The Role of the Macrophage in Wound Repair a Study with Hydrocortisone and Antinwcrophage Serum

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Macrophage in Wound Repair a Study with Hydrocortisone and Antinwcrophage Serum The Role of the Macrophage in Wound Repair A Study with Hydrocortisone and Antinwcrophage Serum S. J. Leibovich, PhD and Russell Ross, PhD The role of the monocyte/macrophage in wound repair has been investigated by studying the healing process in wounds depleted of this cell and/or its phagocytic activity. Hydrocorfisone acetate (0.6 mg/g body weight) administered as a sub- cutaneous depot was used to induce a prolonged monocytopenia in guinea pigs, and antimacrophage serum (AMS) was used for local elimination of tissue macrophages. In vitro, in the presence of complement, macrophages are rapidly lysed and killed by AMS. In the absnce of complement, AMS is not cytotoxic but potently inhibits adherence to and phagocytosis of opsonized erydtcytes by macrophages. AMS titers were obtained by observation of adherence and phago- cytosis of opsonized erythrocytes in serial dilutions of AMS. Six groups of animals were studied: a) untreated animals, b) animals receiving daily subcutaneous injections of normal rabbit serum (NRS) around each wound, c) animals receiving daily subcutaneous AMS around each wound, d) animals receiving systemic hydro- cortisone, e) animals receiving systemic hydrocortisone and daily injections of NBS around each wound, and f) animals receiving systemic hydrocortisone and daily AMS around each wound. Wounds consisted of a series of six linear incisions in the dorsal skin. Subcutaneous AMS alone had no effect on the number of circu- lating monocytes, nor was there any observable effect on the number or the phagocytic ability of wound macrophages. Fibrosis in these wounds was unaffected. Systemic hydrocortisone inducd a prolonged monocytopenia. The macrophage level in the wounds of these monocytopenic animals was reduced to approximately one-third that of controls; the phagocytic activity of the monocytes/macrophages that did appear in these wounds was, however, smilar to that of controls. Some inhibition of wound debridment was observed in these wounds, but fibrosis was virtually unaffected. Collagen synthesis, as judged morphometrically, was similar to that of control wounds at all stages of repair. Conjoint systemic hydrocortisone and subcutaneous AMS around each wound resulted in the almost complete dis- appearance of macrophages from the wounds. Wound fibrin levels were elevated, and clearance of fibrin, neutrophils, erythrocytes and other miscellaneous debris from these wounds was delayed. Fibroblasts, which in control wounds first appear by 3 days postwounding and reach maximal levels by day 5, did not appear in these wounds until day 5, and their subsequent rate of proliferation was slower than that of controls. Seven and 10 day wounds appeared immature both in ter of the degree of debridement, and extent of fibrosis. These studies indicate that, in the repair process, the principle cell type responsible for wound debridement is the macrophage. In addition, the macrophage may be required to stimulate fibroblast proliferation in some as yet unidentified manner. (Am J Pathol 78:71- 100, 1975). From the Department of Pathology, University of Washington School of Medicine, Seattle, Washington. Supported in part by Grant ANM-13970 from the US Public Health Service. Accepted for publication September 10, 1974. Address reprint requests to Dr. Russell Ross, Department of Pathology, University of Washington, School of Medicine, Seattle, WA 98195. 71 72 LEIBOVICH AND ROSS American Journal of Pathology THE INFLAMMATORY RESPONSE resulting from tissue injury after wounding is characterized by a relatively rapid accumulation of numerous polymorphonuclear neutrophilic leukocytes and macrophages at the site of injury.'-3 While both of these cell types begin to emigrate from the blood vessels adjacent to the wound simultaneously, the neutrophils reach a maximal level in the wound by the first 2 days and then decrease in number, while macrophages reach maximal levels somewhat later, after approximately 3 days, by which time they are the principle phagocytic cells within the wound. Subsequently, im- mature fibroblasts, newly formed collagen fibrils and numerous capil- laries appear within the wounds.1-3 While the general sequence of events which takes place during wound repair has been well characterized, the relationships between each of the various cellular and humoral components of the inflammatory response, and their relationship to the stimulation of fibroblast pro- liferation and collagen formation are not well understood. A recent investigation from this laboratory was concerned with the role played by the neutrophil in wound repair.45 Using antineutrophil serum to induce a neutropenia in guinea