Completeness of the ZX-Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IJSRP, Volume 2, Issue 7, July 2012 Edition
International Journal of Scientific and Research Publications, Volume 2, Issue 7, July 2012 1 ISSN 2250-3153 OF QUANTUM GATES AND COLLAPSING STATES- A DETERMINATE MODEL APRIORI AND DIFFERENTIAL MODEL APOSTEORI 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3 PROF C S BAGEWADI ABSTRACT : We Investigate The Holistic Model With Following Composition : ( 1) Mpc (Measurement Based Quantum Computing)(2) Preparational Methodologies Of Resource States (Application Of Electric Field Magnetic Field Etc.)For Gate Teleportation(3) Quantum Logic Gates(4) Conditionalities Of Quantum Dynamics(5) Physical Realization Of Quantum Gates(6) Selective Driving Of Optical Resonances Of Two Subsystems Undergoing Dipole-Dipole Interaction By Means Of Say Ramsey Atomic Interferometry(7) New And Efficient Quantum Algorithms For Computation(8) Quantum Entanglements And No localities(9) Computation Of Minimum Energy Of A Given System Of Particles For Experimentation(10) Exponentially Increasing Number Of Steps For Such Quantum Computation(11) Action Of The Quantum Gates(12) Matrix Representation Of Quantum Gates And Vector Constitution Of Quantum States. Stability Conditions, Analysis, Solutional Behaviour Are Discussed In Detailed For The Consummate System. The System Of Quantum Gates And Collapsing States Show Contrast With The Documented Information Thereto. Paper may be extended to exponential time with exponentially increasing steps in the computation. INTRODUCTION: LITERATURE REVIEW: Double quantum dots: interdot interactions, co-tunneling, and Kondo resonances without spin (See for details Qing-feng Sun, Hong Guo ) Authors show that through an interdot off-site electron correlation in a double quantum-dot (DQD) device, Kondo resonances emerge in the local density of states without the electron spin-degree of freedom. -
Unifying Cps Nqs
Citation for published version: Clark, SR 2018, 'Unifying Neural-network Quantum States and Correlator Product States via Tensor Networks', Journal of Physics A: Mathematical and General, vol. 51, no. 13, 135301. https://doi.org/10.1088/1751- 8121/aaaaf2 DOI: 10.1088/1751-8121/aaaaf2 Publication date: 2018 Document Version Peer reviewed version Link to publication This is an author-created, in-copyedited version of an article published in Journal of Physics A: Mathematical and Theoretical. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://iopscience.iop.org/article/10.1088/1751-8121/aaaaf2/meta University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Unifying Neural-network Quantum States and Correlator Product States via Tensor Networks Stephen R Clarkyz yDepartment of Physics, University of Bath, Claverton Down, Bath BA2 7AY, U.K. zMax Planck Institute for the Structure and Dynamics of Matter, University of Hamburg CFEL, Hamburg, Germany E-mail: [email protected] Abstract. -
Arxiv:2010.14788V2 [Quant-Ph] 16 Jan 2021 Detection of Ancillary Photons
Heralded non-destructive quantum entangling gate with single-photon sources Jin-Peng Li,1, 2 Xuemei Gu,1, 2 Jian Qin,1, 2 Dian Wu,1, 2 Xiang You,1, 2 Hui Wang,1, 2 Christian Schneider,3, 4 Sven H¨ofling,2, 4 Yong-Heng Huo,1, 2 Chao-Yang Lu,1, 2 Nai-Le Liu,1, 2 Li Li,1, 2, ∗ and Jian-Wei Pan1, 2 1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Institute of Physics, Carl von Ossietzky University, 26129 Oldenburg, Germany 4Technische Physik, Physikalische Institut and Wilhelm Conrad R¨ontgen-Centerfor Complex Material Systems, Universit¨atW¨urzburg, Am Hubland, D-97074 W¨urzburg, Germany (Dated: January 19, 2021) Heralded entangling quantum gates are an essential element for the implementation of large-scale optical quantum computation. Yet, the experimental demonstration of genuine heralded entangling gates with free-flying output photons in linear optical system, was hindered by the intrinsically probabilistic source and double-pair emission in parametric down-conversion. Here, by using an on-demand single-photon source based on a semiconductor quantum dot embedded in a micro-pillar cavity, we demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time. To characterize the performance of the CNOT gate, we estimate its average quantum gate fidelity of (87:8 ± 1:2)%. -
On the Significance of the Gottesman-Knill Theorem
