Matrix Product States: Entanglement, Symmetries, and State Transformations

Total Page:16

File Type:pdf, Size:1020Kb

Matrix Product States: Entanglement, Symmetries, and State Transformations Matrix Product States: Entanglement, symmetries, and state transformations David Sauerwein∗ Max-Planck-Institut f¨urQuantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany and Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21A, 6020 Innsbruck, Austria Andras Molnar† and J. Ignacio Cirac‡ Max-Planck-Institut f¨urQuantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 M¨unchen,Germany Barbara Kraus§ Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21A, 6020 Innsbruck, Austria (Dated: January 24, 2019) We analyze entanglement in the family of translationally-invariant matrix product states (MPS). We give a criterion to determine when two states can be transformed into each other by SLOCC transformations, a central question in entanglement theory. We use that criterion to determine SLOCC classes, and explicitly carry out this classification for the simplest, non-trivial MPS. We also characterize all symmetries of MPS, both global and local (inhomogeneous). We illustrate our results with examples of states that are relevant in different physical contexts. 1. Introduction: Entanglement is a resource for numer- formations can be reduced to families of non-generic, but ous striking applications of quantum information theory physically relevant states. [1, 2]. Furthermore, it is key to comprehend many pecu- In this Letter we present a systematic investigation of liar properties of quantum many-body systems [3, 4] and state transformations for Matrix Product States (MPS) has become increasingly important in areas like quantum that describe translationally invariant systems (with pe- field theory or quantum gravity [5, 6]. Despite its rele- riodic boundary conditions) [19, 20]. Ground states of vance, entanglement is far from being fully understood; gapped 1D local Hamiltonians or states generated se- at least in the multipartite setting. State transforma- quentially by a source can be efficiently approximated by tions play a crucial role as they define a partial order MPS [21, 22]. Hence, these states play a very important in the set of states. For instance, if a state Ψ can be role in both, quantum information theory and in many- transformed into a state Φ deterministically by local op- body physics. Despite the fact that they describe a broad erations and classical communication (LOCC), then Ψ is variety of phenomena, they have a simple description: tri- at least as entangled as Φ [2]. If two states cannot even partite states – the fiducial states of MPS – completely probabilistically be interconverted via local operations, characterize the MPS. We give a criterion to estipulate i.e., by so-called stochastic LOCC (SLOCC) transforma- when an SLOCC transformation between two such MPS tions, their entanglement is not comparable, as one or exists, and further give criteria to determine the SLOCC the other may be more useful for different informational classes dictated by such a relation. These classes build a tasks [7]. Thus, the study of state transformations is finer structure on top of the SLOCC classification of the crucial for the theory of entanglement. fiducial states, with the additional structure depending For bipartite systems, state transformations are fully on the system size. characterized and have led to a very clear picture [8, 9], The methods introduced here also allow us to iden- which is widely used in different areas of research. For tify all local symmetries of MPS (not only corresponding more parties such a characterization is much more chal- to unitary representations [23, 24])[25]. This is interest- arXiv:1901.07448v2 [quant-ph] 23 Jan 2019 lenging. In general, there are infinitely many classes of ing on its own right in the theory of tensor networks, as states that can be interconverted via SLOCC, and only it induces a classification of zero temperature phases of in few cases they can be characterized, like for symmet- matter [26–28]. As we show, the problems we address ric states or for certain tripartite and four-partite states can be mapped to finding out certain cyclic structures of [10–15]. Moreover, for more than four parties of the same operators acting on tripartite states. Thus, our results local dimensions almost no state can be transformed into allow to answer questions like: Can an AKLT state be an inequivalent state via deterministic LOCC, and the transformed into a cluster state? What are all the sym- partial order induced by LOCC becomes