Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser

Total Page:16

File Type:pdf, Size:1020Kb

Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Commons@Becker Washington University School of Medicine Digital Commons@Becker Open Access Publications 2013 Optimizing identification of clinically relevant gram-positive organisms by use of the bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system Erin McElvania TeKippe Washington University School of Medicine in St. Louis Sunni Shuey St. Louis Children's Hospital David W. Winkler St. Louis Children's Hospital Meghan A. Butler St. Louis Children's Hospital Carey-Ann Burnham Washington University School of Medicine in St. Louis Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs Recommended Citation McElvania TeKippe, Erin; Shuey, Sunni; Winkler, David W.; Butler, Meghan A.; and Burnham, Carey-Ann, ,"Optimizing identification of clinically relevant gram-positive organisms by use of the bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system." Journal of Clinical Microbiology.51,5. 1421-1427. (2013). http://digitalcommons.wustl.edu/open_access_pubs/2333 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry System Downloaded from Erin McElvania TeKippe, Sunni Shuey, David W. Winkler, Meghan A. Butler and Carey-Ann D. Burnham J. Clin. Microbiol. 2013, 51(5):1421. DOI: 10.1128/JCM.02680-12. Published Ahead of Print 20 February 2013. http://jcm.asm.org/ Updated information and services can be found at: http://jcm.asm.org/content/51/5/1421 These include: REFERENCES This article cites 30 articles, 21 of which can be accessed free at: http://jcm.asm.org/content/51/5/1421#ref-list-1 on March 8, 2014 by Washington University in St. Louis CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System Erin McElvania TeKippe,a Sunni Shuey,b David W. Winkler,b Meghan A. Butler,b Carey-Ann D. Burnhama Downloaded from Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USAa; St. Louis Children’s Hospital, St. Louis, Missouri, USAb Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identifica- tion of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical speci- mens. We evaluated 4 direct-smear methods, including “heavy” (H) and “light” (L) smears, with and without a 1-␮l direct for- mic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or “score.” We ؉ found that a heavy smear with a formic acid overlay (H FA) produced optimal MALDI-TOF MS identification scores and the http://jcm.asm.org/ highest percentage of correctly identified organisms. Using a score of >2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of >1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identi- on March 8, 2014 by Washington University in St. Louis fication of Gram-positive bacteria by use of MALDI-TOF MS. henotypic methods for the identification of bacteria in the cess, from both accuracy and workflow standpoints. We evaluated a Pclinical laboratory vary by laboratory and often include sub- method of bacterial preparation that is an intermediate between these jective test interpretation. An alternative method for bacterial two well-described methods, a 1-␮l formic acid overlay applied di- identification that is emerging in clinical microbiology is matrix- rectly over the dried organism on the stainless steel target (19). assisted laser desorption ionization–time of flight mass spectrom- The objective of this study was to evaluate the ability of etry (MALDI-TOF MS). MALDI-TOF MS has been described as a MALDI-TOF MS to accurately identify clinically relevant aerobic rapid, cost-effective, and reliable method for the identification of Gram-positive bacteria using a formic acid overlay method, and bacteria in the clinical laboratory (1, 2, 3, 4, 5, 6, 7, 8, 9). During we focused on the optimization of methods to achieve the highest MALDI-TOF MS identification, a spectral profile representing a rate of identification without introducing misidentifications. In “fingerprint” of bacterial proteins is generated. The spectrum gen- addition, this study evaluates the impact of different incubation erated from a particular