Apollonian Circle Packings: Number Theory II. Spherical and Hyperbolic Packings

Total Page:16

File Type:pdf, Size:1020Kb

Apollonian Circle Packings: Number Theory II. Spherical and Hyperbolic Packings Apollonian Circle Packings: Number Theory II. Spherical and Hyperbolic Packings Nicholas Eriksson University of California at Berkeley Berkeley, CA 94720 Jeffrey C. Lagarias University of Michigan Ann Arbor, MI 48109 (February 1, 2005) ABSTRACT Apollonian circle packings arise by repeatedly filling the interstices between mutually tan- gent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apol- lonian circle packing. There are infinitely many different integral packings; these were studied in the paper [8]. Integral circle packings also exist in spherical and hyperbolic space, provided a suitable definition of curvature is used (see [10]) and again there are an infinite number of dif- ferent integral packings. This paper studies number-theoretic properties of such packings. This amounts to studying the orbits of a particular subgroup of the group of integral automorphs A of the indefinite quaternary quadratic form Q (w,x,y,z) = 2(w2+x2+y2+z2) (w+x+y+z)2. D − This subgroup, called the Apollonian group, acts on integer solutions QD(w,x,y,z)= k. This paper gives a reduction theory for orbits of acting on integer solutions to Q (w,x,y,z)= k A D valid for all integer k. It also classifies orbits for all k 0 (mod 4) in terms of an extra param- ≡ eter n and an auxiliary class group (depending on n and k), and studies congruence conditions on integers in a given orbit. Keywords: Circle packings, Apollonian circles, Diophantine equations, Lorentz group AMS Subject Classification: 11H55 1. Introduction A Descartes configuration is a set of four mutually touching circles with distinct tangents. A (Euclidean) Apollonian circle packing in the plane is constructed starting from a Descartes configuration by recursively adding circles tangent to three of the circles already constructed in the packing; see [10], [5], [6], and Figure 1. Apollonian packings can be completely described by the set of Descartes configurations they contain. The curvatures (a, b, c, d) of the circles in a Descartes configuration satisfy an algebraic relation called the Descartes circle theorem. Using the Descartes quadratic form Q (a,b,c,d) := 2(a2 + b2 + c2 + d2) (a + b + c + d)2, (1.1) D − 182 182 114 146 146 114 86 86 131 62 62 131 186 42 42 186 150 75 75 150 26 143 143 26 171 171 90 90 87 87 194 194 35 182 182 35 107 66 66 107 158 158 111 14 14 111 122 122 131 131 47 47 147 147 98 98 98 98 167 167 170 59 59 170 191 191 -1 195 30 30 195 74 74 138 138 95 95 194 194 194 194 6 119 119 6 62 62 179 179 170 170 186 186 110 110 110 110 174 174 54 54 150 150 131 167 11 39 83 143 179 111 59 23 23 59 111 179 143 83 39 11 167 131 162 3 162 98 98 183 183 147 50 50 147 182 87 87 182 134 134 134 134 63 191 191 63 179 179 18 155 155 18 86 86 95 95 27 167 167 27 126 114 114 126 71 71 38 135 38 110 110 38 135 38 174 174 183 183 51 107 107 51 66 15 66 83 83 102 102 102 102 123 123 146 35 146 171 171 198 198 198 198 63 99 143 195 195 143 99 63 198 198 198 198 171 171 146 146 123 35 123 102 102 102 102 83 83 66 2 2 66 51 51 183 107 107 183 174 15 174 38 135 38 110 110 38 135 38 71 71 126 114 114 126 167 167 27 95 95 27 86 86 155 155 179 179 191 191 63 134 134 134 134 63 18 182 87 87 182 18 147 147 183 50 50 183 98 162 162 98 167 179 179 167 131 83 143 111 59 150 150 59 111 143 83 131 54 39 39 54 174 23 23 174 110 110 110 110 186 186 170 170 179 179 11 62 62 11 119 119 194 194 194 194 95 95 138 138 74 74 195 30 30 195 191 191 170 170 59 167 167 59 98 98 98 98 147 6 6 147 47 47 131 131 122 122 111 111 158 158 107 3 107 66 66 182 182 194 35 35 194 87 87 90 14 14 90 171 171 143 143 150 75 26 26 75 150 186 42 42 186 131 62 62 131 86 114 114 86 146 182 182 146 Figure 1: The Euclidean Apollonian circle packing ( 1,2,2,3) − the Descartes circle theorem states that QD(a,b,c,d) = 0. (1.2) Descartes originally stated this relation in another algebraic form; see [10]. In order to have this formula work in all cases, the curvatures of the circles in a Descartes configuration must be given proper signs, as specified in [10] and [5]. The form QD is an integral quadratic