Observations on the Comparative Behavioral Ecology of Harris' Hawk in Central Chile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
198 Pursuit and Capture of a Ring-Billed Gull by Bald
198 Florida Field Naturalist 28(4):198-200, 2000. PURSUIT AND CAPTURE OF A RING-BILLED GULL BY BALD EAGLES ANDREW W. KRATTER1 AND MARY K. HART2 1Florida Museum of Natural History, P.O. Box 117800, University of Florida Gainesville, Florida 3261; email: kratter@flmnh.ufl.edu 2Department of Fisheries and Aquatic Sciences, University of Florida Gainesville, Florida, 32611 Bald Eagles (Haliaeetus leucocephalus) are opportunistic hunters that employ a num- ber of techniques to capture a wide variety of prey (Bent 1937, Brown and Amadon 1968, Sherrod et al. 1976, McEwan and Hirth 1980). These eagles are known to occasionally pursue prey, including flying birds, in pairs or larger groups (McIlhenny 1932, Sherrod et al. 1976, Folk 1992). Here we report three Bald Eagles giving a prolonged chase of a Ring- billed Gull (Larus delawarensis), which resulted in the gull’s capture by one of the eagles. At approximately 1500 on 12 December 1998, we were kayaking east across Newnan’s Lake in eastern Alachua County, Florida, when we noticed a group of approximately 50 Ring-billed Gulls sitting on the water near the center of the lake. As we approached to approximately 100 m, the gulls lifted off when an adult Bald Eagle flew toward them at a height of about 75 m. The eagle immediately started to chase a first-winter individual. The chase was linear at first, but the gull evaded the faster flying eagle with sharp turns. Over the next three minutes, the eagle continued to chase the gull with rather slow stoops from heights of 25-100 m followed by short, fast linear pursuits. -
White-Tailed Hawk (Geranoaetus Albicaudatus)
D. Oleyar, D. Ethier, L. Goodrich, D. Brandes, R. Smith, J. Brown, and J. Sodergren. 2021. The Raptor Population Index: 2019 Analyses and Assessments. Available at http://rpi-project.org/2019/assessments2019.php Introduction to North American Raptor Conservation Species Assessments We provide species assessments based on trend analyses through 2019 from 76 raptor migration count sites across North America spanning from Canada to Panama. Synthesis of trends at the continental and regional scales can highlight species and/or regions that warrant a closer look in the case of widespread declines or highlight conservation successes in the case of widespread increases. It is important to note that the intent of long-term monitoring efforts like RPI is to identify changes overtime, not necessarily to explain them—that is where focused research efforts come into play. RPI shines a light on species and places in need of closer looks and focused efforts. In these assessments, we provide a summary of the continental and regional migration count trends for each species and highlight species of concern. For complete and/or long-distance migrants such as Osprey, Broad-winged Hawk, Swainson’s Hawk, and Mississippi Kite, where essentially the entire population migrates out of its breeding range to a separate wintering range, the migration count trends provide a reliable assessment of actual population trends. For partial and short-distance migrants such as the Red-tailed Hawk, there is evidence that some species may be shifting their migratory behavior and/or wintering ranges in response to climate change and other factors (Bolgiano, 2013; Paprocki, et al, 2017). -
Chromosome Painting in Three Species of Buteoninae: a Cytogenetic Signature Reinforces the Monophyly of South American Species