isolate can be compared to that of a ref- temperatures, media types, and subculture frequency to deter- erence database for organism identification. Ribosomal proteins mine if these conditions impact MALDI-TOF MS identification. are primarily used for identification due to their relative abun- An accompanying paper by Ford and Burnham (20) aims to val- dance in the bacterial cell (10). idate the Bruker Biotyper system for clinical use for identification Many studies have been published that demonstrate the utility of Gram-negative bacteria. of MALDI-TOF MS for the identification of specific groups of (This work was presented in part at the 112th General Meeting of Gram-positive bacteria, including Staphylococcus aureus, coagu- the American Society for Microbiology, San Francisco, CA, June lase-negative staphylococci, Streptococcus agalactiae, viridans 2012.) group streptococci, atypical catalase-negative Gram-positive cocci, Listeria spp., and Corynebacterium spp. (11, 12, 13, 14, 15, MATERIALS AND METHODS 16, 17, 18). These publications have focused on two methods by Bacterial isolates. Two hundred thirty-nine aerobic Gram-positive or- which bacterial isolates can be prepared for MALDI-TOF MS ganisms isolated from clinical specimens were included in this study. This analysis. The first is the direct application of a thin film or smear of bacteria onto the stainless steel target from an isolated colony, which is a rapid-identification method. Due to the thick pepti- Received 5 October 2012 Returned for modification 30 October 2012 doglycan cell walls of Gram-positive bacteria, this method of Accepted 27 December 2012 preparation can sometimes result in poor MALDI-TOF MS spec- Published ahead of print 20 February 2013 tra (6). To achieve better spectra, a protein extraction may be Address correspondence to Carey-Ann D. Burnham, [email protected]. performed (1, 6). This process can be relatively time- and labor- Copyright © 2013, American Society for Microbiology. All Rights Reserved. intensive and can be disruptive to the workflow of the clinical doi:10.1128/JCM.02680-12 laboratory. We sought to optimize the sample preparation pro- May 2013 Volume 51 Number 5 Journal of Clinical Microbiology p. 1421–1427 jcm.asm.org 1421 McElvania TeKippe et al. TABLE 1 Organisms tested in this study TABLE 2 Summary of isolates, extent of analysis, and primary media from which isolates were tested Organism No. of isolates Abiotrophia defectiva 1 No. of isolates (of a total % of isolates Actinomyces spp. 2 Category of 239) in category in category Aerococcus urinae 1 Source of isolates Aerococcus viridans 1 Fresh 222 92.9 Arthrobacter spp. 2 Frozen 17 7.1 Bacillus cereus/thuringiensis 2 Bacillus megaterium 1 Extent of analysis Bacillus spp. 9 Direct smear 219 91.6 Downloaded from Cellulosimicrobium spp. 3 Repeat direct smear 20 8.4 Coagulase-negative Staphylococcus spp. 18 Full extraction 7 2.9 Corynebacterium pseudodiphtheriticum 1 16S rRNA gene sequencing 17 7.1 Corynebacterium spp. 13 Corynebacterium striatum 5 Medium for isolate testing Corynebacterium urealyticum 1 BAP 229 95.8 Dolosigranulum pigrum 1 Chocolate 5 2.1 Enterococcus avium 1 CNA 5 2.1 Enterococcus casseliflavus 1 http://jcm.asm.org/ Enterococcus faecalis 2 Enterococcus faecium 8 performed to the same level of resolution used for the clinical reporting of Enterococcus spp. 12 these isolates. Granulicatella spp. 1 Validation study design. To validate MALDI-TOF MS for use with Group A alpha-hemolytic Streptococcus spp. 30 Gram-positive bacteria in our laboratory, we planned to test at least 200 Group B alpha-hemolytic Streptococcus spp. 20 isolates, representing a minimum of 15 species, but using no more than 35 Group C alpha-hemolytic Streptococcus spp. 1 isolates of a single species. The isolates were to represent the regular flow Group G alpha-hemolytic Streptococcus spp. 4 of organisms in the clinical lab, with the supplementation of organisms on March 8, 2014 by Washington University in St. Louis Kocuria spp. 1 rarely seen in the laboratory. All isolates were tested in quadruplicate as Lactobacillus spp.