On the Significance of the Gottesman-Knill Theorem∗;y Michael E. Cuffaro Munich Center for Mathematical Philosophy Ludwig Maximilians Universit¨atM¨unchen 1 Introduction Toil in the field of quantum computation promises a bountiful harvest, both to the pragmatic-minded researcher seeking to develop new and efficient solutions to practi- cal problems of immediate and transparent significance, as well as to those of us moved more by philosophical concerns: we who toil in the mud and black earth, ever desirous of those remote and yet more profound insights at the root of scientific inquiry. Some of us have seen in quantum computation the promise of a solution to the interpretational debates which have characterised the foundations and philosophy of quantum mechanics since its inception. Some of us have seen the prospects for a deeper understanding of the nature of computation as such. Others have seen quantum computation as potentially illuminating our understanding of the nature and capacities of the human mind.1 An arguably more modest position (see, e.g., Aaronson, 2013; Timpson, 2013) regard- ing the philosophical interest of quantum computation (and related fields like quantum information), is that its study contributes to our understanding of the foundations of quantum mechanics and computer science mainly by offering us different perspectives on old foundational questions|fresh opportunities, that is, to reconsider just what we mean in asking these questions. One of my goals in this paper is to provide such a different perspective, on the Bell inequalities in particular. Specifically I will be arguing that the ∗Note: this is the submitted version of an article that is to appear in The British Journal for the Philosophy of Science, published by Oxford University Press. -
Classifying Reversible Logic Gates with Ancillary Bits
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-07-23 Classifying reversible logic gates with ancillary bits Comfort, Cole Robert Comfort, C. R. (2019). Classifying reversible logic gates with ancillary bits (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110665 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Classifying reversible logic gates with ancillary bits by Cole Robert Comfort A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN COMPUTER SCIENCE CALGARY, ALBERTA JULY, 2019 c Cole Robert Comfort 2019 Abstract In this thesis, two models of reversible computing are classified, and the relation of reversible computing to quantum computing is explored. First, a finite, complete set of identities is given for the symmetric monoidal category generated by the computational ancillary bits along with the controlled-not gate. In doing so, it is proven that this category is equivalent to the category of partial isomorphisms between non-empty finitely-generated commutative torsors of characteristic 2. Next, a finite, complete set of identities is given for the symmetric monoidal category generated by the computational ancillary bits along with the Toffoli gate. -
Remote Preparation of $ W $ States from Imperfect Bipartite Sources
Remote preparation of W states from imperfect bipartite sources M. G. M. Moreno, M´arcio M. Cunha, and Fernando Parisio∗ Departamento de F´ısica, Universidade Federal de Pernambuco, 50670-901,Recife, Pernambuco, Brazil Several proposals to produce tripartite W -type entanglement are probabilistic even if no imperfec- tions are considered in the processes. We provide a deterministic way to remotely create W states out of an EPR source. The proposal is made viable through measurements (which can be demoli- tive) in an appropriate three-qubit basis. The protocol becomes probabilistic only when source flaws are considered. It turns out that, even in this situation, it is robust against imperfections in two senses: (i) It is possible, after postselection, to create a pure ensemble of W states out of an EPR source containing a systematic error; (ii) If no postselection is done, the resulting mixed state has a fidelity, with respect to a pure |W i, which is higher than that of the imperfect source in comparison to an ideal EPR source. This simultaneously amounts to entanglement concentration and lifting. PACS numbers: 03.67.Bg, 03.67.-a arXiv:1509.08438v2 [quant-ph] 25 Aug 2016 ∗ [email protected] 2 I. INTRODUCTION The inventory of potential achievements that quantum entanglement may bring about has steadily grown for decades. It is the concept behind most of the non-trivial, classically prohibitive tasks in information science [1]. However, for entanglement to become a useful resource in general, much work is yet to be done. The efficient creation of entanglement, often involving many degrees of freedom, is one of the first challenges to be coped with, whose simplest instance are the sources of correlated pairs of two-level systems. -
Lecture 1: Introduction to the Quantum Circuit Model September 9, 2015 Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell
Quantum Computation (CMU 18-859BB, Fall 2015) Lecture 1: Introduction to the Quantum Circuit Model September 9, 2015 Lecturer: Ryan O'Donnell Scribe: Ryan O'Donnell 1 Overview of what is to come 1.1 An incredibly brief history of quantum computation The idea of quantum computation was pioneered in the 1980s mainly by Feynman [Fey82, Fey86] and Deutsch [Deu85, Deu89], with Albert [Alb83] independently introducing quantum automata and with Benioff [Ben80] analyzing the link between quantum mechanics and reversible classical computation. The initial idea of Feynman was the following: Although it is perfectly possible to use a (normal) computer to simulate the behavior of n-particle systems evolving according to the laws of quantum, it seems be extremely inefficient. In particular, it seems to take an amount of time/space that is exponential in n. This is peculiar because the actual particles can be viewed as simulating themselves efficiently. So why not call the particles themselves a \computer"? After all, although we have sophisticated theoretical models of (normal) computation, in the end computers are ultimately physical objects operating according to the laws of physics. If we simply regard the particles following their natural quantum-mechanical behavior as a computer, then this \quantum computer" appears to be performing a certain computation (namely, simulating a quantum system) exponentially more efficiently than we know how to perform it with a normal, \classical" computer. Perhaps we can carefully engineer multi-particle systems in such a way that their natural quantum behavior will do other interesting computations exponentially more efficiently than classical computers can. -
Thesis Submitted to Attain the Degree of DOCTOR of SCIENCE of ETH ZURICH¨ (Dr
DISS. ETH NO. 23051 Transport Quantum Logic Gates for Trapped Ions A thesis submitted to attain the degree of DOCTOR OF SCIENCE of ETH ZURICH¨ (Dr. sc. ETH ZURICH)¨ presented by LUDWIG ERASMUS DE CLERCQ MSc. Phys., Univerity of Stellenbosch born on 15.01.1986 citizen of Republic of South Africa Accepted on the recommendation of Prof. Dr. J. P. Home Prof. Dr. T. Sch¨atz 2015 Abstract One of the most promising methods for scaling up quantum informa- tion processing with trapped ions is the quantum CCD architecture [Wineland 98, Kielpinski 02], in which ions are shuttled between many zones of a multiplexed ion trap processor. A primary element of this design is the parallel operation of gates in multiple regions, presenting a formidable challenge for scaling of optical control. In this thesis, I demon- strate a new route which could dramatically reduce these requirements, by transporting ions through laser beams [D. Leibfried 07]. The thesis covers the hardware, software and experiments which were required in order to achieve this goal. In order to perform these experiments I have developed several hard- ware and software solutions which are more widely applicable. Firstly, the Electronically Variable Interactive Lockbox (EVIL) which is widely used in our laboratory as a PI-controller. Secondly, the Direct Ether- net Adjustable Transport Hardware (DEATH) developed specifically for the transport experiments. Finally, I devised a simple method to cre- ate complex transport experiments which require control over multiple independent potential wells. The main achievement of this thesis is the demonstration of parallel quan- tum logic gates involving transport of ions. -
Quantum Computing: Lecture Notes
Quantum Computing: Lecture Notes Ronald de Wolf Preface These lecture notes were formed in small chunks during my “Quantum computing” course at the University of Amsterdam, Feb-May 2011, and compiled into one text thereafter. Each chapter was covered in a lecture of 2 45 minutes, with an additional 45-minute lecture for exercises and × homework. The first half of the course (Chapters 1–7) covers quantum algorithms, the second half covers quantum complexity (Chapters 8–9), stuff involving Alice and Bob (Chapters 10–13), and error-correction (Chapter 14). A 15th lecture about physical implementations and general outlook was more sketchy, and I didn’t write lecture notes for it. These chapters may also be read as a general introduction to the area of quantum computation and information from the perspective of a theoretical computer scientist. While I made an effort to make the text self-contained and consistent, it may still be somewhat rough around the edges; I hope to continue polishing and adding to it. Comments & constructive criticism are very welcome, and can be sent to [email protected] Attribution and acknowledgements Most of the material in Chapters 1–6 comes from the first chapter of my PhD thesis [71], with a number of additions: the lower bound for Simon, the Fourier transform, the geometric explanation of Grover. Chapter 7 is newly written for these notes, inspired by Santha’s survey [62]. Chapters 8 and 9 are largely new as well. Section 3 of Chapter 8, and most of Chapter 10 are taken (with many changes) from my “quantum proofs” survey paper with Andy Drucker [28]. -