trivial [16, 17]. metries of these states? What are the SLOCC classes of This shows that generic states are not very interesting MPS? As we show, the answers to these questions can be from the perspective of local transformations. Addition- strongly size-dependent. ally, most of the states in the Hilbert space cannot be 2. Matrix Product States: We consider here a chain reached in polynomial time even if constant-size nonlocal of N d-level systems in a translationally invariant MPS. gates are allowed [18]. Hence, the study of state trans- One such state, Ψ(A), is defined in terms of a tripartite 2 fiducial state, where T denotes the transponse in the standard basis. T We say that h1, h2 GA with hi = gi xi yi , can be d 1 D 1 ∈ ⊗ ⊗ − − j concatenated and write h1 h2 if y1x2 11. For k N A = Aα,β j, α, β (1) k → ∝ ∈ | i | i we call a sequence hi i=1 GA with j=0 α,β=0 { } ⊆ X X h h ... h h (4) as 1 → 2 → → k → 1 a k cyle. Then we have: Ψ(A) = Tr(Aj1 ...AjN ) j , . , j . (2) − | i | 1 N i j ,...,j Theorem 1. The local (global) symmetries of Ψ(A) 1X N ∈ N,D are in one-to-one correspondence with the N-cycles j N Here, D denotes the bond dimension and A a matrix (1-cycles) in GA. with components Aj . The corresponding tensor is α,β The symmetry of the state corresponding to the cycle called injective if those matrices span the set of D D j × h1 h2 ... hN h1 is g1 gN . The matrices. The matrix = j,α,β Aα,β j α, β then has → → → → ⊗ · · · ⊗ 1 A | ih | trivial symmetry with g = 11 always exists. The proof a left inverse − [20]. This does not occur generically A P2 is based on the fundamental theorem of MPS [30] and is since it requires that d D . We consider here normal given in the Supplemental Material (SM) [35]. Hence, one tensors instead, which are≥ generic and are those that be- 2 simply has to determine GA and find all of its N-cycles to come injective after blocking L 2D (6 + log2(D)) sites characterize the local symmetries of Ψ(A). It suffices to [29]. Furthermore, we consider ≤N 2L + 1, so that we ≥ find all minimal cycles of GA from which all others can can apply the fundamental theorem of MPS [30]. We call be obtained by concatenation. For example, a 2-cycle N,D the set of normal, translationally invariant MPS can always be concatenated with itself to an N-cycle if withN bond dimension D and N 2L + 1 sites. Note ≥ N is even. The global symmetries are defined in terms also that we only consider states with full local ranks 1 T of 1-cycles, and thus require g x− x A = A . For as we could otherwise map the problem to smaller local g unitary we therefore recover⊗ previous⊗ results| i | [23,i 24]. dimensions. The novelty relies on the fact that one may also have We use several examples of some particularly relevant local symmetries, with different gj. In the following we states of bond dimension 2 to illustrate our results. They illustrate this fact and the dependence of the symmetries are generated by fiducial states X = (11 b 11) X , | bi ⊗ ⊗ | i on the system size. where X is one of the following states: For injective MPS with D = d2 it is straightforward to (i) the W state W = 100 + 010 + 001 ; show that [35] (ii) the GHZ state| iGHZ| =i 000| +i 111| ; i | i | i | i T (iii) the cluster state GHZH , where H = GA = sx,y x y x, y GL(D, C) , (5) ( 1)ij i j ; | i { ⊗ ⊗ | ∈ } ij − | ih | T 1 1 1 (iv) the state A = √2 010 100 + 111 √2 201 , where sx,y = (x − y− ) − . These operators can P A A ⊗ A which generates| i the| AKLTi − state;| i | i − | i be concatenated to infinitely many cycles of arbitrary length. The corresponding symmetries are parametrized (v) the state VB = ij kijij with d = 4 and kij = 2i + j generating| i the valence| i bond state. via regular matrices x1, . , xN as The W and GHZ statesP play a central role in entangle- S(x1, . , xN ) = s 1 ... s 1 . (6) xN− ,x1 xN− 1,xN ment theory [12, 31], the cluster state in measurement- ⊗ ⊗ − based quantum computation [32], and the AKLT [33] For = 1l we obtain the large local symmetry group of and the valence bound state are paradigmatic examples the injectiveA valence bond state. Normal (but not injec- that appear in condensed matter physics. The latter tive) states have a much smaller set of symmetries. For is, furthermore, injective and the fixed point of a the AKLT state renormalization procedure [34]. 1 T GAA = sx x− x x GL(2, C) , (7) { ⊗ ⊗ | ∈ } N 3. Symmetries: Global symmetries, of the form u⊗ , where sx is a function given in the SM [35]. Clearly, of MPS were considered in [23, 24], and have led to the elements of GAA can only be concatenated with them- classification of phases of MPS in spin chains [26–28].