pigs, it was possible to study the healing process in the absence of these cells. In the absence of gross infection, repair in the neutropenic animals proceeded in a manner identical to that in normal animals.5 It was concluded that the presence of neutrophils in the wounds, although critical in the presence of infec- tion, was not an essential antecedent to fibrogenesis, as had been sug- gested by previous workers.6-8 Also, the presence of neutrophils was not necessary to stimulate the migration of monocytes into the wounds. This study is concerned with the role played by the monocyte/ macrophage in wound repair. Our approach was to attempt to elimi- nate the macrophage from healing wounds, and to study the changes in the course of wound repair resulting from either depletion of these cells and/or impairment of their ability to be phagocytic. Materials and Methods Experimental Animals Rockefeller strain guinea pigs were used both as the source of macrophages for the preparation of AMS, and for the studies of wound repair. Preparation of Antimacrophage Serum Peritoneal exudates were obtained from 400- to 500-g guinea pigs 4 to 5 days after intraperitoneal injection of 10 ml sterile mineral oil (Invenex Muri-Lube "Heavy"). Animals were killed by ether inhalation, and 50 ml sterile isotonic phosphate-buffered saline (PBS) (containing heparin, 1000 USP units/5 ml) was injected into the peritoneal cavity. Following gentle kneading, the cell-rich Vol. 78, No. 1 MACROPHAGES AND WOUND REPAIR 73 January 1975 fluid was removed. Differential cell counts were performed on Wright's-Giemsa- stained smears of the cell suspension. The exudates generally contained better than 95% macrophages, with small numbers of lymphocytes, neutrophils, erythro- cytes and occasional mesothelial cells. The cell suspension was centrifuged at 100 g for 5 minutes and then washed three times with PBS. The cells were counted and finally suspended in Hanks' solution at a concentration of 2 x 108 cells/mL Three New Zealand strain adult male rabbits were injected intraveneously via the marginal ear vein with 2 ml of the macrphage cell-suspension. Two weeks later the rabbits were given a similar injection with an equal number of cells. One week after the second injection, the rabbits were exsanguinated by cardiac puncture, and serum prepared from the whole blood. The sera from the 3 animals were pooled and heat inactivated at 56 C for 30 minutes. After titration and absorption as descnbed below, the AMS was sterilized by filtration and stored at -20 C until used. Normal rabbit serum (NRS) for control experiments was collected from un- treated rabbits from the same stock used for AMS preparation. Control serum was processed in an identical fashion to that of the AMS. Intravenous injection of macrophages suspended in Hanks' solution provided antisera with improved titers of AMS having less crs reactivity with other cell types than did other methods of raising the antibody, such as subcutaneous injection with Freund's adjuvant. tration of AntiSmophg m It has been demonstrated previously that AMS inhibits phagocytosis of opson- ized erythrocytes by macrophages in vitro."'12 We have utilized this property as the basis of an assay for AMS activity. 'Macrophages were prepared from mineral-oil-stimulated peritoneal exudates; 1.2 x 106 cells were cultured in each of several small petri dishes (Falcon, 3 cm) using Waymouth's medium containing 10% fetal calf serum. A square glass cover slip was placed in each dish prior to addition of the macrophages. The ceHls rapidly adhere to the cover slip. After 1 hour, nonadherent cells were removed and replaced with fresh medium. Duplicate dishes containing several dilutions of AMS from 1:10 to 1:1280 were prepared. Control dishes with serially diluted NRS were also prepared. Sheep red blood ceHls (RBC) were sedimented at lOOg for 10 minutes and washed three times with PBS. Antisheep cell hemolysin (BBL Bio Quest) was added to the RBC suspension to a dilution of 1:400, and the suspension was incubated at 37 C for 20 minutes. The cells were sedimented at lOOg for 5 minutes and washed three times with PBS to remove excess antibody; 0.2 ml RBC were added to each dish of cultured macrophages containing serially diluted AMS or NRS. The cells were then incubated at 37 C for 2 hours. At the end of this incubation period the culture medium was removed, and the cells were washed briefly with Way- mouth's medium (without serum). Cover slips, removed and mixed for 10 minutes with absolute ethanol followed by staining with Wright's Giemsa, were examined in the light microscope. Serial d[lutions of the AMS demonstrated a concentration at which adherence and phogocytosis occurs, above which normal adherence and phagocytosis of opsonized erythrocytes is observable and below which neither adherence nor phagocytosis is present. This method provides a rapid and simple assay of the activity of each batch of AMS (see Note Added in Proof). Absorption of Antimacrophage Serum Serum Antimacrophage serum was absorbed with normal guinea pig serum (0.05 ml/ml ANMS) for 1 hour at 37 C in a shaking water bath. Tle serum was then centrifuged 74 LEIBOVICH AND ROSS American Journal of Pathology at 30,000g for 30 minutes at 4 C, and the supernatant collected. The absorbed serum gave no precipitin line, as determined in double-diffusion analysis in agar plates (immunoplate, Hyland Labs, Los Angeles, Calif).