Chromosome Painting in Three Species of Buteoninae: A Cytogenetic Signature Reinforces the Monophyly of South American Species Edivaldo Herculano C. de Oliveira1,2,3*, Marcella Mergulha˜o Tagliarini4, Michelly S. dos Santos5, Patricia C. M. O’Brien3, Malcolm A. Ferguson-Smith3 1 Laborato´rio de Cultura de Tecidos e Citogene´tica, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil, 2 Faculdade de Cieˆncias Exatas e Naturais, ICEN, Universidade Federal do Para´, Bele´m, PA, Brazil, 3 Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom, 4 Programa de Po´s Graduac¸a˜oem Neurocieˆncias e Biologia Celular, ICB, Universidade Federal do Para´, Bele´m, PA, Brazil, 5 PIBIC – Universidade Federal do Para´, Bele´m, PA, Brazil Abstract Buteoninae (Falconiformes, Accipitridae) consist of the widely distributed genus Buteo, and several closely related species in a group called ‘‘sub-buteonine hawks’’, such as Buteogallus, Parabuteo, Asturina, Leucopternis and Busarellus, with unsolved phylogenetic relationships. Diploid number ranges between 2n = 66 and 2n = 68. Only one species, L. albicollis had its karyotype analyzed by molecular cytogenetics. The aim of this study was to present chromosomal analysis of three species of Buteoninae: Rupornis magnirostris, Asturina nitida and Buteogallus meridionallis using fluorescence in situ hybridization (FISH) experiments with telomeric and rDNA probes, as well as whole chromosome probes derived from Gallus gallus and Leucopternis albicollis. The three species analyzed herein showed similar karyotypes, with 2n = 68. Telomeric probes showed some interstitial telomeric sequences, which could be resulted by fusion processes occurred in the chromosomal evolution of the group, including the one found in the tassociation GGA1p/GGA6. -
Estimations Relative to Birds of Prey in Captivity in the United States of America
ESTIMATIONS RELATIVE TO BIRDS OF PREY IN CAPTIVITY IN THE UNITED STATES OF AMERICA by Roger Thacker Department of Animal Laboratories The Ohio State University Columbus, Ohio 43210 Introduction. Counts relating to birds of prey in captivity have been accomplished in some European countries; how- ever, to the knowledge of this author no such information is available in the United States of America. The following paper consistsof data related to this subject collected during 1969-1970 from surveys carried out in many different direc- tions within this country. Methods. In an attempt to obtain as clear a picture as pos- sible, counts were divided into specific areas: Research, Zoo- logical, Falconry, and Pet Holders. It became obvious as the project advanced that in some casesthere was overlap from one area to another; an example of this being a falconer working with a bird both for falconry and research purposes. In some instances such as this, the author has used his own judgment in placing birds in specific categories; in other in- stances received information has been used for this purpose. It has also become clear during this project that a count of "pets" is very difficult to obtain. Lack of interest, non-coop- eration, or no available information from animal sales firms makes the task very difficult, as unfortunately, to obtain a clear dispersal picture it is from such sourcesthat informa- tion must be gleaned. However, data related to the importa- tion of birds' of prey as recorded by the Bureau of Sport Fisheries and Wildlife is included, and it is felt some observa- tions can be made from these figures. -
Harris Hawk Parabuteo Unicinctus
Harris Hawk Parabuteo unicinctus Class: Aves Order: Falconiformes Family: Accipitridae Characteristics: As their Spanish name aguililla rojinegra (little red & black bird of prey) alludes to, the Harris Hawk’s flight feathers, tail feathers, dorsal and undercarriage are composed of a very dark brown color while their wings and legs are covered in a rusty red color. Unlike the Spanish name suggests, the Harris Hawk is considered a hawk. Their Latin name refers to their vulture-like wide, thick wings and the belt of white plumage at the base and the end of their tails. Behavior: Harris Hawks are the most social of the North American raptors, forming non-migratory, territorial groups composed of 2 to 7 (most commonly 4) individuals (All About Birds). With larger groups, there is usually an alpha female that is dominant over all the other group members including the alpha male. There is a small possibility of a subordinate breeding alpha female (Bednarz 1986, Dawson and Mannan 1991). Harris Hawk groups often hunt together. During the hunt, it has been observed that the hawks will communicate with one another via twitching the white markings on the tail (Woburn Safari Park). Hunting affords them a decrease in energy expenditure, the ability to successfully scare out and capture prey from hiding places and the ability to hunt larger prey than themselves (Bednarz 1988, Coulson and Coulson 2013). Reproduction: The alpha female and male are most often the only breeders of the group. Females frequently have clutches during the late Spring/early summer months, but can have up to three clutches per year. -