form in four variables, and the equation (1.2) has many integer solutions. If the initial Descartes configuration generating a (Euclidean) Apollonian packing has all four circles with integral curvatures, then it turns out that all the circles in the packing have integer curvatures. This integer structure was studied in the first paper in this series [8] using the action of a particular discrete subgroup of automorphisms of the Descartes quadratic form, which was there termed the Apollonian group . It is a group of integer A matrices, with generators explicitly given in 3. The Descartes configurations in a (Euclidean) § Apollonian packing are described by an orbit of the Apollonian group. That is, the Apollonian group acts on the column vector of curvatures of the initial Descartes configuration, and generates the curvature vectors of all Descartes configurations in the packing. This fact explains the preservation of integrality of the curvatures. The Apollonian group and its relevance for Apollonian packings was already noted in 1992 by S¨oderberg [19]. The first paper in this series [8] studied Diophantine properties of the curvatures in Eu- clidean integer Apollonian circle packings, based on the Apollonian group action. In [10] it was observed that there exist notions of integer Apollonian packings in spherical and hyperbolic geometry. These are based on analogues of the Descartes equation valid in these geometries, as 2 follows. In hyperbolic space, if the “curvature” of a circle with hyperbolic radius r is taken to be coth(r), then the modified Descartes equation for the “curvatures” of circles in a Descartes configuration is QD(a,b,c,d) = 4. (1.3) Similarly, in spherical space, if the “curvature” of a circle with spherical radius r is defined to be cot(r), then the modified Descartes equation is Q (a,b,c,d)= 4. (1.4) D − There exist integral Apollonian packings in both these geometries, in the sense that the (spher- ical or hyperbolic) “curvatures” of all circles in the packing are integral; see the examples in Figures 2 and 3 below. Again, the vectors of “curvatures” of all Descartes configurations in such a packing form an orbit under the action of the Apollonian group. The purpose of this paper is to study Diophantine properties of the orbits of the Apollonian group acting on the integer solutions to the Diophantine equation A QD(a,b,c,d)= k, (1.5) where k is a fixed integer. Integer solutions exist for k 0 or 3 (mod 4), and our results ≡ on reduction theory in 3 are proved in this generality. Our other results are established § under the more restrictive condition k 0 (mod 4), where we will always write k = 4m. ≡ These results cover the motivating cases k = 4 corresponding to spherical and hyperbolic ± Apollonian packings, as well as the Euclidean case k = 0. We note that the Apollonian group is a subgroup of infinite index in the group Aut(Q , Z) of all integer automorphs of the A D Descartes quadratic form QD. As a consequence, the integral solutions of QD(a,b,c,d) = k (for k 0 or 3 ( mod 4)) fall in an infinite number of orbits under the action of . In contrast, ≡ A these same integral points fall in a finite number of orbits under the full Aut(QD, Z)-action. In 2, we study the distribution of integer solutions to the equation Q (a,b,c,d) = 4m, § D determining asymptotics for the number of such solutions to these equations of size below a given bound. These asymptotics are obtained via a bijective correspondence between integral representations of integers 4m by the Descartes form and representations of integers 2m by the Lorentzian form Q (W,X,Y,Z) = W 2 + X2 + Y 2 + Z2, and then applying results of L − Ratcliffe and Tschantz [17] on integer solutions to the Lorentzian form. In 3, we describe the Apollonian group, and apply it to give a reduction algorithm for § quadruples v = (a,b,c,d) satisfying QD(v) = k in a fixed orbit of the Apollonian group, starting from an initial integer quadruple satisfying QD(v) = k. This reduction algorithm differs in appearance from that given in part I [8, Sect. 3], which treated the case k = 0; however we show its steps coincide with those of the earlier algorithm when k = 0. A quadruple obtained at the end of this algorithm is called a reduced quadruple.