Recommended publications
  • Completeness of the ZX-Calculus
    Completeness of the ZX-calculus Quanlong Wang Wolfson College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Hilary 2018 Acknowledgements Firstly, I would like to express my sincere gratitude to my supervisor Bob Coecke for all his huge help, encouragement, discussions and comments. I can not imagine what my life would have been like without his great assistance. Great thanks to my colleague, co-auhor and friend Kang Feng Ng, for the valuable cooperation in research and his helpful suggestions in my daily life. My sincere thanks also goes to Amar Hadzihasanovic, who has kindly shared his idea and agreed to cooperate on writing a paper based one his results. Many thanks to Simon Perdrix, from whom I have learned a lot and received much help when I worked with him in Nancy, while still benefitting from this experience in Oxford. I would also like to thank Miriam Backens for loads of useful discussions, advertising for my talk in QPL and helping me on latex problems. Special thanks to Dan Marsden for his patience and generousness in answering my questions and giving suggestions. I would like to thank Xiaoning Bian for always being ready to help me solve problems in using latex and other softwares. I also wish to thank all the people who attended the weekly ZX meeting for many interesting discussions. I am also grateful to my college advisor Jonathan Barrett and department ad- visor Jamie Vicary, thank you for chatting with me about my research and my life. I particularly want to thank my examiners, Ross Duncan and Sam Staton, for their very detailed and helpful comments and corrections by which this thesis has been significantly improved.
    [Show full text]
  • Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications
    Entropy 2013, 15, 1776-1820; doi:10.3390/e15051776 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications Yu-Bo Sheng 1;2;* and Lan Zhou 2;3 1 Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 2 Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China 3 College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; E-Mail: [email protected] (L.Z.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-025-83492417. Received: 14 March 2013; in revised form: 3 May 2013 / Accepted: 8 May 2013 / Published: 16 May 2013 Abstract: Entanglement concentration is of most importance in long distance quantum communication and quantum computation. It is to distill maximally entangled states from pure partially entangled states based on the local operation and classical communication. In this review, we will mainly describe two kinds of entanglement concentration protocols. One is to concentrate the partially entangled Bell-state, and the other is to concentrate the partially entangled W state. Some protocols are feasible in current experimental conditions and suitable for the optical, electric and quantum-dot and optical microcavity systems. Keywords: quantum entanglement; entanglement concentration; quantum communication 1. Introduction Quantum communication and quantum computation have attracted much attention over the last 20 years, due to the absolute safety in the information transmission for quantum communication and the super fast factoring for quantum computation [1,2].
    [Show full text]
  • Quantum Macroscopicity Versus Distillation of Macroscopic
    Quantum macroscopicity versus distillation of macroscopic superpositions Benjamin Yadin1 and Vlatko Vedral1, 2 1Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK 2Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Dated: October 7, 2018) We suggest a way to quantify a type of macroscopic entanglement via distillation of Greenberger- Horne-Zeilinger states by local operations and classical communication. We analyze how this relates to an existing measure of quantum macroscopicity based on the quantum Fisher information in sev- eral examples. Both cluster states and Kitaev surface code states are found to not be macroscopically quantum but can be distilled into macroscopic superpositions. We look at these distillation pro- tocols in more detail and ask whether they are robust to perturbations. One key result is that one-dimensional cluster states are not distilled robustly but higher-dimensional cluster states are. PACS numbers: 03.65.Ta, 03.67.Mn, 03.65.Ud I. INTRODUCTION noted here by N ∗. We will not impose any cut-off above which a value of N ∗ counts as macroscopic, but instead Despite the overwhelming successes of quantum me- consider families of states parameterized by some obvious chanics, one of its greatest remaining problems is to ex- size quantity N (e.g. the number of qubits). Then the plain why it appears to break down at the macroscopic relevant property of the family is the scaling of N ∗ with scale. In particular, macroscopic objects are never seen N. The case N ∗ = O(N) is ‘maximally macroscopic’ [9]. in quantum superpositions.