Recommended publications
  • Genomic Stability and Genetic Defense Systems in Dolosigranulum Pigrum A
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440249; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic Stability and Genetic Defense Systems in Dolosigranulum pigrum a 2 Candidate Beneficial Bacterium from the Human Microbiome 3 4 Stephany Flores Ramosa, Silvio D. Bruggera,b,c, Isabel Fernandez Escapaa,c,d, Chelsey A. 5 Skeetea, Sean L. Cottona, Sara M. Eslamia, Wei Gaoa,c, Lindsey Bomara,c, Tommy H. 6 Trand, Dakota S. Jonese, Samuel Minote, Richard J. Robertsf, Christopher D. 7 Johnstona,c,e#, Katherine P. Lemona,d,g,h# 8 9 aThe Forsyth Institute (Microbiology), Cambridge, MA, USA 10 bDepartment of Infectious Diseases and Hospital Epidemiology, University Hospital 11 Zurich, University of Zurich, Zurich, Switzerland 12 cDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental 13 Medicine, Boston, MA, USA 14 dAlkek Center for Metagenomics & Microbiome Research, Department of Molecular 15 Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA 16 eVaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 17 Seattle, WA, USA 18 fNew England Biolabs, Ipswich, MA, USA 19 gDivision of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 20 Boston, MA, USA 21 hSection of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, 22 Baylor College of Medicine, Houston, Texas, USA 23 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440249; this version posted April 18, 2021.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Dolosigranulum Pigrum Modulates Immunity Against SARS-Cov-2 in Respiratory Epithelial Cells
    pathogens Communication Dolosigranulum pigrum Modulates Immunity against SARS-CoV-2 in Respiratory Epithelial Cells Md. Aminul Islam 1,2 , Leonardo Albarracin 1,3 , Vyacheslav Melnikov 4 , Bruno G. N. Andrade 5 , Rafael R. C. Cuadrat 6,7 , Haruki Kitazawa 1,8,* and Julio Villena 1,3,* 1 Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; [email protected] (M.A.I.); [email protected] (L.A.) 2 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh 3 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina 4 Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; [email protected] 5 AdaptCentre, Munster Technological University (MTU), T12 P928 Cork, Ireland; [email protected] 6 Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany; [email protected] 7 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany 8 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan * Correspondence: [email protected] (H.K.); [email protected] (J.V.) Citation: Islam, M..A.; Albarracin, L.; Melnikov, V.; Andrade, B.G.N.; Abstract: In a previous work, we demonstrated that nasally administered Dolosigranulum pigrum Cuadrat, R.R.C.; Kitazawa, H.; 040417 beneficially modulated the respiratory innate immune response triggered by the activation Villena, J.
    [Show full text]
  • Downloaded from NCBI (NZ AGXA00000000.1) And
    bioRxiv preprint doi: https://doi.org/10.1101/678698; this version posted March 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Dolosigranulum pigrum cooperation and competition in human nasal microbiota 2 Silvio D. Brugger1, 2, 3, 10*, Sara M. Eslami2,10, Melinda M. Pettigrew4,10, Isabel F. 3 Escapa2,3,5, Matthew T. Henke6, Yong Kong7 and Katherine P. Lemon2,5,8,9* 4 1Department of Infectious Diseases and Hospital Epidemiology, University Hospital 5 Zurich, University of Zurich, Zurich, Switzerland, CH-8006 6 2The Forsyth Institute (Microbiology), Cambridge, MA, USA, 02142 7 3Department of Oral Medicine, Infection and Immunity, Harvard School of Dental 8 Medicine, Boston, MA, USA, 02115 9 4Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New 10 Haven, 11 CT, USA, 06510 12 5Alkek Center for Metagenomics & Microbiome Research, Department of Molecular 13 Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030 14 6Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical 15 School, Boston, MA, USA, 02115 16 7Department of Molecular Biophysics and Biochemistry and W.M. Keck Foundation 17 Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA, 06519 18 8Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 19 Boston, MA, USA, 02115 1 bioRxiv preprint doi: https://doi.org/10.1101/678698; this version posted March 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Susan Gottesman, Phd National Institutes of Health