Recommended publications
  • Regulation of Macrophage Development and Function in Peripheral Tissues
    REVIEWS Regulation of macrophage development and function in peripheral tissues Yonit Lavin, Arthur Mortha, Adeeb Rahman and Miriam Merad Abstract | Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. Mononuclear phagocyte Macrophages are key components of the innate immune characterized the transcriptional and epigenetic pro- system system that reside in tissues, where they function as grammes of tissue-resident macrophages and revealed (MPS). A group of bone immune sentinels. They are uniquely equipped to sense the extent of diversity in these populations1,8. In addi- marrow-derived cells and respond to tissue invasion by infectious microorgan- tion to differences in ontogeny, locally derived tissue (monocytes, macrophages and isms and tissue
    [Show full text]
  • The Biochemical and Biophysical Mechanisms of Macrophage Migration
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 The Biochemical and Biophysical Mechanisms of Macrophage Migration Laurel Erin Hind University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Biomedical Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Hind, Laurel Erin, "The Biochemical and Biophysical Mechanisms of Macrophage Migration" (2015). Publicly Accessible Penn Dissertations. 1062. https://repository.upenn.edu/edissertations/1062 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1062 For more information, please contact [email protected]. The Biochemical and Biophysical Mechanisms of Macrophage Migration Abstract The ability of macrophages to migrate is critical for a proper immune response. During an innate immune response, macrophages migrate to sites of infection or inflammation where they clear pathogens through phagocytosis and activate an adaptive immune response by releasing cytokines and acting as antigen- presenting cells. Unfortunately, improper regulation of macrophage migration is associated with a variety of dieases including cancer, atherosclerosis, wound-healing, and rheumatoid arthritis. In this thesis, engineered substrates were used to study the chemical and physical mechanisms of macrophage migration. We first used microcontact printing to generate surfaces
    [Show full text]
  • "Macrophage Function Disorders". In: Encyclopedia of Life Sciences (ELS)
    Macrophage Function Advanced article Disorders Article Contents . Introduction Keith M Lee, McMaster Immunology Research Centre & M. G. DeGroote Institute for . Macrophage Functions . Macrophage Phenotypic Diversity Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada . Role in Disease Charles Yin, McMaster Immunology Research Centre & M. G. DeGroote Institute for Infectious . Primary Immunodeficiencies in Macrophage Function Disease Research, McMaster University, Hamilton, Ontario, Canada . Concluding Remarks Chris P Verschoor, McMaster Immunology Research Centre & M. G. DeGroote Institute for Online posting date: 20th September 2013 Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada Dawn ME Bowdish, McMaster Immunology Research Centre & M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada Based in part on the previous version of this eLS article ‘Macrophage Function Disorders’ (2009) by Dawn ME Bowdish and Siamon Gordon. Macrophages are sentinel cells of the innate immune tissue microenvironment and can change considerably response. Macrophages recognise pathogen-associated with exposure to infectious and antigenic agents. They are molecular patterns (e.g. microbial products) and endo- relatively long-lived, biosynthetically active cells and genous ligands (e.g. apoptotic cells) through a broad and express diverse surface receptors and secretory products. They adapt readily to changes in their milieu and help to adaptable range of pattern-recognition receptors. The maintain homoeostasis locally and systemically. If unable consequence of this recognition is generally effective to deal adequately with an infectious or injurious stimulus, clearance via phagocytosis; however, when this is not macrophages initiate a chronic inflammatory process, effective, macrophages may become inappropriately which can contribute to persistent tissue damage; they can activated and initiate an inappropriate inflammatory also mediate acute, sometimes massive, responses from response.
