Cullin 5 Regulates Dab1 Protein Levels and Neuron Positioning During Cortical Development

Total Page:16

File Type:pdf, Size:1020Kb

Cullin 5 Regulates Dab1 Protein Levels and Neuron Positioning During Cortical Development Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development Libing Feng,1,3 Nathaniel S. Allen,1,2,3 Sergi Simo,1 and Jonathan A. Cooper1,2,4 1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 2Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, Washington 98109, USA Many laminated regions of the mammalian brain develop by the migration of neuronal precursor cells, whose final positions are coordinated by signals from the secreted molecule Reelin. Early events in Reelin signaling have been identified, but the mechanism of signal down-regulation has been unclear. A possible source of negative feedback is the Reelin-induced degradation of the critical intracellular signaling component, Disabled-1 (Dab1). Here we show that degradation of Dab1 depends on Dab1 phosphorylation at specific tyrosine residues and on the E3 ubiquitin ligase component Cullin 5 (Cul5). Cul5 forms complexes with SOCS (suppressors of cytokine signaling) proteins, which bind to phosphorylated Dab1 and target it for degradation in tissue culture cells. Ablation of Cul5 in migrating neurons causes an accumulation of active Dab1 protein and a unique cortical layering defect, characterized by excess migration and buildup of neurons at the top of the cortical plate. The results implicate Cul5 and SOCS proteins in down-regulation of Dab1 in vivo and show that Cul5 plays an essential role in regulating neuron migrations during cortical development, possibly by opposing a promigratory effect of Dab1. [Keywords: Cullin; Dab1; Reelin; cortical development; neuronal migration; ubiquitin] Supplemental material is available at http://www.genesdev.org. Received August 13, 2007; revised version accepted September 14, 2007. Development of complex organisms requires precise pro- nisms to direct the migration of each new layer of neu- duction, positioning, and differentiation of many cell rons past its predecessors (Rakic 1995; Kriegstein et al. types. In some cases, cells migrate long distances and 2006). As the cortex grows, neurons fated for the upper along intricate routes to reach the places where they dif- cortical plate layers must navigate through a thicket of ferentiate. This is the case during development of the other cells. mammalian neocortex (Hatten 2002; Marin and Ruben- The neuron migrations that organize this inside-out stein 2003; Nadarajah et al. 2003; Kriegstein and Noctor layering of the neocortex are regulated by the Reelin– 2004). Neuronal progenitor cells, located in the ventricu- Dab1 pathway (for review, see Rice and Curran 2001; lar zone adjacent to the lateral ventricle, give rise to pre- Gupta et al. 2002; Jossin 2004; Herz and Chen 2006). cursors that migrate radially outward through a cell-poor Reelin is a secreted protein that acts on other cells by region called the intermediate zone to establish the ini- inducing clustering of specific receptors, increasing the tial layers of the cortical plate. As embryonic develop- activity of two Src family tyrosine kinases (SFKs), Fyn ment progresses, neuronal precursors will give rise to and Src, and increasing tyrosine phosphorylation of the distinct types of projection neurons—distinguishable by membrane-associated cytoplasmic protein Disabled-1 their gene expression, morphology, axonal and dendritic (Dab1). All these components have been shown by ge- architecture, and synaptic properties—that arrange them- netics and biochemistry to be involved in Reelin signal- selves into six discrete layers that compose the mature ing in the neocortex, and failure of Reelin to induce Dab1 cortical plate. These layers are normally arranged in an tyrosine phosphorylation during development results in inside-out manner according to neuronal birth order. an inversion of cortical plate layering. This arrangement is thought to have allowed for expan- While much is known about the initial events in sion of the neocortex during mammalian evolution, a Reelin signaling, less is known about how this signal is process that would also require the evolution of mecha- modulated. Negative feedback buffers signaling against noise and allows for adaptation, which is important for cells or axons to follow a