Aerodynamics of Gliding Flight in a Harris' Hawk, Parabuteo Unicinctus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
198 Pursuit and Capture of a Ring-Billed Gull by Bald
198 Florida Field Naturalist 28(4):198-200, 2000. PURSUIT AND CAPTURE OF A RING-BILLED GULL BY BALD EAGLES ANDREW W. KRATTER1 AND MARY K. HART2 1Florida Museum of Natural History, P.O. Box 117800, University of Florida Gainesville, Florida 3261; email: kratter@flmnh.ufl.edu 2Department of Fisheries and Aquatic Sciences, University of Florida Gainesville, Florida, 32611 Bald Eagles (Haliaeetus leucocephalus) are opportunistic hunters that employ a num- ber of techniques to capture a wide variety of prey (Bent 1937, Brown and Amadon 1968, Sherrod et al. 1976, McEwan and Hirth 1980). These eagles are known to occasionally pursue prey, including flying birds, in pairs or larger groups (McIlhenny 1932, Sherrod et al. 1976, Folk 1992). Here we report three Bald Eagles giving a prolonged chase of a Ring- billed Gull (Larus delawarensis), which resulted in the gull’s capture by one of the eagles. At approximately 1500 on 12 December 1998, we were kayaking east across Newnan’s Lake in eastern Alachua County, Florida, when we noticed a group of approximately 50 Ring-billed Gulls sitting on the water near the center of the lake. As we approached to approximately 100 m, the gulls lifted off when an adult Bald Eagle flew toward them at a height of about 75 m. The eagle immediately started to chase a first-winter individual. The chase was linear at first, but the gull evaded the faster flying eagle with sharp turns. Over the next three minutes, the eagle continued to chase the gull with rather slow stoops from heights of 25-100 m followed by short, fast linear pursuits. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Chromosome Painting in Three Species of Buteoninae: a Cytogenetic Signature Reinforces the Monophyly of South American Species
Chromosome Painting in Three Species of Buteoninae: A Cytogenetic Signature Reinforces the Monophyly of South American Species Edivaldo Herculano C. de Oliveira1,2,3*, Marcella Mergulha˜o Tagliarini4, Michelly S. dos Santos5, Patricia C. M. O’Brien3, Malcolm A. Ferguson-Smith3 1 Laborato´rio de Cultura de Tecidos e Citogene´tica, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil, 2 Faculdade de Cieˆncias Exatas e Naturais, ICEN, Universidade Federal do Para´, Bele´m, PA, Brazil, 3 Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom, 4 Programa de Po´s Graduac¸a˜oem Neurocieˆncias e Biologia Celular, ICB, Universidade Federal do Para´, Bele´m, PA, Brazil, 5 PIBIC – Universidade Federal do Para´, Bele´m, PA, Brazil Abstract Buteoninae (Falconiformes, Accipitridae) consist of the widely distributed genus Buteo, and several closely related species in a group called ‘‘sub-buteonine hawks’’, such as Buteogallus, Parabuteo, Asturina, Leucopternis and Busarellus, with unsolved phylogenetic relationships. Diploid number ranges between 2n = 66 and 2n = 68. Only one species, L. albicollis had its karyotype analyzed by molecular cytogenetics. The aim of this study was to present chromosomal analysis of three species of Buteoninae: Rupornis magnirostris, Asturina nitida and Buteogallus meridionallis using fluorescence in situ hybridization (FISH) experiments with telomeric and rDNA probes, as well as whole chromosome probes derived from Gallus gallus and Leucopternis albicollis. The three species analyzed herein showed similar karyotypes, with 2n = 68. Telomeric probes showed some interstitial telomeric sequences, which could be resulted by fusion processes occurred in the chromosomal evolution of the group, including the one found in the tassociation GGA1p/GGA6. -
Download the BHPA Training Guide