Recommended publications
  • Configurations on Centers of Bankoff Circles 11
    CONFIGURATIONS ON CENTERS OF BANKOFF CIRCLES ZVONKO CERINˇ Abstract. We study configurations built from centers of Bankoff circles of arbelos erected on sides of a given triangle or on sides of various related triangles. 1. Introduction For points X and Y in the plane and a positive real number λ, let Z be the point on the segment XY such that XZ : ZY = λ and let ζ = ζ(X; Y; λ) be the figure formed by three mj utuallyj j tangenj t semicircles σ, σ1, and σ2 on the same side of segments XY , XZ, and ZY respectively. Let S, S1, S2 be centers of σ, σ1, σ2. Let W denote the intersection of σ with the perpendicular to XY at the point Z. The figure ζ is called the arbelos or the shoemaker's knife (see Fig. 1). σ σ1 σ2 PSfrag replacements X S1 S Z S2 Y XZ Figure 1. The arbelos ζ = ζ(X; Y; λ), where λ = jZY j . j j It has been the subject of studies since Greek times when Archimedes proved the existence of the circles !1 = !1(ζ) and !2 = !2(ζ) of equal radius such that !1 touches σ, σ1, and ZW while !2 touches σ, σ2, and ZW (see Fig. 2). 1991 Mathematics Subject Classification. Primary 51N20, 51M04, Secondary 14A25, 14Q05. Key words and phrases. arbelos, Bankoff circle, triangle, central point, Brocard triangle, homologic. 1 2 ZVONKO CERINˇ σ W !1 σ1 !2 W1 PSfrag replacements W2 σ2 X S1 S Z S2 Y Figure 2. The Archimedean circles !1 and !2 together.
    [Show full text]
  • Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets
    Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets Indubala I Satija Department of Physics, George Mason University , Fairfax, VA 22030, USA (Dated: April 28, 2021) Abstract We describe various kaleidoscopic and self-similar aspects of the integral Apollonian gaskets - fractals consisting of close packing of circles with integer curvatures. Self-similar recursive structure of the whole gasket is shown to be encoded in transformations that forms the modular group SL(2;Z). The asymptotic scalings of curvatures of the circles are given by a special set of quadratic irrationals with continued fraction [n + 1 : 1; n] - that is a set of irrationals with period-2 continued fraction consisting of 1 and another integer n. Belonging to the class n = 2, there exists a nested set of self-similar kaleidoscopic patterns that exhibit three-fold symmetry. Furthermore, the even n hierarchy is found to mimic the recursive structure of the tree that generates all Pythagorean triplets arXiv:2104.13198v1 [math.GM] 21 Apr 2021 1 Integral Apollonian gaskets(IAG)[1] such as those shown in figure (1) consist of close packing of circles of integer curvatures (reciprocal of the radii), where every circle is tangent to three others. These are fractals where the whole gasket is like a kaleidoscope reflected again and again through an infinite collection of curved mirrors that encodes fascinating geometrical and number theoretical concepts[2]. The central themes of this paper are the kaleidoscopic and self-similar recursive properties described within the framework of Mobius¨ transformations that maps circles to circles[3]. FIG. 1: Integral Apollonian gaskets.