concentration gradient during 3These authors contributed equally to this work. chemotaxis or to respond appropriately to temporal 4Corresponding author. E-MAIL [email protected]; FAX (206) 667-6522. changes in stimulus strength (Ferrell 1996; Yi et al. 2000; Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1604207. Heinrich et al. 2002; Ming et al. 2002; Weiner 2002). GENES & DEVELOPMENT 21:2717–2730 © 2007 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/07; www.genesdev.org 2717 Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Feng et al. While many signaling pathways are down-regulated by 2005). We were interested in which phosphotyrosines in inactivation of a kinase, SFKs that have been activated Dab1 might be involved in turnover. Dab1 can be phos- by Reelin remain active due to positive feedback from phorylated at up to four sites—a (Tyr185), b (Tyr198), phospho-Dab1 (Arnaud et al. 2003b; Ballif et al. 2003; c (Tyr220), and d (Tyr232)—by forced expression of an Bock and Herz 2003). However, Reelin-induced tyrosine SFK (Fig. 1A; Howell et al. 2000; Keshvara et al. 2001). phosphorylation of Dab1 leads to polyubiquitination and Phosphorylation of the b, c, and d sites has been de- proteasome-dependent degradation of Dab1 (Arnaud et tected in neurons (Keshvara et al. 2001; Ballif et al. al. 2003a; Bock et al. 2004). Due to this degradation, 2004). The a and b sites lie in similar YQXI sequences, Dab1 protein levels are lower in wild-type embryo brains and the c and d sites lie in YXVP. To allow for pos- than in Reelin, receptor, or SFK mutants (Rice et al. sible redundancy between sites of similar sequence, we 1998; Trommsdorff et al. 1999; Howell et al. 2000; Kuo compared the Reelin-induced phosphorylation and et al. 2005). After Reelin-induced down-regulation, Dab1 degradation of wild-type Dab1WT, Dab1ab (sites a and b protein levels recover slowly, providing a refractory pe- mutated), Dab1cd (sites c and d mutated), and Dab15F riod during which the cells cannot respond a second time (mutated at all four sites and Tyr200) (Howell et al. (Arnaud et al. 2003a; Bock et al. 2004). Reelin-induced 2000). These proteins were tagged with GFP to distin- degradation is a major mechanism for signal down-regu- guish them from endogenous Dab1, and expressed in pri- lation, because proteasome inhibitors cause a sustained mary neuron cultures using electroporation (Xu et al. tyrosine phosphorylation of Dab1 in response to Reelin. 2005). These observations raise the possibility that degradation As shown in Figure 1B, phosphorylation of wild-type of tyrosine-phosphorylated Dab1 is a negative feedback Dab1WT-GFP is stimulated by Reelin, as expected. mechanism that could be important for regulating Ree- Dab1ab-GFP and Dab1cd-GFP proteins exhibit reduced lin responses in vivo. levels of basal and Reelin-stimulated tyrosine phos- Here we investigated the mechanism for Dab1 degra- phorylation, but in both cases, Reelin still stimulates dation. Previous reports had shown that overexpres- some phosphorylation of the remaining sites (Fig. 1B). sion of the E3 ubiquitin ligase Cbl induces Dab1 ubiqui- This means that neither pair of phosphorylation sites is tination in tissue culture cells (Suetsugu et al. 2004). essential for phosphorylation of the remaining sites, at However, degradation of the ubiquitinated Dab1 was not least when the proteins are overexpressed. reported. In addition, Dab1 was found to bind and inhibit We then tested for Reelin-induced degradation, using another E3 ligase, Siah-1A (Park et al. 2003). In contrast, MAP2-GFP as an internal control for electroporation we found that degradation of Dab1 in tissue culture cells efficiency. Cultures were exposed to Reelin for 3–5d is not induced by Cbl, but is specifically stimulated by to induce Dab1 down-regulation. We found that overexpression of suppressor of cytokine signaling-1 Dab1WT-GFP is down-regulated in Reelin-stimulated (SOCS1) or SOCS3 proteins. We identified the tyrosine cultures relative to control cultures (Fig. 1C). By com- residues in Dab1 that mediate Reelin-induced Dab1 paring the level of Dab1WT-GFP with MAP2-GFP in re- down-regulation in neurons and found that the same peated experiments, we determined that the Reelin- sites mediate SOCS-stimulated degradation in tissue induced decrease was ∼30% (Fig. 1C, histogram). This culture cells. SOCS proteins are adaptors