VERSION 1.7 JOE SCHOFIELD, EDITOR body, and it has for many years been recognised and respected by the Fédération Aeronautique Internationale, the Royal Aero Club and the Civil Aviation Authority. The BHPA runs, with the help of a small number of paid staff, a pilot rating scheme, airworthiness schemes for the aircraft we fly, a school registration scheme, an instructor assessment and rating scheme and training courses for instructors and coaches. Within your membership fee is also provided third party insurance and, for full annual or three-month training members, a monthly subscription to this highly-regarded magazine. The Elementary Pilot Training Guide exists to answer all those basic questions you have such as: ‘Is it difficult to learn to fly?' and ‘Will it take me long to learn?' In answer to those two questions, I should say that it is no more difficult to learn to fly than to learn to drive a car; probably somewhat easier. We were all beginners once and are well aware that the main requirement, if you want much more than a ‘taster', is commitment. Keep at it and you will succeed. In answer to the second question I can only say that in spite of our best efforts we still cannot control the weather, and that, no matter how long you continue to fly for, you will never stop learning. Welcome to free flying and to the BHPA’s Elementary Pilot Training Guide, You are about to enter a world where you will regularly enjoy sights and designed to help new pilots under training to progress to their first milestone - experiences which only a few people ever witness. -
Gliding Flight
Gliding Flight Whenever an airplane is flying such that the power required is larger than the power available, it will descend rather than climb. In the ultimate situation, there is no power at all; in this case, the airplane will be in gliding. This will occur for a conventional airplane when the engine quits during flight (e.g., engine failure). Also, this is the case for gliders and sailplanes. The force diagram is the higher the L/D, the shallower the glide angle. The smallest equilibrium glide angle occurs at (L/D)max. The equilibrium glide angle does not depend on altitude or wing loading, it simply depends on the lift-to-drag ratio. However, to achieve a given L/D at a given altitude, the aircraft must fly at a specified velocity V, called the equilibrium glide velocity, and this value of V, does depend on the altitude and wing loading, as follows: it depends on altitude (through rho) and wing loading. The value of CL and L/D are aerodynamic characteristics of the aircraft that vary with angle of attack. A specific value of L/D, corresponds to a specific angle of attack which in turn dictates the lift coefficient (CL). If L/ D is held constant throughout the glide path, then CL is constant along the glide path. However, the equilibrium velocity along this glide path will change with altitude, decreasing with decreasing altitude (because rho increases). SERVICE AND ABSOLUTE CEILINGS The highest altitude achievable is the altitude where (R/C)max=0. It is defined as the absolute ceiling that altitude where the maximum rate of climb is zero is in steady, level flight. -
Estimations Relative to Birds of Prey in Captivity in the United States of America
ESTIMATIONS RELATIVE TO BIRDS OF PREY IN CAPTIVITY IN THE UNITED STATES OF AMERICA by Roger Thacker Department of Animal Laboratories The Ohio State University Columbus, Ohio 43210 Introduction. Counts relating to birds of prey in captivity have been accomplished in some European countries; how- ever, to the knowledge of this author no such information is available in the United States of America. The following paper consistsof data related to this subject collected during 1969-1970 from surveys carried out in many different direc- tions within this country. Methods. In an attempt to obtain as clear a picture as pos- sible, counts were divided into specific areas: Research, Zoo- logical, Falconry, and Pet Holders. It became obvious as the project advanced that in some casesthere was overlap from one area to another; an example of this being a falconer working with a bird both for falconry and research purposes. In some instances such as this, the author has used his own judgment in placing birds in specific categories; in other in- stances received information has been used for this purpose. It has also become clear during this project that a count of "pets" is very difficult to obtain. Lack of interest, non-coop- eration, or no available information from animal sales firms makes the task very difficult, as unfortunately, to obtain a clear dispersal picture it is from such sourcesthat informa- tion must be gleaned. However, data related to the importa- tion of birds' of prey as recorded by the Bureau of Sport Fisheries and Wildlife is included, and it is felt some observa- tions can be made from these figures. -
Robot Dynamics - Fixed Wing UAS Exercise 1: Aircraft Aerodynamics & Flight Mechanics