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • Infections Macrophage Polarization in Bacterial
    Macrophage Polarization in Bacterial Infections Marie Benoit, Benoît Desnues and Jean-Louis Mege This information is current as J Immunol 2008; 181:3733-3739; ; of September 24, 2021. doi: 10.4049/jimmunol.181.6.3733 http://www.jimmunol.org/content/181/6/3733 Downloaded from References This article cites 68 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/181/6/3733.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 24, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Macrophage Polarization in Bacterial Infections Marie Benoit, Benoît Desnues, and Jean-Louis Mege1 Converging studies have shown that M1 and M2 mac- tokines and microbial products (2). More recently, M2 macro- rophages are functionally polarized in response to mi- phages have been characterized by functional expression of al- croorganisms and host mediators. Gene expression ternative activation markers.
    [Show full text]
  • Granulocytes, Macrophages, and Dendritic Cells Arise from A
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 3038-3042, April 1993 Immunology Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow KAYO INABA*t, MUNEO INABA*, MASASHI DEGUCHI*, KATSUHIKO HAGI*, RYoJi YASUMIZUf, SUSUMU IKEHARAt, SHIGERU MURAMATSU*, AND RALPH M. STEINMAN§ *Department of Zoology, Faculty of Science, Kyoto University, Sakyo, Kyoto 606, Japan; tFirst Department of Pathology, Kansai Medical University, Moriguchi, Osaka 570, Japan; and §Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021 Communicated by Zanvil A. Cohn, December 21, 1992 ABSTRACT The developmental origin of dendritic cells, a lineage-restricted macrophage and granulocyte colony- specialized system ofmajor histocompatibility complex (MHC) stimulating factors (M-CSF and G-CSF, respectively) (8, 10, class 11-rich antigen-presenting cells for T-celi immunity and 12). tolerance, is not well characterized. Granulocyte-macrophage Since GM-CSF can induce the formation of mixed popu- colony-stimulating factor (GM-CSF) is known to stimulate lations ofgranulocytes and macrophages in semi-solid colony dendritic cells, including growth and development from MHC systems (15), we asked whether dendritic cells could also class 11-negative precursors in suspension cultures of mouse arise from a colony-forming precursor that is common to bone marrow. Here we studied colony formation in semi-solid phagocytes. Cells with some of the features of dendritic cells methylcellulose cultures, a classical bioassay system in which have been detected in human cell colonies that were induced GM-CSF induces the formation of mixed granulocyte- with lectin-conditioned medium (16) and more recently with macrophage colonies.
    [Show full text]
  • Ornithine Decarboxylase Regulates M1 Macrophage Activation And
    Ornithine decarboxylase regulates M1 macrophage PNAS PLUS activation and mucosal inflammation via histone modifications Dana M. Hardbowera,b, Mohammad Asimb, Paula B. Luisc, Kshipra Singhb, Daniel P. Barryb, Chunying Yangd,e, Meredith A. Steevese, John L. Clevelandd,e, Claus Schneiderc, M. Blanca Piazuelob, Alain P. Gobertb, and Keith T. Wilsona,b,f,g,h,1 aDepartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; bDivision of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; cDepartment of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232; dDepartment of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612; eDepartment of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458; fDepartment of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; gCenter for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232; and hVeterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232 Edited by Carl F. Nathan, Weill Medical College of Cornell University, New York, NY, and approved December 20, 2016 (received for review September 6, 2016) Macrophage activation is a critical step in host responses during pathogens is macrophage activation. Macrophages have the ca- bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting pacity to alter cytokine/chemokine production and various other enzyme in polyamine metabolism, has been well studied in epithelial functions along the spectrum of M1 or M2 activation based on the cells and is known to have essential roles in many different cellular stimulus detected (12–14). M1 macrophages represent a highly functions. However, its role in regulating macrophage function during proinflammatory and antimicrobial subset of macrophages (12–14).