    [Show full text]
  • Strophoids, a Family of Cubic Curves with Remarkable Properties
    Hellmuth STACHEL STROPHOIDS, A FAMILY OF CUBIC CURVES WITH REMARKABLE PROPERTIES Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational curves are characterized by a series or properties, and they show up as locus of points at various geometric problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories have instantaneously a stationary curvature. Moreover, they are projections of the spherical and hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of points for which two of the three cevians have the same lengths. On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. Tangents at associated points intersect at a point which again lies on the cubic. For all pairs (P, P’) of associated points, the midpoints lie on a line through the node N.
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]
  • Volume 6 (2006) 1–16
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 6 2006 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Khoa Lu Nguyen and Juan Carlos Salazar, On the mixtilinear incircles and excircles,1 Juan Rodr´ıguez, Paula Manuel and Paulo Semi˜ao, A conic associated with the Euler line,17 Charles Thas, A note on the Droz-Farny theorem,25 Paris Pamfilos, The cyclic complex of a cyclic quadrilateral,29 Bernard Gibert, Isocubics with concurrent normals,47 Mowaffaq Hajja and Margarita Spirova, A characterization of the centroid using June Lester’s shape function,53 Christopher J.
    [Show full text]
  • Apollonian Circles Patterns in Musical Scales Posing Problems Triangles
    Summer/Autumn 2017 A Problem Fit for a PrincessApollonian Apollonian Circles Gaskets Polygons and PatternsPrejudice in Exploring Musical Social Scales Issues Daydreams in MusicPosing Patterns Problems in Scales ProblemTriangles, Posing Squares, Empowering & Segregation Participants A NOTE FROM AIM #playwithmath Dear Math Teachers’ Circle Network, In this issue of the MTCircular, we hope you find some fun interdisciplinary math problems to try with your Summer is exciting for us, because MTC immersion MTCs. In “A Problem Fit for a Princess,” Chris Goff workshops are happening all over the country. We like traces the 2000-year history of a fractal that inspired his seeing the updates in real time, on Twitter. Your enthu- MTC’s logo. In “Polygons and Prejudice,” Anne Ho and siasm for all things math and problem solving is conta- Tara Craig use a mathematical frame to guide a con- gious! versation about social issues. In “Daydreams in Music,” Jeremy Aikin and Cory Johnson share a math session Here are some recent tweets we enjoyed from MTC im- motivated by patterns in musical scales. And for those mersion workshops in Cleveland, OH; Greeley, CO; and of you looking for ways to further engage your MTC San Jose, CA, respectively: participants’ mathematical thinking, Chris Bolognese and Mike Steward’s “Using Problem Posing to Empow- What happens when you cooperate in Blokus? er MTC Participants” will provide plenty of food for Try and create designs with rotational symmetry. thought. #toocool #jointhemath – @CrookedRiverMTC — Have MnMs, have combinatorial games Helping regions and states build networks of MTCs @NoCOMTC – @PaulAZeitz continues to be our biggest priority nationally.
    [Show full text]
  • Efficiently Constructing Tangent Circles
    Mathematics Magazine ISSN: 0025-570X (Print) 1930-0980 (Online) Journal homepage: https://www.tandfonline.com/loi/umma20 Efficiently Constructing Tangent Circles Arthur Baragar & Alex Kontorovich To cite this article: Arthur Baragar & Alex Kontorovich (2020) Efficiently Constructing Tangent Circles, Mathematics Magazine, 93:1, 27-32, DOI: 10.1080/0025570X.2020.1682447 To link to this article: https://doi.org/10.1080/0025570X.2020.1682447 Published online: 22 Jan 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umma20 VOL. 93, NO. 1, FEBRUARY 2020 27 Efficiently Constructing Tangent Circles ARTHUR BARAGAR University of Nevada Las Vegas Las Vegas, NV 89154 [email protected] ALEX KONTOROVICH Rutgers University New Brunswick, NJ 08854 [email protected] The Greek geometers of antiquity devised a game—we might call it geometrical solitaire—which ...mustsurelystand at the very top of any list of games to be played alone. Over the ages it has attracted hosts of players, and though now well over 2000 years old, it seems not to have lost any of its singular charm or appeal. –HowardEves The Problem of Apollonius is to construct a circle tangent to three given ones in a plane. The three circles may also be limits of circles, that is, points or lines; and “con- struct” means using a straightedge and compass. Apollonius’s own solution did not survive antiquity [8], and we only know of its existence through a “mathscinet review” by Pappus half a millennium later.