for an E3 ligase compares with ∼80% decrease in endogenous Dab1 p80 complex containing the key component Cullin-5 (Cul5) in the same cultures (Fig. 1C, middle panel). The in- (for review, see Ilangumaran et al. 2004; Petroski and efficient degradation of Dab1WT-GFP relative to endog- Deshaies 2005). Knockdown of Cul5 in cultured neurons enous Dab1 p80 may be due to its overexpression and protects active Dab1 from Reelin-induced degradation. lower stoichiometry of phosphorylation (Xu et al. 2005). Furthermore, Cul5 knockdown in developing mouse However, the degradation of Dab1WT-GFP required phos- brain causes accumulation of phosphorylated, active phorylation, since levels of Dab15F-GFP were equal in Dab1 in migrating neurons, confirming the importance Reelin-treated and control cultures (Fig. 1C). More- of Cul5 for Dab1 degradation in vivo. Cul5 knockdown over, Dab1ab-GFP was not degraded in response to also causes a novel upward shift in positions of cortical Reelin, while Dab1cd-GFP was degraded to the same ex- neurons, suggesting that ubiquitin-mediated proteolysis tent at Dab1WT-GFP. Testing the a and b phosphoryla- plays an important role in cortical lamination. This pro- tion sites individually showed that the b site is required vides the first evidence that protein degradation is in- for Reelin-induced degradation (Fig.
Recommended publications
  • Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
    ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings
    G C A T T A C G G C A T genes Article Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings Jasleen Dhaliwal 1 , Ying Qiao 1,2, Kristina Calli 1,2, Sally Martell 1,2, Simone Race 3,4,5, Chieko Chijiwa 1,5, Armansa Glodjo 3,5, Steven Jones 1,6 , Evica Rajcan-Separovic 2,7, Stephen W. Scherer 4 and Suzanne Lewis 1,2,5,* 1 Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; [email protected] (J.D.); [email protected] (Y.Q.); [email protected] (K.C.); [email protected] (S.M.); [email protected] (C.C.); [email protected] (S.J.) 2 BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada; [email protected] 3 Department of Pediatrics, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada; [email protected] (S.R.); [email protected] (A.G.) 4 The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada; [email protected] 5 BC Children’s and Women’s Health Center, Vancouver, BC V6H 3N1, Canada 6 Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada 7 Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada * Correspondence: [email protected] Abstract: Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in Citation: Dhaliwal, J.; Qiao, Y.; Calli, children and shows high heritability.
    [Show full text]
  • 1 CRL5-Dependent Regulation of Arl4c and Arf6 Controls Hippocampal Morphogenesis 2 3 Authors: Jisoo S
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.902221; this version posted January 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRL5-dependent regulation of Arl4c and Arf6 controls hippocampal morphogenesis 2 3 Authors: Jisoo S. Han1,4, Keiko Hino1,4, Raenier V. Reyes1, Cesar P. Canales1,3, Adam M. Miltner1, 4 Yasmin Haddadi1, Junqing Sun2, Chao-Yin Chen2, Anna La Torre1, and Sergi Simó1. 5 6 Affiliations 7 1 Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA. 8 2 Department of Pharmacology, University of California Davis, CA 95616, USA. 9 3 Current affiliation: UC Davis Center for Neurosciences and Department of Psychiatry and Behavioral 10 Sciences, University of California Davis, CA 95616, USA. 11 4 These authors contributed equally to this work. 12 Corresponding author: Sergi Simó, [email protected] 13 14 Summary 15 The small GTPase Arl4c participates in the regulation of cell migration, cytoskeletal rearrangements, 16 and vesicular trafficking in epithelial cells. The Arl4c signaling cascade starts by the recruitment of the 17 Arf-GEF cytohesins to the plasma membrane, which in turn engage the small GTPase Arf6. In the 18 nervous system, Arf6 regulates dendrite outgrowth in vitro and neuronal migration in the developing 19 cortex. However, the role of Arl4c-cytohesin-Arf6 signaling during brain development and particularly 20 during hippocampal development remain elusive. Here, we report that the E3 ubiquitin ligase Cullin 21 5/Rbx2 (CRL5) controls the stability of Arl4c and its signaling effectors to regulate hippocampal 22 morphogenesis.