    [Show full text]
  • Cd47-Sirpα Interaction and IL-10 Constrain Inflammation-Induced Macrophage Phagocytosis of Healthy Self-Cells
    Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells Zhen Biana,b, Lei Shia, Ya-Lan Guoa, Zhiyuan Lva, Cong Tanga, Shuo Niua, Alexandra Tremblaya, Mahathi Venkataramania, Courtney Culpeppera, Limin Lib, Zhen Zhoub, Ahmed Mansoura, Yongliang Zhangc, Andrew Gewirtzd, Koby Kiddera,e, Ke Zenb, and Yuan Liua,d,1 aProgram of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China; cDepartment of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Science Institute (LSI) Immunology Programme, National University of Singapore, Singapore 117456; dCenter for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303; and eDepartment of Cell Biology, Rutgers University, New Brunswick, NJ 08901 Edited by Jason G. Cyster, University of California, San Francisco, CA, and approved July 11, 2016 (received for review October 28, 2015) − − Rapid clearance of adoptively transferred Cd47-null (Cd47 / ) cells in The CD47-SIRPα mechanism was first reported by Oldenborg congeneic WT mice suggests a critical self-recognition mechanism, et al. (1), who had demonstrated in red blood cell (RBC) in which CD47 is the ubiquitous marker of self, and its interaction transfusion experiments that WT mice rapidly eliminate syngeneic − with macrophage signal regulatory protein α (SIRPα) triggers inhib- Cd47-null (Cd47 ) RBCs through erythrophagocytosis in the itory signaling through SIRPα cytoplasmic immunoreceptor tyrosine- spleen and that the lack of tyrosine phosphorylation in SIRPα based inhibition motifs and tyrosine phosphatase SHP-1/2.
    [Show full text]
  • Monocyte and Macrophage Heterogeneity
    REVIEWS MONOCYTE AND MACROPHAGE HETEROGENEITY Siamon Gordon and Philip R. Taylor Abstract | Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes. OSTEOCLAST Circulating monocytes give rise to a variety of tissue- elicit increased recruitment of monocytes to peripheral A multinucleate cell that resident macrophages throughout the body, as well as sites4, where differentiation into macrophages and DCs resorbs bone. to specialized cells such as dendritic cells (DCs) and occurs, contributing to host defence, and tissue remod- OSTEOCLASTS. Monocytes are known to originate in the elling and repair. Studies of the mononuclear-phagocyte bone marrow from a common myeloid progenitor that system, using monoclonal antibodies specific for vari- is shared with neutrophils, and they are then released ous cell-surface receptors and differentiation antigens, into the peripheral blood, where they circulate for have shown that there is substantial heterogeneity of several days before entering tissues and replenishing phenotype, which most probably reflects the special- the tissue macrophage populations1.
    [Show full text]
  • Extracellular Polyphosphate Promotes Macrophage and Fibrocyte
    Extracellular Polyphosphate Promotes Macrophage and Fibrocyte Differentiation, Inhibits Leukocyte Proliferation, and Acts as a Chemotactic Agent for Neutrophils This information is current as of October 1, 2021. Patrick M. Suess, Luis E. Chinea, Darrell Pilling and Richard H. Gomer J Immunol published online 3 June 2019 http://www.jimmunol.org/content/early/2019/05/31/jimmun ol.1801559 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/05/31/jimmunol.180155 Material 9.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 3, 2019, doi:10.4049/jimmunol.1801559 The Journal of Immunology Extracellular Polyphosphate Promotes Macrophage and Fibrocyte Differentiation, Inhibits Leukocyte Proliferation, and Acts as a Chemotactic Agent for Neutrophils Patrick M. Suess,1 Luis E. Chinea, Darrell Pilling, and Richard H. Gomer Fibrocytes are monocyte-derived fibroblast like cells that participate in wound healing, but little is known about what initiates fibrocyte differentiation.