    [Show full text]
  • MYSTERIES of the EQUILATERAL TRIANGLE, First Published 2010
    MYSTERIES OF THE EQUILATERAL TRIANGLE Brian J. McCartin Applied Mathematics Kettering University HIKARI LT D HIKARI LTD Hikari Ltd is a publisher of international scientific journals and books. www.m-hikari.com Brian J. McCartin, MYSTERIES OF THE EQUILATERAL TRIANGLE, First published 2010. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the publisher Hikari Ltd. ISBN 978-954-91999-5-6 Copyright c 2010 by Brian J. McCartin Typeset using LATEX. Mathematics Subject Classification: 00A08, 00A09, 00A69, 01A05, 01A70, 51M04, 97U40 Keywords: equilateral triangle, history of mathematics, mathematical bi- ography, recreational mathematics, mathematics competitions, applied math- ematics Published by Hikari Ltd Dedicated to our beloved Beta Katzenteufel for completing our equilateral triangle. Euclid and the Equilateral Triangle (Elements: Book I, Proposition 1) Preface v PREFACE Welcome to Mysteries of the Equilateral Triangle (MOTET), my collection of equilateral triangular arcana. While at first sight this might seem an id- iosyncratic choice of subject matter for such a detailed and elaborate study, a moment’s reflection reveals the worthiness of its selection. Human beings, “being as they be”, tend to take for granted some of their greatest discoveries (witness the wheel, fire, language, music,...). In Mathe- matics, the once flourishing topic of Triangle Geometry has turned fallow and fallen out of vogue (although Phil Davis offers us hope that it may be resusci- tated by The Computer [70]). A regrettable casualty of this general decline in prominence has been the Equilateral Triangle. Yet, the facts remain that Mathematics resides at the very core of human civilization, Geometry lies at the structural heart of Mathematics and the Equilateral Triangle provides one of the marble pillars of Geometry.
    [Show full text]
  • Efficiently Constructing Tangent Circles 3
    EFFICIENTLY CONSTRUCTING TANGENT CIRCLES ARTHUR BARAGAR AND ALEX KONTOROVICH 1. Introduction The famous Problem of Apollonius is to construct a circle tangent to three given ones in a plane. The three circles may also be limits of circles, that is, points or lines, and “construct” of course refers to straightedge and compass. In this note, we consider the problem of constructing tangent circles from the point of view of efficiency. By this we mean using as few moves as possible, where a move is the act of drawing a line or circle. (Points are free as they do not harm the straightedge or compass, and all lines are considered endless, so there is no cost to “extending” a line segment.) Our goal is to present, in what we believe is the most efficient way possible, a construction of four mutually tangent circles. (Five circles of course cannot be mutually tangent in the plane, for their tangency graph, the complete graph K5, is non-planar.) We first present our construction before giving some remarks comparing it to others we found in the literature. 2. Baby Cases: One and Two Circles Constructing one circle obviously costs one move: let A and Z be any distinct points in the plane and draw the circle OA with center A and passing through Z. Given OA, constructing a second circle tangent to it costs two more moves: draw a line through AZ, and put an arbitrary point B on this line (say, outside OA). Now draw the circle OB with center B and passing through Z; then OA and OB are obviously tangent at Z, see Figure 1.