    [Show full text]
  • Filamins but Not Janus Kinases Are Substrates of the Asb2a Cullin-Ring E3 Ubiquitin Ligase in Hematopoietic Cells
    Filamins but Not Janus Kinases Are Substrates of the ASB2a Cullin-Ring E3 Ubiquitin Ligase in Hematopoietic Cells Isabelle Lamsoul1,2, Monique Erard1,2, Peter F. M. van der Ven3, Pierre G. Lutz1,2* 1 CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne BP64182, F-31077 Toulouse, France, 2 Universite´ de Toulouse, UPS, IPBS, F- 31077 Toulouse, France, 3 Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany Abstract The ASB2a protein is the specificity subunit of an E3 ubiquitin ligase complex involved in hematopoietic differentiation and is proposed to exert its effects by regulating the turnover of specific proteins. Three ASB2a substrates have been described so far: the actin-binding protein filamins, the Mixed Lineage Leukemia protein, and the Janus kinases 2 and 3. To determine the degradation of which substrate drives ASB2a biological effects is crucial for the understanding of ASB2a functions in hematopoiesis. Here, we show that neither endogenous nor exogenously expressed ASB2a induces degradation of JAK proteins in hematopoietic cells. Furthermore, we performed molecular modeling to generate the first structural model of an E3 ubiquitin ligase complex of an ASB protein bound to one of its substrates. Citation: Lamsoul I, Erard M, van der Ven PFM, Lutz PG (2012) Filamins but Not Janus Kinases Are Substrates of the ASB2a Cullin-Ring E3 Ubiquitin Ligase in Hematopoietic Cells. PLoS ONE 7(8): e43798. doi:10.1371/journal.pone.0043798 Editor: Zhengqi Wang, Emory University, United States of America Received March 21, 2012; Accepted July 26, 2012; Published August 20, 2012 Copyright: ß 2012 Lamsoul et al.
    [Show full text]
  • Cullin 5 Regulates Cortical Layering by Modulating the Speed and Duration of Dab1-Dependent Neuronal Migration
    5668 • The Journal of Neuroscience, April 21, 2010 • 30(16):5668–5676 Cellular/Molecular Cullin 5 Regulates Cortical Layering by Modulating the Speed and Duration of Dab1-Dependent Neuronal Migration Sergi Simó, Yves Jossin, and Jonathan A. Cooper Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 Themultilayeredmammalianneocortexdevelopsbythecoordinatedimmigrationanddifferentiationofcellsthatareproducedatdistant sites. Correct layering requires an extracellular protein, Reelin (Reln), an intracellular signaling molecule, Disabled-1 (Dab1), and an E3 ubiquitinligase,Cullin-5(Cul5).RelnactivatesDab1,whichisthendegradedbyCul5.HerewetestwhetherCul5regulatesneuronlayering by affecting Dab1 stability or other mechanisms. We find that a stabilized mutant Dab1, which resists Cul5-dependent degradation, causes a similar phenotype to Cul5 deficiency. Moreover, Cul5 has no effect when Dab1 is absent. The effects of Cul5 and Dab1 are cell autonomous, and Cul5 regulates movement of early as well as late cortical neurons. Removing Cul5 increases the speed at which neurons migrate through the cortical plate by reducing the time spent stationary and increasing the speed of individual steps. These results show thatCul5regulatesneuronlayeringbystimulatingDab1degradationandthatCul5controlsmigrationspeedandstoppingpoint,andthey demonstrate the importance of negative feedback in signaling during cortical development. Introduction (Pinto-Lord et al., 1982; Dulabon et al., 2000; Sanada et al., 2004). The mammalian
    [Show full text]
  • Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
    1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function.