    [Show full text]
  • Bidirectional Quantum Controlled Teleportation by Using Five-Qubit Entangled State As a Quantum Channel
    Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel Moein Sarvaghad-Moghaddam1,*, Ahmed Farouk2, Hussein Abulkasim3 to each other simultaneously. Unfortunately, the proposed Abstract— In this paper, a novel protocol is proposed for protocol required additional quantum and classical resources so implementing BQCT by using five-qubit entangled states as a that the users required two-qubit measurements and applying quantum channel which in the same time, the communicated users global unitary operations. There are many approaches and can teleport each one-qubit state to each other under permission prototypes for the exploitation of quantum principles to secure of controller. The proposed protocol depends on the Controlled- the communication between two parties and multi-parties [18, NOT operation, proper single-qubit unitary operations and single- 19, 20, 21, 22]. While these approaches used different qubit measurement in the Z-basis and X-basis. The results showed that the protocol is more efficient from the perspective such as techniques for achieving a private communication among lower shared qubits and, single qubit measurements compared to authorized users, but most of them depend on the generation of the previous work. Furthermore, the probability of obtaining secret random keys [23, 2]. In this paper, a novel protocol is Charlie’s qubit by eavesdropper is reduced, and supervisor can proposed for implementing BQCT by using five-qubit control one of the users or every two users. Also, we present a new entanglement state as a quantum channel. In this protocol, users method for transmitting n and m-qubits entangled states between may transmit an unknown one-qubit quantum state to each other Alice and Bob using proposed protocol.
    [Show full text]
  • Unifying Cps Nqs
    Citation for published version: Clark, SR 2018, 'Unifying Neural-network Quantum States and Correlator Product States via Tensor Networks', Journal of Physics A: Mathematical and General, vol. 51, no. 13, 135301. https://doi.org/10.1088/1751- 8121/aaaaf2 DOI: 10.1088/1751-8121/aaaaf2 Publication date: 2018 Document Version Peer reviewed version Link to publication This is an author-created, in-copyedited version of an article published in Journal of Physics A: Mathematical and Theoretical. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://iopscience.iop.org/article/10.1088/1751-8121/aaaaf2/meta University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Unifying Neural-network Quantum States and Correlator Product States via Tensor Networks Stephen R Clarkyz yDepartment of Physics, University of Bath, Claverton Down, Bath BA2 7AY, U.K. zMax Planck Institute for the Structure and Dynamics of Matter, University of Hamburg CFEL, Hamburg, Germany E-mail: [email protected] Abstract.
    [Show full text]
  • G53NSC and G54NSC Non Standard Computation Research Presentations
    G53NSC and G54NSC Non Standard Computation Research Presentations March the 23rd and 30th, 2010 Tuesday the 23rd of March, 2010 11:00 - James Barratt • Quantum error correction 11:30 - Adam Christopher Dunkley and Domanic Nathan Curtis Smith- • Jones One-Way quantum computation and the Measurement calculus 12:00 - Jack Ewing and Dean Bowler • Physical realisations of quantum computers Tuesday the 30th of March, 2010 11:00 - Jiri Kremser and Ondrej Bozek Quantum cellular automaton • 11:30 - Andrew Paul Sharkey and Richard Stokes Entropy and Infor- • mation 12:00 - Daniel Nicholas Kiss Quantum cryptography • 1 QUANTUM ERROR CORRECTION JAMES BARRATT Abstract. Quantum error correction is currently considered to be an extremely impor- tant area of quantum computing as any physically realisable quantum computer will need to contend with the issues of decoherence and other quantum noise. A number of tech- niques have been developed that provide some protection against these problems, which will be discussed. 1. Introduction It has been realised that the quantum mechanical behaviour of matter at the atomic and subatomic scale may be used to speed up certain computations. This is mainly due to the fact that according to the laws of quantum mechanics particles can exist in a superposition of classical states. A single bit of information can be modelled in a number of ways by particles at this scale. This leads to the notion of a qubit (quantum bit), which is the quantum analogue of a classical bit, that can exist in the states 0, 1 or a superposition of the two. A number of quantum algorithms have been invented that provide considerable improvement on their best known classical counterparts, providing the impetus to build a quantum computer.