Eagle-Eye Tours BIRD CHECKLIST
BIRD CHECKLIST Leader: Paul Prior Eagle-Eye Tours Guyana January 2016 BIRD SPECIES Common Name Scientific Name Seen/Heard TINAMOUS 1 Great Tinamou Tinamus major S 2 Cinereous Tinamou Crypturellus cinereus H 3 Undulated Tinamou Crypturellus undulatus S 4 Red-legged Tinamou Crypturellus erythropus H 5 Variegated Tinamou Crypturellus variegatus H DUCKS, GEESE, AND WATERFOWL 6 White-faced Whistling-DuckDendrocygna viduata S 7 Muscovy Duck Cairina moschata S GUANS, CHACHALACAS, AND CURASSOWS 8 Variable Chachalaca Ortalis motmot S 9 Spix's Guan Penelope jacquacu S 10 Black Curassow Crax alector S NEW WORLD QUAIL 11 Crested Bobwhite Colinus cristatus S 12 Marbled Wood-Quail Odontophorus gujanensis H STORKS 13 Maguari Stork Ciconia maguari S 14 Jabiru Jabiru mycteria S CORMORANTS AND SHAGS 15 Neotropic Cormorant Phalacrocorax brasilianus S ANHINGAS 16 Anhinga Anhinga anhinga S PELICANS 17 Brown Pelican Pelecanus occidentalis S HERONS, EGRETS, AND BITTERNS 18 Rufescent Tiger-Heron Tigrisoma lineatum S 19 Pinnated Bittern Botaurus pinnatus S 20 Cocoi Heron Ardea cocoi S 21 Great Egret Ardea alba S 22 Snowy Egret Egretta thula S 23 Little Blue Heron Egretta caerulea S 24 Tricolored Heron Egretta tricolor S 25 Cattle Egret Bubulcus ibis S 26 Striated Heron Butorides striata S 27 Capped Heron Pilherodius pileatus S 28 Yellow-crowned Night-HeronNyctanassa violacea S 29 Boat-billed Heron Cochlearius cochlearius S IBISES AND SPOONBILLS 30 Scarlet Ibis Eudocimus ruber S 31 Green Ibis Mesembrinibis cayennensis S 32 Buff-necked Ibis Theristicus caudatus -
HAWK &Lpar;<I>PARABUTEO UNICINCTUS</I>
j. RaptorRes. 34(3):187-195 ¸ 2000 The Raptor ResearchFoundation, Inc. POPULATION FLUCTUATIONS OF THE HARRIS' HAWK (PARABUTEO UNICINCTUS) AND ITS REAPPEARANCE IN CALIFORNIA MICHAEL A. PATTEN Departmentof Biology,University of California,Riverside, CA 92521 U.S.A. RICHARD A. ERICKSON LSA Associates,One Park Plaza, Suite 500, Irvine, CA 92714 U.S.A. ABSTRACT.--TheHarris' Hawk (Parabuteounicinctus) was consideredextirpated from California in the mid-1960s.Most sightingsin the past 30 yearswere, therefore, consideredto be escapedor released birds. The specieshas recently staged an incursioninto southernCalifornia and northern BajaCalifornia in the 1990s,involving nearly 50 individualsand local breeding.This incursionwas apparently another in a long-term seriesof population fluctuationsof the Harris' Hawk, each bringing large numbersto the north and west of its establishedrange in Arizona and Baja California. Although first recorded at the state border in the 1850s, the Harris' Hawk was not recorded as a breeder until an incursion in the late 1910s and 1920s brought hundreds to the state, including the first known breeders.Numbers declined again in the 1940s,built up again in the 1950s,and thereafterdrastically declined to the point of their absenceby the mid-1960s.Therefore, the recent incursionwas not anomalousbut rather follows historicalpatterns of occurrence,indicating that California is on the fringe of the natural range of the Harris' Hawk, with emigrationbringing birds into the stateand subsequentpopulation decreases leading again to -
A Microscopic Analysis of the Plumulaceous Feather Characteristics of Accipitriformes with Exploration of Spectrophotometry to Supplement Feather Identification