Robot Dynamics - Fixed Wing UAS Exercise 1: Aircraft Aerodynamics & Flight Mechanics Thomas Stastny ([email protected]) 2016.11.30 Abstract This exercise analyzes the performance of the Techpod UAV during steady-level and gliding flight con- ditions. A decoupled longitudinal model is further derived from its full six-degrees-of-freedom represen- tation, and the necessary assumptions leading to said model are elaborated. 1 Aircraft Flight Performance Use the parameters given in Table3 and the following environmental and platform specific information to answer the following questions. Do not interpolate, simply take the closest value. Assume the aircraft is in steady conditions (i.e. Bv_ = B! = 0) at all times, and level (i.e. γ = 0), if powered. Enivronment: density ρ = 1:225kg=m3 (assume sea-level values) Aircraft specs: wing area S = 0:39m2, mass m = 2:65kg a) Calculate the minimum level flight speed of the Techpod UAV. Is this a good choice of operating airspeed? As we are assuming steady-level flight conditions, we may equate the lifting force with the force 2 of gravity, i.e. L = 0:5ρV ScL = mg. Solving this equation for airspeed, we see that maximizing cL, i.e. cL = cLmax = 1:125 (from Table3), minimizes speed. s 2mg Vmin = = 9:83m=s ρScLmax As this operating speed would be directly at the stall point of the aircraft, this is a highly dangerous condition. For sure not recommended as an operating speed. b) Suppose the motor fails. What maximum glide ratio can be reached? And at what speed is this maximum achieved? Conveniently, an aircraft's lift-to-drag ratio is numerically equivalent to its glide ratio, whether assuming steady-level (powered) or steady (un-powered / gliding) flight. -
Harris Hawk Parabuteo Unicinctus
Harris Hawk Parabuteo unicinctus Class: Aves Order: Falconiformes Family: Accipitridae Characteristics: As their Spanish name aguililla rojinegra (little red & black bird of prey) alludes to, the Harris Hawk’s flight feathers, tail feathers, dorsal and undercarriage are composed of a very dark brown color while their wings and legs are covered in a rusty red color. Unlike the Spanish name suggests, the Harris Hawk is considered a hawk. Their Latin name refers to their vulture-like wide, thick wings and the belt of white plumage at the base and the end of their tails. Behavior: Harris Hawks are the most social of the North American raptors, forming non-migratory, territorial groups composed of 2 to 7 (most commonly 4) individuals (All About Birds). With larger groups, there is usually an alpha female that is dominant over all the other group members including the alpha male. There is a small possibility of a subordinate breeding alpha female (Bednarz 1986, Dawson and Mannan 1991). Harris Hawk groups often hunt together. During the hunt, it has been observed that the hawks will communicate with one another via twitching the white markings on the tail (Woburn Safari Park). Hunting affords them a decrease in energy expenditure, the ability to successfully scare out and capture prey from hiding places and the ability to hunt larger prey than themselves (Bednarz 1988, Coulson and Coulson 2013). Reproduction: The alpha female and male are most often the only breeders of the group. Females frequently have clutches during the late Spring/early summer months, but can have up to three clutches per year. -
HAWK &Lpar;<I>PARABUTEO UNICINCTUS</I>
j. RaptorRes. 34(3):187-195 ¸ 2000 The Raptor ResearchFoundation, Inc. POPULATION FLUCTUATIONS OF THE HARRIS' HAWK (PARABUTEO UNICINCTUS) AND ITS REAPPEARANCE IN CALIFORNIA MICHAEL A. PATTEN Departmentof Biology,University of California,Riverside, CA 92521 U.S.A. RICHARD A. ERICKSON LSA Associates,One Park Plaza, Suite 500, Irvine, CA 92714 U.S.A. ABSTRACT.--TheHarris' Hawk (Parabuteounicinctus) was consideredextirpated from California in the mid-1960s.Most sightingsin the past 30 yearswere, therefore, consideredto be escapedor released birds. The specieshas recently staged an incursioninto southernCalifornia and northern BajaCalifornia in the 1990s,involving nearly 50 individualsand local breeding.This incursionwas apparently another in a long-term seriesof population fluctuationsof the Harris' Hawk, each bringing large numbersto the north and west of its establishedrange in Arizona and Baja California. Although first recorded at the state border in the 1850s, the Harris' Hawk was not recorded as a breeder until an incursion in the late 1910s and 1920s brought hundreds to the state, including the first known breeders.Numbers declined again in the 1940s,built up again in the 1950s,and thereafterdrastically declined to the point of their absenceby the mid-1960s.Therefore, the recent incursionwas not anomalousbut rather follows historicalpatterns of occurrence,indicating that California is on the fringe of the natural range of the Harris' Hawk, with emigrationbringing birds into the stateand subsequentpopulation decreases leading again to -
Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft
Trans. Japan Soc. Aero. Space Sci. Vol. 49, No. 165, pp. 137–145, 2006 Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft By Takeshi TSUCHIYA Department of Aeronautics and Astronautics, The University of Tokyo, Tokyo, Japan (Received November 16th, 2005) This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem. Key Words: -
A Microscopic Analysis of the Plumulaceous Feather Characteristics of Accipitriformes with Exploration of Spectrophotometry to Supplement Feather Identification
A MICROSCOPIC ANALYSIS OF THE PLUMULACEOUS FEATHER CHARACTERISTICS OF ACCIPITRIFORMES WITH EXPLORATION OF SPECTROPHOTOMETRY TO SUPPLEMENT FEATHER IDENTIFICATION by Charles Coddington A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Master of Science Biology Committee: __________________________________________ Dr. Larry Rockwood, Thesis Director __________________________________________ Dr. David Luther, Committee Member __________________________________________ Dr. Carla J. Dove, Committee Member __________________________________________ Dr. Ancha Baranova, Committee Member __________________________________________ Dr. Iosif Vaisman, Director, School of Systems Biology __________________________________________ Dr. Donna Fox, Associate Dean, Office of Student Affairs & Special Programs, College of Science __________________________________________ Dr. Peggy Agouris, Dean, College of Science Date: _____________________________________ Summer Semester 2018 George Mason University Fairfax, VA A Microscopic Analysis of the Plumulaceous Feather Characteristics of Accipitriformes with Exploration of Spectrophotometry to Supplement Feather Identification A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University by Charles Coddington Bachelor of Arts Connecticut College 2013 Director: Larry Rockwood, Professor/Chair Department of Biology Summer Semester 2019 George Mason University Fairfax, VA -
Global Phase Space Structures in a Model of Passive Descent
Global phase space structures in a model of passive descent Gary K. Nave, Jr., Shane D. Ross Engineering Mechanics Program, Virginia Tech Blacksburg, VA, 24061 Abstract Even the most simplified models of falling and gliding bodies exhibit rich nonlinear dy- namical behavior. Taking a global view of the dynamics of one such model, we find an attracting invariant manifold that acts as the dominant organizing feature of trajectories in velocity space. This attracting manifold captures the final, slowly changing phase of every passive descent, providing a higher-dimensional analogue to the concept of terminal velocity, the terminal velocity manifold. Within the terminal velocity manifold in extended phase space, there is an equilibrium submanifold with equilibria of alternating stability type, with different stability basins. In this work, we present theoretical and numerical methods for approximating the terminal velocity manifold and discuss ways to approximate falling and gliding motion in terms of these underlying phase space structures. Keywords: Gliding animals, Invariant manifolds, Gliding flight, Reduced order models, Passive aerodynamics 1. Introduction A wide variety of natural and engineered systems rely on aerodynamic forces for locomo- tion. Arboreal animals use gliding flight to catch prey or escape predators [1], while plant seeds may slowly follow the breeze to increase dispersion [2]. To compare different gliding animals with different morphologies, a variety of studies have resolved detailed motion of animals' glides from videos or other tracking methods [3{7]. Throughout their glide, animals may approach an equilibrium glide, but typically spend at least half of the glide between the initial ballistic descent, where aerodynamic forces are small, and the final equilibrium state when aerodynamic forces completely balance weight [5{7].