Herpetofaunal Checklist for Six Pilot Protected Areas in Trinidad and Tobago
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epicrates Maurus (Rainbow Boa Or Velvet Mapepire)
UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Epicrates maurus (Rainbow Boa or Velvet Mapepire) Family: Boidae (Boas and Pythons) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Rainbow boa, Epicrates maurus. [http://squamates.blogspot.com/2010/10/declines-in-snake-and-lizard.html, Downloaded 10 November, 2011] . TRAITS. The rainbow boa, also known as the velvet mapepire, is a snake that grows to a maximum length of 4 feet in males and 4.5 to 5 feet in females. The life span of this species of snake is an average of 20 years if held in captivity and 10 years in the wild. Their name, rainbow boa, originated from their appearance because of an iridescent shine emanating from microscopic ridges on their scales that refract light to produce all the colours of the rainbow. These boas are generally brownish red in colour associated with dark marking during their juvenile life, however this coloration becomes subdued as they get older (Underwood 2009). These snakes are mainly nocturnal and also terrestrial, they have a small head with a narrow neck and a thick body (Boos 2001). Boas are considered primitive snakes and this is supported by the presence of two vestigal, hind limbs which appers as spurs on either side of the cloaca (Conrad 2009). ECOLOGY. Rainbow boas occupy a variety of habitats in Trinidad and Tobago, they can be found in dry tropical forest, rainforest clearings or even close to human settlements such as agricultural communities. Like all boas, they are excellent swimmers, however they restrain from being in contact with water as much as possible. -
Stream Frogs, Mannophryne Trinitatis (Dendrobatidae): an Example of Anti-Predator Behaviour
HERPETOLOGICAL JOURNAL, Vol. 11, pp. 91-100 (2001) SELECTION OF TAD POLE DEPOSITION SITES BY MALE TRINIDADIAN STREAM FROGS, MANNOPHRYNE TRINITATIS (DENDROBATIDAE): AN EXAMPLE OF ANTI-PREDATOR BEHAVIOUR J. R. DOWNIE, S. R. LIVINGSTONE AND J. R. CORMACK Division of Environmental and Evolutionary Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Scotland, UK Trinidad's only dendrobatid frog, Mannophryne (=Colostethus) trinitatis, lives by the small streams draining the slopes of the Northern Range mountains and at Tamana Hill in the Central Range. Adults are often very abundant, but tadpoles are found patchily in the streams. In the absence of two potential predators - the fish Rivulus hartii and shrimps of the genus Macrobrachium - tadpoles are abundant in pools. Where the predators are present, tadpoles are uncommon or absent. Tadpoles may also be found in small, isolated bodies of water at some distance from streams. Males carrying tadpoles retained them for 3-4 days, in the absence of suitable pools. When presented with a choice of pools, males preferred to deposit their tadpoles in pools lacking predators. There were differences in behaviour between males fromthe northern and southern slopes of the Northern Range. For example, north coast males deposited tadpoles in pools containing other conspecific tadpoles in preference to empty pools, whereas males from southern slopes made the opposite choice. When presented only with pools containing predators (i.e. shrimps or fish), north coast males shed their tadpoles in damp leaf litter rather than in the pools, while males from the southern slopes deposited tadpoles in pools with shrimps - predators uncommon in the southern slopes streams. -
Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes. -
Anolis Planiceps (Leaf Anole)
UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Anolis planiceps (Leaf Anole) Family: Polychrotidae (Anoles and Tree Lizards) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Leaf anole, Anolis planiceps. [http://www.trinidad-tobagoherps.org/Images/planiceps.jpg, downloaded 24 October 2016] TRAITS. Formerly known as Anolis chrysolepis or Norops chrysolepis, the leaf anole measures up to 76mm from snout to vent according (D'Angiolella et al., 2011). The pads of their feet are specialised to help them rest on leaves and trunks (Fig. 1). They have a spotted red patch of skin below theirs jaws, which is extendable, called the dewlap (Fig. 2). The region along the lizard's spine has larger scales than the adjacent areas with those located in the mid-dorsal area being the largest. Along their heads are two prominent ridges as well as ridged (keeled) scales located above the eyes (Fig. 3). The dorsal scales of the leaf anole are several shades of brown while the ventral scales are a pale cream colour; patterns vary greatly within populations (Fig. 4) (Vanzolini and Williams, 1970). Male anoles have longer tails and the females have wider bodies and smaller dewlaps than males (Vitt and Zani, 2011). DISTRIBUTION. Leaf anoles may be found in a relatively wide range from east Venezuela to Guyana, Suriname, Columbia, Trinidad and Brazil (Fig. 5). They are found throughout the island of Trinidad primarily in terrestrial, highly forested areas (D'Angiolella et al, 2011). UWI The Online Guide to the Animals of Trinidad and Tobago Diversity HABITAT AND ECOLOGY. -
The Journey of Life of the Tiger-Striped Leaf Frog Callimedusa Tomopterna (Cope, 1868): Notes of Sexual Behaviour, Nesting and Reproduction in the Brazilian Amazon