    [Show full text]
  • E3 Ubiquitin Ligase Cullin-5 Modulates Multiple Molecular and Cellular Responses to Heat Shock Protein 90 Inhibition in Human Cancer Cells
    E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells Rahul S. Samant, Paul A. Clarke, and Paul Workman1 Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK Edited by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 3, 2014 (received for review December 24, 2013) The molecular chaperone heat shock protein 90 (HSP90) is required Given the link between CUL5 and the HSP90 inhibitor- for the activity and stability of its client proteins. Pharmacologic induced degradation of ERBB2 (12), we have investigated the inhibition of HSP90 leads to the ubiquitin-mediated degradation of role of Cullin-RING ligases with respect to HSP90’s protein kinase clients, particularly activated or mutant oncogenic protein kinases. clients in human cancer cell lines. Our initial focused siRNA Client ubiquitination occurs via the action of one or more E3 screen of 28 Cullin-RING ligase family members identified five ubiquitin ligases. We sought to identify the role of Cullin-RING fam- genes, including CUL5, that were required for ERBB2 degra- ily E3 ubiquitin ligases in the cellular response to HSP90 inhibition. dation following treatment with 17-AAG—which we use here as Through a focused siRNA screen of 28 Cullin-RING ligase family a representative HSP90 inhibitor and chemical tool to promote members, we found that CUL5 and RBX2 were required for degra- client protein turnover. We go on to show for the first time to our dation of several HSP90 clients upon treatment of human cancer knowledge that RNAi silencing of CUL5 reduces the 17-AAG– cells with the clinical HSP90 inhibitor 17-AAG.
    [Show full text]
  • CRL5-Dependent Regulation of the Small Gtpases ARL4C and ARF6 Controls Hippocampal Morphogenesis
    CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis Jisoo S. Hana,1, Keiko Hinoa,1, Wenzhe Lia, Raenier V. Reyesa, Cesar P. Canalesa,2, Adam M. Miltnera, Yasmin Haddadia, Junqing Sunb, Chao-Yin Chenb, Anna La Torrea, and Sergi Simóa,3 aDepartment of Cell Biology and Human Anatomy, University of California, Davis, CA 95616; and bDepartment of Pharmacology, University of California, Davis, CA 95616 Edited by Mary E. Hatten, Rockefeller University, New York, NY, and approved August 3, 2020 (received for review February 14, 2020) The small GTPase ARL4C participates in the regulation of cell migra- Importantly, CRL5 substrate adaptors are dynamically regulated tion, cytoskeletal rearrangements, and vesicular trafficking in epithe- during development, directing CRL5 activity to specific substrates lial cells. The ARL4C signaling cascade starts by the recruitment of the at different times and areas in the CNS (19). In the neocortex, ARF–GEF cytohesins to the plasma membrane, which, in turn, bind CRL5 opposes projection neuron migration by down-regulating and activate the small GTPase ARF6. However, the role of ARL4C– the Reelin/DAB1 signaling pathway as migrating projection neu- cytohesin–ARF6 signaling during hippocampal development remains rons reach the top of the cortical plate (18, 20, 21). In the CNS, elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 Reelin/DAB1 signaling participates in several developmental (CRL5) controls the stability of ARL4C and its signaling effectors to processes, including neuron migration, dendritogenesis, axo- regulate hippocampal morphogenesis. Both RBX2 knockout and genesis, and synaptogenesis (22–24). Moreover, CRL5 also con- Cullin 5 knockdown cause hippocampal pyramidal neuron mislocali- trols levels of the tyrosine kinase FYN, which exerts important zation and development of multiple apical dendrites.