    [Show full text]
  • David Benko, Western Kentucky University
    Abstracts of Talks for the 2008 KYMAA Annual Meeting Western Kentucky University, Bowling Green March 28 - 29, 2008 Note: Undergraduate student speakers are indicated by (u), graduate student speakers are indicated by (g), and faculty speakers are indicated by (f). Contributed Talks: Robert Amundson, Murray State University (u) The Lie Group GL( n, Q ) and Lie Algebra gl( n, Q) The Lie algebra gl( n, Q) is something that has not been investigated before. This presentation will give a general overview of the Lie group GL( n, Q ) and the Lie algebra gl( n, Q) and the motivation for finding the Lie group and Lie Algebra. David Benko, Western Kentucky University (f) The Pros and Cons of Ebay We will present the best buying and selling strategies on Ebay - from a mathematical point of view. We will also propose a better way to rate sellers on Ebay. Disclaimer: I do not own shares of Ebay... Timothy M. Brauch, University of Louisville (g) Counting Perfect Matchings This presentation will show an application of combinatorial nullstellensatz for detecting perfect matchings in bipartite graphs. An elegant circular lock idea will be explored to show some beautiful relationships of graph theory with other branches of mathematics. Some known results as well as open problems will be presented. This is joint work with André E. Kézdy (University of Louisville) and Hunter S. Snevily (University of Idaho). Knowledge of one semester of undergraduate linear algebra will be assumed. Woody Burchett, Georgetown College (u) Thinking Inside the Box: Geometric Interpretations of Quadratic Problems in BM 13901 In my talk I will examine some quadratic problems from the Babylonian Mathematical tablet BM 13901.
    [Show full text]
  • Generalized Apollonian Circles
    Generalized Apollonian Circles Paul Yiu Abstract. Given a triangle, we construct a one-parameter family of triads of coaxal circles orthogonal to circumcircle and mutually tangent to each other at a point on the circumcircle. This is a generalization of the classical Apollonian circles which intersect at the two isodynamic points. The classical Apollonian circles of a triangle are the three circles each with di- ameter the segment between the feet of the two bisectors of an angle on its opposite sides. It is well known that the centers of the three circles are the intercepts of the Lemoine axis on the sidelines, 1 and that they have two points in common, the iso- dynamic points ([1, p.218]). The feet of the internal angle bisectors are the traces of the incenter. Those of the external angle bisectors are the intercepts of the tri- linear polar of the incenter. More generally, given a point P , with traces X, Y , Z on the sidelines BC, CA, AB of triangle ABC, the harmonic conjugates of X in BC, Y in CA, Z in AB are the intercepts X, Y , Z of the trilinear polar of P on these sidelines. The circles with diameters XX, YY, ZZ are the Apollonian cir- cles associated with P . The isodynamic points are the common points of the triad of Apollonian circles associated with the incenter. In this note we characterize the points P for which the three Apollonian circles are mutually tangent to each other, and provide an elegant euclidean construction for such circles. We work with barycentric coordinates with respect to triangle ABC, and their homogenization.
    [Show full text]
  • Stefanie Ursula Eminger Phd Thesis
    CARL FRIEDRICH GEISER AND FERDINAND RUDIO: THE MEN BEHIND THE FIRST INTERNATIONAL CONGRESS OF MATHEMATICIANS Stefanie Ursula Eminger A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6536 This item is protected by original copyright Carl Friedrich Geiser and Ferdinand Rudio: The Men Behind the First International Congress of Mathematicians Stefanie Ursula Eminger This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 Thesis Declaration 1. Candidate’s declarations: I, Stefanie Eminger, hereby certify that this thesis, which is approximately 78,500 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2010 and as a candidate for the degree of PhD in September 2010; the higher study for which this is a record was carried out in the University of St Andrews between 2010 and 2014. Date ……………… Signature of candidate …………………………………… 2. Supervisor’s declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]