A MICROSCOPIC ANALYSIS OF THE PLUMULACEOUS FEATHER CHARACTERISTICS OF ACCIPITRIFORMES WITH EXPLORATION OF SPECTROPHOTOMETRY TO SUPPLEMENT FEATHER IDENTIFICATION by Charles Coddington A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Master of Science Biology Committee: __________________________________________ Dr. Larry Rockwood, Thesis Director __________________________________________ Dr. David Luther, Committee Member __________________________________________ Dr. Carla J. Dove, Committee Member __________________________________________ Dr. Ancha Baranova, Committee Member __________________________________________ Dr. Iosif Vaisman, Director, School of Systems Biology __________________________________________ Dr. Donna Fox, Associate Dean, Office of Student Affairs & Special Programs, College of Science __________________________________________ Dr. Peggy Agouris, Dean, College of Science Date: _____________________________________ Summer Semester 2018 George Mason University Fairfax, VA A Microscopic Analysis of the Plumulaceous Feather Characteristics of Accipitriformes with Exploration of Spectrophotometry to Supplement Feather Identification A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University by Charles Coddington Bachelor of Arts Connecticut College 2013 Director: Larry Rockwood, Professor/Chair Department of Biology Summer Semester 2019 George Mason University Fairfax, VA -
The Conservation Status of Raptors in Chile
Birds of Prey Bull. No. 3 (1986) The Conservation Status of Raptors in Chile Fabian M. Jaksic&Jaime E. Jimenez INTRODUCTION Information about raptors in Chile is found primarily in general works on the taxonomy, distribution and biology of Chilean birds or as part of studies (mainly systematic) that include Chilean specimens. Miscellaneous notes on the biology of selected raptor species usually provide some information on their food and habitat preferences and a few accounts for particular localities mention the presence, breeding and comparative abundance of raptors. Information on their habitat requirements is scarce and primarily qualitative. No doubt the best quantitative information comes from studies of their diet, which concentrate on central Chile. A few other dietary studies deal with raptor populations in the southern parts of the country. In short, the conservation status of Chilean raptors has scarcely been addressed, except for the necessarily brief treatment provided by Fottmann and Benoit (1983). In the following pages we present and discuss current knowledge pertaining to raptor conservation in Chile. METHODS We have reviewed all the published accounts which contain information on the status of raptors in Chile, augmented by verbal communications from competent wildlife biologists and our personal observations. For the purpose of our analysis, we have divided Chile into four regions, which roughly correspond with recognized vegetational and climatic units. Region 1: Northern Chile, from Arica to Copiapo; mainly warm desert areas, including oases and puna. Region 2: Central Chile, from Copiapo to Concepcion; mainly warm shrubland areas. Region 3: Southern Chile, from Ooncepcion to Quellon in Chiloe Island; mainly temperate forest areas. -
Breeding Biology of Neotropical Accipitriformes: Current Knowledge and Research Priorities
Revista Brasileira de Ornitologia 26(2): 151–186. ARTICLE June 2018 Breeding biology of Neotropical Accipitriformes: current knowledge and research priorities Julio Amaro Betto Monsalvo1,3, Neander Marcel Heming2 & Miguel Ângelo Marini2 1 Programa de Pós-graduação em Ecologia, IB, Universidade de Brasília, Brasília, DF, Brazil. 2 Departamento de Zoologia, IB, Universidade de Brasília, Brasília, DF, Brazil. 3 Corresponding author: [email protected] Received on 08 March 2018. Accepted on 20 July 2018. ABSTRACT: Despite the key role that knowledge on breeding biology of Accipitriformes plays in their management and conservation, survey of the state-of-the-art and of information gaps spanning the entire Neotropics has not been done since 1995. We provide an updated classification of current knowledge about breeding biology of Neotropical Accipitridae and define the taxa that should be prioritized by future studies. We analyzed 440 publications produced since 1995 that reported breeding of 56 species. There is a persistent scarcity, or complete absence, of information about the nests of eight species, and about breeding behavior of another ten. Among these species, the largest gap of breeding data refers to the former “Leucopternis” hawks. Although 66% of the 56 evaluated species had some improvement on knowledge about their breeding traits, research still focus disproportionately on a few regions and species, and the scarcity of breeding data on many South American Accipitridae persists. We noted that analysis of records from both a citizen science digital database and museum egg collections significantly increased breeding information on some species, relative to recent literature. We created four groups of priority species for breeding biology studies, based on knowledge gaps and threat categories at global level. -