    [Show full text]
  • "The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
    The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses.
    [Show full text]
  • CRL5-Dependent Regulation of the Small Gtpases ARL4C and ARF6 Controls Hippocampal Morphogenesis
    CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis Jisoo S. Hana,1, Keiko Hinoa,1, Wenzhe Lia, Raenier V. Reyesa, Cesar P. Canalesa,2, Adam M. Miltnera, Yasmin Haddadia, Junqing Sunb, Chao-Yin Chenb, Anna La Torrea, and Sergi Simóa,3 aDepartment of Cell Biology and Human Anatomy, University of California, Davis, CA 95616; and bDepartment of Pharmacology, University of California, Davis, CA 95616 Edited by Mary E. Hatten, Rockefeller University, New York, NY, and approved August 3, 2020 (received for review February 14, 2020) The small GTPase ARL4C participates in the regulation of cell migra- Importantly, CRL5 substrate adaptors are dynamically regulated tion, cytoskeletal rearrangements, and vesicular trafficking in epithe- during development, directing CRL5 activity to specific substrates lial cells. The ARL4C signaling cascade starts by the recruitment of the at different times and areas in the CNS (19). In the neocortex, ARF–GEF cytohesins to the plasma membrane, which, in turn, bind CRL5 opposes projection neuron migration by down-regulating and activate the small GTPase ARF6. However, the role of ARL4C– the Reelin/DAB1 signaling pathway as migrating projection neu- cytohesin–ARF6 signaling during hippocampal development remains rons reach the top of the cortical plate (18, 20, 21). In the CNS, elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 Reelin/DAB1 signaling participates in several developmental (CRL5) controls the stability of ARL4C and its signaling effectors to processes, including neuron migration, dendritogenesis, axo- regulate hippocampal morphogenesis. Both RBX2 knockout and genesis, and synaptogenesis (22–24). Moreover, CRL5 also con- Cullin 5 knockdown cause hippocampal pyramidal neuron mislocali- trols levels of the tyrosine kinase FYN, which exerts important zation and development of multiple apical dendrites.
    [Show full text]
  • Transcriptional Elongation Factor Elongin a Regulates Retinoic Acid-Induced Gene Expression During Neuronal Differentiation
    Cell Reports Report Transcriptional Elongation Factor Elongin A Regulates Retinoic Acid-Induced Gene Expression during Neuronal Differentiation Takashi Yasukawa,1 Shachi Bhatt,3,4 Tamotsu Takeuchi,6 Junya Kawauchi,7 Hidehisa Takahashi,3,8 Aya Tsutsui,1 Takuya Muraoka,1 Makoto Inoue,7 Masayuki Tsuda,2 Shigetaka Kitajima,7 Ronald C. Conaway,3,5 Joan W. Conaway,3,5 Paul A. Trainor,3,4 and Teijiro Aso1,* 1Department of Functional Genomics 2Institute for Laboratory Animal Research Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan 3Stowers Institute for Medical Research, Kansas City, MO 64110, USA 4Department of Anatomy and Cell Biology 5Department of Biochemistry and Molecular Biology Kansas University Medical Center, Kansas City, KS 66160, USA 6Department of Immunopathology, Gifu University School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1194, Japan 7Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan 8Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan *Correspondence: [email protected] http://dx.doi.org/10.1016/j.celrep.2012.09.031 SUMMARY target for gene regulation by a diverse collection of elongation factors that promote efficient elongation of transcripts by pol II Elongin A increases the rate of RNA polymerase II in vitro (Saunders et al., 2006). Elongin is a member of a family (pol II) transcript elongation by suppressing transient of elongation factors that can increase the overall rate of RNA pausing by the enzyme. Elongin A also acts as chain elongation by decreasing the frequency and/or duration a component of a cullin-RING ligase that can target of transient pausing by pol II as it traverses the DNA template stalled pol II for ubiquitylation and proteasome- (Conaway et al., 2000; Shilatifard et al., 2003).
    [Show full text]