    Boston Bacterial Meeting 2017 Crystal structure of Hfq in a complex with sRNA, Keynote speaker: RNA binding interfaces highlighted. Modeled using PDB: 4V2S Susan Gottesman, PhD National Institutes of Health Generously sponsored by: 2017 Boston Bacterial Meeting - Schedule and Introduction Thursday June 15 12:00 pm Registration 12:45 pm Opening Remarks I: Bacterial communities Chair: Matthew Ramsey Stephanie High-throughput analysis of targeted mutant libraries reveals new 1:00 pm Shames Legionella pneumophila effector virulence phenotypes Microbial hitchhiking promotes dispersal and colonization of new niches 1:20 pm Tahoura Samad by staphylococci Interactions between species introduce spurious associations in 1:40 pm Rajita Menon microbiome studies: evidence from inflammatory bowel disease The upper respiratory tract commensal Dolosigranulum pigrum inhibits 2:00 pm Silvio Brugger Staphylococcus aureus 2:20 pm Coffee Break II: Morphogenesis Chair: Eddie Geisinger Determining how bacteria regulate their rate of growth at the single- 2:50 pm Yingjie Sun molecule and single-cell levels by super-resolution microscopy Metabolic control of cell morphogenesis: perturbed TCA cycle halts 3:10 pm Irnov Irnov peptidoglycan biosynthesis Membrane remodeling at the division septum by the bacterial actin 3:30 pm Joseph Conti homolog FtsA 3:50 pm Kristin Little A cell envelope stress response system keeps cells in shape 4:10 pm Poster Session I - Science Center (#1-32, 60-66) III: Treatment strategies Chair: Alex Kostic Sebastien 5:30 pm BRACE for resistance:
    [Show full text]
  • Microbial and Clinical Factors Are Related to Recurrence of Symptoms After Childhood Lower Respiratory Tract Infection
    Early View Original article Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection Emma M. de Koff, Wing Ho Man, Marlies A. van Houten, Arine M. Vlieger, Mei Ling J.N. Chu, Elisabeth A.M. Sanders, Debby Bogaert Please cite this article as: de Koff EM, Man WH, van Houten MA, et al. Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection. ERJ Open Res 2021; in press (https://doi.org/10.1183/23120541.00939-2020). This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online. Copyright ©The authors 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact [email protected] Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection Emma M. de Koff1,2, Wing Ho Man1,3, Marlies A. van Houten1,4, Arine M. Vlieger5, Mei Ling J.N. Chu2, Elisabeth A.M. Sanders2,6, Debby Bogaert2,7 1. Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, Netherlands 2. Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital and University Medical Centre Utrecht, Utrecht, Netherlands 3. Department of Paediatrics, Willem-Alexander Children’s Hospital and Leiden University Medical Centre, Leiden, Netherlands 4.
    [Show full text]
  • Bacterial Microbiota Analysis Present in the Nose and Pharynx of a Mexican Young Population
    Int.J.Curr.Microbiol.App.Sci (2016) 5(6): 223-235 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 6 (2016) pp. 223-235 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.506.026 Bacterial Microbiota Analysis Present in the Nose and Pharynx of a Mexican Young Population Ana Karina Rodríguez-Vicente1, Jaime Bustos-Martínez2, Dolores Reyes-Duarte3 and Teresita Sainz-Espuñes4* 1Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana-Xochimilco. Mexico City, Mexico 2Departamento de Atención a la Salud. Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico 3Departamento de Procesos y Tecnología. Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico 4Departamento de Sistemas Biológicos. Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico *Corresponding author email id: ABSTRACT Culture-independent microbiota is relatively unexplored in Mexican population. The aim of this study was to characterize the microbiota of Mexican young healthy adults by means of K eywo rd s traditional culture and metagenomic analysis in order to provide novel insights and have a better understanding about the healthy baselines from which to detect differences associated Bacterial with diseases. The bacterial microbiota of the nose and pharynx from 75 healthy Microbiota, nonsmoking Mexican young adults was examined by conventional cultures and culture- Nose and independent methods. The hypervariable region (V6-V8) of the16S rRNA gene was PCR Pharynx , amplified from isolated DNA and DGGE analyzed, bands excised were sequenced and metagenomic phylogenetic analys is was done. The study showed that the bacterial microbiota of analysis . the pharynx was richer than that of the nose.