ZX-Calculus for the Working Quantum Computer Scientist
ZX-calculus for the working quantum computer scientist John van de Wetering1,2 1Radboud Universiteit Nijmegen 2Oxford University December 29, 2020 The ZX-calculus is a graphical language for reasoning about quantum com- putation that has recently seen an increased usage in a variety of areas such as quantum circuit optimisation, surface codes and lattice surgery, measurement- based quantum computation, and quantum foundations. The first half of this review gives a gentle introduction to the ZX-calculus suitable for those fa- miliar with the basics of quantum computing. The aim here is to make the reader comfortable enough with the ZX-calculus that they could use it in their daily work for small computations on quantum circuits and states. The lat- ter sections give a condensed overview of the literature on the ZX-calculus. We discuss Clifford computation and graphically prove the Gottesman-Knill theorem, we discuss a recently introduced extension of the ZX-calculus that allows for convenient reasoning about Toffoli gates, and we discuss the recent completeness theorems for the ZX-calculus that show that, in principle, all reasoning about quantum computation can be done using ZX-diagrams. Ad- ditionally, we discuss the categorical and algebraic origins of the ZX-calculus and we discuss several extensions of the language which can represent mixed states, measurement, classical control and higher-dimensional qudits. Contents 1 Introduction3 1.1 Overview of the paper . 4 1.2 Tools and resources . 5 2 Quantum circuits vs ZX-diagrams6 2.1 From quantum circuits to ZX-diagrams . 6 2.2 States in the ZX-calculus . -
Chapter 2 Quantum Gates
Chapter 2 Quantum Gates “When we get to the very, very small world—say circuits of seven atoms—we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, we are working with different laws, and we can expect to do different things. We can manufacture in different ways. We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized spins.” – Richard P. Feynman1 Currently, the circuit model of a computer is the most useful abstraction of the computing process and is widely used in the computer industry in the design and construction of practical computing hardware. In the circuit model, computer scien- tists regard any computation as being equivalent to the action of a circuit built out of a handful of different types of Boolean logic gates acting on some binary (i.e., bit string) input. Each logic gate transforms its input bits into one or more output bits in some deterministic fashion according to the definition of the gate. By compos- ing the gates in a graph such that the outputs from earlier gates feed into the inputs of later gates, computer scientists can prove that any feasible computation can be performed. In this chapter we will look at the types of logic gates used within circuits and how the notions of logic gates need to be modified in the quantum context. -
A Verified Optimizer for Quantum Circuits
A Verified Optimizer for Quantum Circuits KESHA HIETALA, University of Maryland, USA ROBERT RAND, University of Chicago, USA SHIH-HAN HUNG, University of Maryland, USA XIAODI WU, University of Maryland, USA MICHAEL HICKS, University of Maryland, USA We present voqc, the first fully verified optimizer for quantum circuits, written using the Coq proof assistant. Quantum circuits are expressed as programs in a simple, low-level language called sqir, a simple quantum intermediate representation, which is deeply embedded in Coq. Optimizations and other transformations are expressed as Coq functions, which are proved correct with respect to a semantics of sqir programs. sqir uses a semantics of matrices of complex numbers, which is the standard for quantum computation, but treats matrices symbolically in order to reason about programs that use an arbitrary number of quantum bits. sqir’s careful design and our provided automation make it possible to write and verify a broad range of optimizations in voqc, including full-circuit transformations from cutting-edge optimizers. CCS Concepts: • Hardware → Quantum computation; Circuit optimization; • Software and its engineering → Formal software verification. Additional Key Words and Phrases: Formal Verification, Quantum Computing, Circuit Optimization, Certified Compilation, Programming Languages ACM Reference Format: Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (January 2021), 29 pages. https://doi.org/10. 1145/3434318 1 INTRODUCTION Programming quantum computers will be challenging, at least in the near term. Qubits will be 37 scarce and gate pipelines will need to be short to prevent decoherence.