    [Show full text]
  • Exhaustion Innate Immune Suppression Rather Than
    The Journal of Immunology Acute-Phase Deaths from Murine Polymicrobial Sepsis Are Characterized by Innate Immune Suppression Rather Than Exhaustion Evan L. Chiswick,* Juan R. Mella,† John Bernardo,‡ and Daniel G. Remick* Sepsis, a leading cause of death in the United States, has poorly understood mechanisms of mortality. To address this, our model of cecal ligation and puncture (CLP) induced sepsis stratifies mice as predicted to Live (Live-P) or Die (Die-P) based on plasma IL-6. Six hours post-CLP, both Live-P and Die-P groups have equivalent peritoneal bacterial colony forming units and recruitment of phagocytes. By 24 h, however, Die-P mice have increased bacterial burden, despite increased neutrophil recruitment, suggesting Die-P phagocytes have impaired bacterial killing. Peritoneal cells were used to study multiple bactericidal processes: bacterial killing, reactive oxygen species (ROS) generation, and phagocytosis. Total phagocytosis and intraphagosomal processes were deter- mined with triple-labeled Escherichia coli, covalently labeled with ROS- and pH-sensitive probes, and an ROS/pH-insensitive probe for normalization. Although similar proportions of Live-P and Die-P phagocytes responded to exogenous stimuli, Die-P phagocytes showed marked deficits in all parameters measured, thus suggesting immunosuppression rather than exhaustion. This contradicts the prevailing sepsis paradigm that acute-phase sepsis deaths (<5 d) result from excessive inflammation, whereas chronic-phase deaths (>5 d) are characterized by insufficient inflammation and immunosuppression. These data suggest that suppression of cellular innate immunity in sepsis occurs within the first 6 h. The Journal of Immunology, 2015, 195: 3793–3802. epsis is an immune-mediated immune disorder costing so- teases (6).
    [Show full text]
  • Macrophages and Innate Immune Memory Against Staphylococcus Skin Infections COMMENTARY Jonas D
    COMMENTARY Macrophages and innate immune memory against Staphylococcus skin infections COMMENTARY Jonas D. Van Belleghema and Paul L. Bollykya,1 There is a growing appreciation that macrophages Emerging evidence suggests that innate immune contribute to innate immune memory against micro- cells, including monocytes, macrophages, and natural bial pathogens in ways that are distinct from and killer cells, might also be capable of developing complementary to adaptive immune memory. In immunological memory of previous encounters, a trait PNAS, Chan et al. (1) report that macrophages de- previously associated with the adaptive system alone. velop memory against Staphylococcus aureus skin These cell types can undergo a profound phenotypic and skin structure infections (SSSIs) and that this mem- reprogramming upon exposure to microbial stimuli ory is tissue specific and can be transferred between that influences their response to secondary infections individual animals. (12). Innate immune cells respond to microbial expo- Immune memory against S. aureus is important be- sures by increasing the expression of relevant pattern- cause of the immense impact of this microbe on hu- recognition receptors [pathogen-associated molecu- man health and because effective immunity against lar patterns (PAMPs)], thereby increasing their affinity recurrent S. aureus infections can be difficult to for particular pathogens. Called “trained immunity” achieve. S. aureus is the most common cause of skin (13), this model could conceivably include a diverse infections (2). These are often associated with massive set of epigenetic mechanisms. For example, Yoshida morbidity, mortality, and health care expenditures (3). et al. (14) demonstrated that the stress response tran- Patients often experience high rates of recurrence (4), scription factor ATF7 mediates LPS-induced epigenetic suggesting that some individuals have difficulty with changes in macrophages that lead to enhanced pro- establishing protective immunity against this organ- tection against pathogens.
    [Show full text]