    [Show full text]
  • WO 2015/071474 A2 21 May 2015 (21.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/071474 A2 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: Krzysztof; Simmeringer Hauptstrasse 45/8, A-1 110 Vi C12N 15/11 (2006.01) enna (AT). FONFARA, Ines; Helmstedter Strasse 144, 38102 Braunschweig (DE). (21) International Application Number: PCT/EP2014/074813 (74) Agent: PILKINGTON, Stephanie Joan; Potter Clarkson LLP, The Belgrave Centre, Talbot Street, Nottingham NG1 (22) International Filing Date: 5GG (GB). 17 November 2014 (17.1 1.2014) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 61/905,835 18 November 2013 (18. 11.2013) US HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (71) Applicant: CRISPR THERAPEUTICS AG [CH/CH]; KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, Aeschenvorstadt 36, CH-4051 Basel (CH). MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (72) Inventors: CHARPENTIER, Emmanuelle; Boeckler- SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, strasse 18, 38102 Braunschweig (DE).
    [Show full text]
  • The Microbiome of the Middle Meatus in Healthy Adults
    The Microbiome of the Middle Meatus in Healthy Adults Vijay R. Ramakrishnan1*, Leah M. Feazel2, Sarah A. Gitomer1, Diana Ir2, Charles E. Robertson4, Daniel N. Frank2,3 1 Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, United States of America, 2 Division of Infectious Diseases, University of Colorado, Aurora, Colorado, United States of America, 3 Microbiome Research Consortium, University of Colorado, Aurora, Colorado, United States of America, 4 Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America Abstract Rhinitis and rhinosinusitis are multifactorial disease processes in which bacteria may play a role either in infection or stimulation of the inflammatory process. Rhinosinusitis has been historically studied with culture-based techniques, which have implicated several common pathogens in disease states. More recently, the NIH Human Microbiome Project has examined the microbiome at a number of accessible body sites, and demonstrated differences among healthy and diseased patients. Recent DNA-based sinus studies have suggested that healthy sinuses are not sterile, as was previously believed, but the normal sinonasal microbiome has yet to be thoroughly examined. Middle meatus swab specimens were collected from 28 consecutive patients presenting with no signs or symptoms of rhinosinusitis. Bacterial colonization was assessed in these specimens using quantitative PCR and 16S rRNA pyrosequencing. All subjects were positive for bacterial colonization of the middle meatus. Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes were the most prevalent and abundant microorganisms detected. Rich and diverse bacterial assemblages are present in the sinonasal cavity in the normal state, including opportunistic pathogens typically found in the nasopharynx.
