the group. The introductory part A) is not a scientific paper but an introduction into the subject intended for the seminar along with a polemic against a fraction of the presently most active workers in the field: Dellacasa, Bordat and Dellacasa. The main part B) is the discussion of all proposed suprageneric taxa in the subfamily from a cladistic viewpoint. The current classification is found to be quite messy and unfortunately a large part of the many recent attempts to revise higher-level classification within the group do not seem to be improvements from a phylogenetic viewpoint. Most recently proposed tribes (as well as
    [Show full text]