    [Show full text]
  • Quadratic Entanglement Criteria for Qutrits K
    Vol. 137 (2020) ACTA PHYSICA POLONICA A No. 3 Quadratic Entanglement Criteria for Qutrits K. Rosołeka, M. Wieśniaka;b;∗and L. Knipsc;d aInstitute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland bInternational Centre for Theories of Quantum Technologies, University of Gdańsk, Wita Swosza 57, 80-308 Gdańsk, Poland cMax-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany dDepartment für Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany (Received September 10, 2019; revised version December 2, 2019; in final form December 5, 2019) The problem of detecting non-classical correlations of states of many qudits is incomparably more involved than in the case of qubits. One reason is that for qubits we have a convenient description of the system by the means of the well-studied correlation tensor allowing to encode the complete information about the state in mean values of dichotomic measurements. The other reason is the more complicated structure of the state space, where, for example, different Schmidt ranks or bound entanglement comes into play. We demonstrate that for three-dimensional quantum subsystems we are able to formulate nonlinear entanglement criteria of the state with existing formalisms. We also point out where the idea for constructing these criteria fails for higher-dimensional systems, which poses well-defined open questions. DOI: 10.12693/APhysPolA.137.374 PACS/topics: quantum information, quantum correlations, entanglements, qutrits 1. Introduction practical reasons. The task is very simple for pure states, which practically never occur in a real life. However, for For complex quantum systems, we distinguish between mixed states, it is still an open question.
    [Show full text]
  • Remote Preparation of $ W $ States from Imperfect Bipartite Sources
    Remote preparation of W states from imperfect bipartite sources M. G. M. Moreno, M´arcio M. Cunha, and Fernando Parisio∗ Departamento de F´ısica, Universidade Federal de Pernambuco, 50670-901,Recife, Pernambuco, Brazil Several proposals to produce tripartite W -type entanglement are probabilistic even if no imperfec- tions are considered in the processes. We provide a deterministic way to remotely create W states out of an EPR source. The proposal is made viable through measurements (which can be demoli- tive) in an appropriate three-qubit basis. The protocol becomes probabilistic only when source flaws are considered. It turns out that, even in this situation, it is robust against imperfections in two senses: (i) It is possible, after postselection, to create a pure ensemble of W states out of an EPR source containing a systematic error; (ii) If no postselection is done, the resulting mixed state has a fidelity, with respect to a pure |W i, which is higher than that of the imperfect source in comparison to an ideal EPR source. This simultaneously amounts to entanglement concentration and lifting. PACS numbers: 03.67.Bg, 03.67.-a arXiv:1509.08438v2 [quant-ph] 25 Aug 2016 ∗ [email protected] 2 I. INTRODUCTION The inventory of potential achievements that quantum entanglement may bring about has steadily grown for decades. It is the concept behind most of the non-trivial, classically prohibitive tasks in information science [1]. However, for entanglement to become a useful resource in general, much work is yet to be done. The efficient creation of entanglement, often involving many degrees of freedom, is one of the first challenges to be coped with, whose simplest instance are the sources of correlated pairs of two-level systems.
    [Show full text]
  • Quantum Computing Cluster State Model
    Quantum Computing Cluster State Model Phillip Blakey, Alex Karapetyan, Thomas Ma December 2019 1 Introduction The traditional circuit-based model of quantum computation is strictly based on unitary evolution. Especially in view of the Principle of Deferred Measurement in the context of implementation of algorithms with the circuit model, the role of measurement is secondary to unitary quantum gates - a quantum circuit, sans the final measurements, is the application of a carefully crafted unitary transformation to a carefully chosen initial quantum state. Measurement is a non-unitary operation and thereby ruins quantum states. The cluster state model of quantum computing, also known as a \one-way quantum computer", is based on the idea of performing a sequence of single-qubit measurements on some large initial state, resulting in an output in the form of a several-qubit state. In particular, measurement is essential to the entirety of any computation, in contrast to the circuit model. This model was first introduced in [1] (see also [2]), and it has been studied from both the theoretical and experimental implementation points of view. The initial state of a computation in this model, called a cluster state, is a specially prepared entangled state associated to a particularly chosen graph. To perform a quantum computation on a cluster state, the rules of the game are: (a) the allowed operations are single-qubit measurements in any basis on any of the nodes of the graph, (b) the basis in which to measure at every stage of the sequence is conditioned on the outcome of the previous measurement, and (c) efficient classical processing is allowed on the measurement outcomes.