    [Show full text]
  • 1 Dolosigranulum Pigrum Cooperation and Competition in Human Nasal Microbiota
    bioRxiv preprint doi: https://doi.org/10.1101/678698; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Dolosigranulum pigrum cooperation and competition in human nasal microbiota 2 Silvio D. Brugger1, 2, 3, 8*, Sara M. Eslami2,8, Melinda M. Pettigrew4,8, Isabel F. Escapa2,3, Matthew 3 M. Henke5, Yong Kong6 and Katherine P. Lemon2,7,9* 4 1Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 5 University of Zurich, Zurich, Switzerland, CH-8006 6 2The Forsyth Institute (Microbiology), Cambridge, MA, USA, 02142 7 3Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 8 Boston, MA, USA, 02115 9 4Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, 10 CT, USA, 06510 11 5 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 12 Boston, MA, USA, 02115 13 6Department of Molecular Biophysics and Biochemistry and W.M. Keck Foundation 14 Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA, 06519 15 7Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, 16 MA, USA, 02115 17 8These authors contributed equally 18 9Lead Contact 19 *Correspondence: [email protected] and [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/678698; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Potential Pathogenicity of Dolosigranulum Pigrum in Multiple Sclerosis, and the Occurrence of the Organism in the Upper Respiratory Tract
    The potential pathogenicity of Dolosigranulum pigrum in multiple sclerosis, and the occurrence of the organism in the upper respiratory tract by Francis Mark Jorge MSc CSci FIBMS CBiol MSB A portfolio of research and development in a professional context Submitted in partial fulfilment of the Degree of Professional Doctorate in Biomedical Science School of Pharmacy and Biomedical Sciences Faculty of Science University of Portsmouth May 2014 Abstract The bacterial toxins hypothesis in multiple sclerosis postulates that bacterial toxins from the human nasopharynx access the central nervous system and are implicated in the disease. Dolosigranulum pigrum was originally found in acute multiple sclerosis tissues. This study seeks to determine if the organism is found in human nasal tracts and explores the relationship between Dolosigranulum pigrum infection and multiple sclerosis by measuring antibody to the bacterium in multiple sclerosis patients and matched controls. Eighty eight clinical specimens were cultured onto blood agar and analysed using rabbit anti-Dolosigranulum pigrum sera, and fluorescein isothiocyanate. None tested positive for Dolosigranulum pigrum. Dolosigranulum pigrum was looked for using a novel polymerase chain reaction test. Thirty samples tested positive, 17 male, 13 female, with an age range from 8 days to 74 years. Twelve were sent for sequencing, seven matched Dolosigranulum pigrum, two showed mixed amplicons and three produced signals not matching Dolosigranulum pigrum. Sixty five multiple sclerosis sera and matched controls were tested for anti- Dolosigranulum pigrum using a novel enzyme linked immunosorbant assay. The multiple sclerosis group showed raised antibodies, significantly different to the controls, p ≤ 0.001. Fifteen of the multiple sclerosis sera and controls were Western blotted.
    [Show full text]
  • Lactic Acid Bacteria As Probiotics for the Nose?
    bs_bs_banner Minireview Lactic acid bacteria as probiotics for the nose? Ilke De Boeck,1 Irina Spacova,1 evidence for oral or topical probiotics for common Olivier M. Vanderveken2,3 and Sarah Lebeer1* URT diseases such as chronic rhinosinusitis (CRS) 1Department of Bioscience Engineering, University of needs further substantiation. Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium. 2ENT, Head and Neck Surgery and Communication Introduction Disorders, Antwerp University Hospital, Edegem, Inflammatory upper respiratory tract (URT) diseases Belgium. such as rhinitis, and acute and chronic rhinosinusitis 3Faculty of Medicine and Health Sciences, Translational (CRS), impose a major burden on public health and Neurosciences, University of Antwerp, Antwerp, Belgium. account for significant healthcare costs (Meltzer, 2016; Hellings et al., 2017). Rhinitis is the most common URT disease defined as symptomatic inflammation of the lin- Summary ing of the nose that is caused by infectious agents, aller- Several studies have recently pointed towards an gens or other factors (e.g., drugs and hormones) increased occurrence and prevalence of several taxa (Bousquet et al., 2008). Allergic rhinitis (AR) represents of the lactic acid bacteria (LAB) in the microbiota of the most commonly encountered type of non-infectious the upper respiratory tract (URT) under healthy con- rhinitis, while the term rhinosinusitis is defined as inflam- ditions versus disease. These include several spe- mation of the nose and paranasal sinuses, characterized cies of the Lactobacillales such as Lacticaseibacillus by two or more symptoms, one of which should be either casei, Lactococcus lactis and Dolosigranulum nasal obstruction or nasal discharge (Fokkens et al., pigrum. In addition to physiological studies on their 2020).
    [Show full text]