Molecular Phylogenetics of the Buteonine Birds of Prey (Accipitridae)
'e Auk 304(2):304–315, 2008 )e American Ornithologists’ Union, 2008. Printed in USA. MOLECULAR PHYLOGENETICS OF THE BUTEONINE BIRDS OF PREY (ACCIPITRIDAE) HEATHER R. L. LERNER,1 MATTHEW C. KLAVER, AND DAVID P. MINDELL2 Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA A.—Phylogenetic relationships among birds of prey in thhee subbffamily Buteoninae are not fully established but are of par- ticular interest because the Buteoninae constitute one of the largest accipitrid subgroups and include multiple species of conservation concern. Genera previously included within the Buteoninae are Buteo, Leucopternis, Buteogallus, Harpyhaliaetus, Busarellus, Parabu- teo, Geranoaetus, Geranospiza, Ictinia, Rostrhamus, Kaupifalco, and Butastur. We analyzed representatives from all buteonine genera and most non-Buteo (i.e., “sub-buteo”) species with , bases of nuclear and mitochondrial DNA and found non-monophyly for the nominal genera Buteo, Buteogallus, and Leucopternis. )e Old World Lizard Buzzard (Kaupifalco monogrammicus) is not closely re- lated to buteonine taxa but is sister to goshawks in the genera Melierax, Micronisus, and Urotriorchis. Another Old World genus, Butas- tur, is sister to the clade including all other buteonine genera mentioned above. Investigation of several “superspecies” complexes within the genus Leucopternis revealed non-monophyly for the four subspecies of White Hawk (L. albicollis). On the basis of mitochondrial data, L. a. albicollis forms a clade with L. polionotus, whereas L. a. costaricensis, L. a. ghiesbreghti, and L. a. williaminae form a clade with L. occidentalis. Among taxa included as outgroups, we found two species in the genus Circus to be clearly nested within a clade of Accipiter spp. -
Hunting the Unexpected: Harris's Hawks (Parabuteo Unicinctus
Revista Brasileira de Ornitologia, 22(3), 297-299 SHORTCOMMUNICATION September 2014 Hunting the unexpected: Harris’s Hawks (Parabuteo unicinctus) preying on bats in a Neotropical megacity Rubén Ortega-Álvarez1,2 and Rafael Calderón-Parra1 1 Iniciativa para la Conservación de las Aves de América del Norte-México (NABCI-México), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Liga Periférico-Insurgentes Sur, No. 4903, Col. Parques del Pedregal, Delegación Tlalpan, 14010, Distrito Federal, México. 2 Corresponding author: [email protected] Received on 6 June 2013. Accepted on 29 June 2014. ABSTRACT: Many wildlife species have modified their behaviors in order to thrive within cities. Since the 1980’s, Harris’s Hawk has become a regular resident species in Mexico City, Mexico. Here, we report on what may be an urban adaptation – two Harris’s Hawks hunting bats in urban, southern Mexico City. This represents the first formal record of Harris’s Hawk preying on bats, either within anthropogenic or natural ecosystems. Cities might facilitate access to novel food resources for particular sorts of species, including urban adaptable ones such as the Harris’s Hawk. KEYWORDS: Accipitridae, diet, falconry, hunting, Mexico City, raptor, urbanization. Urban development affects original ecosystems worldwide Arizona; Dawson 1998). In other areas of the continent, by altering all levels of biological organization, from urbanization has created new conditions that offer novel ecosystemic to individual ones (Blair 2004, Grimm et al. resources to the species, resulting in the colonization 2008). As a result of the stress and hazards imposed by of urban areas by this hawk (Dwyer & Bednarz 2011).