    [Show full text]
  • Logical Measurement-Based Quantum Computation in Circuit-QED
    www.nature.com/scientificreports OPEN Logical measurement-based quantum computation in circuit- QED Jaewoo Joo1,2*, Chang-Woo Lee 1,3, Shingo Kono4 & Jaewan Kim1 We propose a new scheme of measurement-based quantum computation (MBQC) using an error- correcting code against photon-loss in circuit quantum electrodynamics. We describe a specifc protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schrödinger cat state is used for a continuous-variable (CV) logical qubit captured in a microwave cavity. To apply an error-correcting scheme on the logical qubit, we utilise a d-dimensional quantum system called a qudit. It is assumed that a three CV-qudit entangled state is initially prepared in three jointed cavities and the microwave qudit states are individually controlled, operated, and measured through a readout resonator coupled with an ancillary superconducting qubit. We then examine a practical approach of how to create the CV-qudit cluster state via a cross-Kerr interaction induced by intermediary superconducting qubits between neighbouring cavities under the Jaynes- Cummings Hamiltonian. This approach could be scalable for building 2D logical cluster states and therefore will pave a new pathway of logical MBQC in superconducting circuits toward fault-tolerant quantum computing. Measurement-based quantum computation (MBQC) ofers a new platform of quantum information (QI) pro- cessing. Quantum algorithms are performed by sequential single-qubit measurements in multipartite entangled states initially (e.g., cluster states1) instead of massive controls of individual qubits during the whole information processing2,3. Tis advantage is, however, only benefcial for QI processing if the specifc multipartite entangled state can be initially well-prepared and the capability of fast and precise single-qubit measurements are viable.
    [Show full text]
  • Large-Scale Cluster-State Entanglement in the Quantum Optical Frequency Comb
    Large-Scale Cluster-State Entanglement in the Quantum Optical Frequency Comb Moran Chen Nanchong, Sichuan, China B.S. Physics, Beijing Normal University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the degree of Doctor of Philosophy Department of Physics University of Virginia May 2015 c Copyright All Rights Reserved Moran Chen Ph.D., May 2015 i Acknowledgments First of all, I would like to thank my adviser, Prof. Olivier Pfister. Without his help and guidance, all of the research and work described in this thesis would have been impossible. I am wholeheartedly grateful to have him as my adviser. He gave me enough freedom and trust to allow me to conduct research and independent thinking on my own, and his incredible patience and knowledge in both the theory and in the experiments also gave me confidence and reassurance when I came across obstacles and difficulties. He is also always encouraging and kind, and is the best adviser I could have hoped for. He has led me into the amazing field of quantum optics, and I am truly blessed to have him as my adviser. I want to give special thanks to our theoretical collaborator Nick Menicucci. Nick is an outstanding theorist and a very smart, quick and straightforward person, and it has always been a pleasure talking with him about research topics or other general issues. We had many good and interesting discussions and his genius ideas and simplified theoretical proposals helped make our experiment easier and more feasible. I am truly thankful to have him as our theoretical collaborator and friend.
    [Show full text]
  • ZX-Calculus for the Working Quantum Computer Scientist
    ZX-calculus for the working quantum computer scientist John van de Wetering1,2 1Radboud Universiteit Nijmegen 2Oxford University December 29, 2020 The ZX-calculus is a graphical language for reasoning about quantum com- putation that has recently seen an increased usage in a variety of areas such as quantum circuit optimisation, surface codes and lattice surgery, measurement- based quantum computation, and quantum foundations. The first half of this review gives a gentle introduction to the ZX-calculus suitable for those fa- miliar with the basics of quantum computing. The aim here is to make the reader comfortable enough with the ZX-calculus that they could use it in their daily work for small computations on quantum circuits and states. The lat- ter sections give a condensed overview of the literature on the ZX-calculus. We discuss Clifford computation and graphically prove the Gottesman-Knill theorem, we discuss a recently introduced extension of the ZX-calculus that allows for convenient reasoning about Toffoli gates, and we discuss the recent completeness theorems for the ZX-calculus that show that, in principle, all reasoning about quantum computation can be done using ZX-diagrams. Ad- ditionally, we discuss the categorical and algebraic origins of the ZX-calculus and we discuss several extensions of the language which can represent mixed states, measurement, classical control and higher-dimensional qudits. Contents 1 Introduction3 1.1 Overview of the paper . 4 1.2 Tools and resources . 5 2 Quantum circuits vs ZX-diagrams6 2.1 From quantum circuits to ZX-diagrams . 6 2.2 States in the ZX-calculus .
    [Show full text]