Herpetology Notes, volume 11: 531-538 (2018) (published online on 25 July 2018) The journey of life of the Tiger-striped Leaf Frog Callimedusa tomopterna (Cope, 1868): Notes of sexual behaviour, nesting and reproduction in the Brazilian Amazon Thainá Najar1,2 and Lucas Ferrante2,3,* The Tiger-striped Leaf Frog Callimedusa tomopterna 2000; Venâncio & Melo-Sampaio, 2010; Downie et al, belongs to the family Phyllomedusidae, which is 2013; Dias et al. 2017). constituted by 63 described species distributed in In 1975, Lescure described the nests and development eight genera, Agalychnis, Callimedusa, Cruziohyla, of tadpoles to C. tomopterna, based only on spawns that Hylomantis, Phasmahyla, Phrynomedusa, he had found around the permanent ponds in the French Phyllomedusa, and Pithecopus (Duellman, 2016; Guiana. However, the author mentions a variation in the Frost, 2017). The reproductive aspects reported for the number of eggs for some spawns and the use of more than species of this family are marked by the uniqueness of one leaf for confection in some nests (Lescure, 1975). egg deposition, placed on green leaves hanging under The nests described by Lescure in 1975 are probably standing water, where the tadpoles will complete their from Phyllomedusa vailantii as reported by Lescure et development (Haddad & Sazima, 1992; Pombal & al. (1995). The number of eggs in the spawns reported Haddad, 1992; Haddad & Prado, 2005). However, by Lescure (1975) diverge from that described by other exist exceptions, some species in the genus Cruziohyla, authors such as Neckel-Oliveira & Wachlevski, (2004) Phasmahylas and Prhynomedusa, besides the species and Lima et al. (2012). In addition, the use of more than of the genus Agalychnis and Pithecopus of clade one leaf for confection in the nest mentioned by Lescure megacephalus that lay their eggs in lotic environments (1975), are characteristic of other species belonging to (Haddad & Prado, 2005; Faivovich et al. -
História Das Paisagens Florestais Mésicas Dentro Da Diagonal De Formações Abertas: Contribuições De Paleomodelagem, Filoge
! ! Universidade de Brasília Instituto de Ciências Biológicas Programa de Pós-Graduação em Ecologia História das paisagens florestais mésicas dentro da diagonal de formações abertas: contribuições de paleomodelagem, filogeografia de espécies associadas e de conservação Roger Maia Dias Ledo Brasília – DF 2016 ! ! ! ! Universidade de Brasília Instituto de Ciências Biológicas Programa de Pós-Graduação em Ecologia História das paisagens florestais mésicas dentro da diagonal de formações abertas: contribuições de paleomodelagem, filogeografia de espécies associadas e de conservação Orientador: Dr. Guarino Rinaldi Colli Co-orientadora: Dra. Lilian G. Giugliano Tese apresentada ao Programa de Pós- Graduação em Ecologia da Universidade de Brasília como parte dos requisitos necessários para a obtenção do título de Doutor em Ecologia. Brasília – DF 2016 ! ! Roger Maia Dias Ledo História das paisagens florestais mésicas dentro da diagonal de formações abertas: contribuições de paleomodelagem, filogeografia de espécies associadas e conservação Tese realizada com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/SISBIOTA) e aprovada junto ao Programa de Pós-Graduação em Ecologia da Universidade de Brasília como requisito para obtenção do título de Doutor em Ecologia. Comissão Examinadora: Prof. Dr. Guarino R. Colli Prof. Dra. Lilian G. Giugliano Presidente/Orientador Co-orientadora UnB UnB Profa. Dra. Leonora P. Costa Prof. Dr. Adrian A. Garda Membro Externo não vinculado ao Programa Membro Externo não vinculado ao Programa UFES UFRN Prof. Dra. Rosane Collevatti Membro Prof. Dr. Ricardo Bomfim Machado Externo não vinculado ao Programa Membro Interno vinculado ao UFG Programa UnB Prof. Dr. Renato Caparroz Membro suplente vinculado ao Programa UnB Brasília, 29 de fevereiro de 2016 ! ! Agradecimentos Esta tese não sairia do papel (ou melhor, não se materializaria no papel) se não fosse a ajuda de inúmeras pessoas. -
Furness, Mcdiarmid, Heyer, Zug.Indd
south american Journal of Herpetology, 5(1), 2010, 13-29 © 2010 brazilian society of herpetology Oviduct MOdificatiOns in fOaM-nesting frOgs, with eMphasis On the genus LeptodactyLus (aMphibia, LeptOdactyLidae) Andrew I. Furness1, roy w. McdIArMId2, w. ronAld Heyer3,5, And GeorGe r. ZuG4 1 department of Biology, university of california, Riverside, ca 92501, usa. e‑mail: [email protected] 2 us Geological survey, patuxent Wildlife Research center, National Museum of Natural History, MRc 111, po Box 37012, smithsonian Institution, Washington, dc 20013‑7012, usa. e‑mail: [email protected] 3 National Museum of Natural History, MRc 162, po Box 37012, smithsonian Institution, Washington, dc 20013‑7012. e‑mail: [email protected] 4 National Museum of Natural History, MRc 162, po Box 37012, smithsonian Institution, Washington, dc 20013‑7012. e‑mail: [email protected] 5 corresponding author. AbstrAct. various species of frogs produce foam nests that hold their eggs during development. we examined the external morphology and histology of structures associated with foam nest production in frogs of the genus Leptodactylus and a few other taxa. we found that the posterior convolutions of the oviducts in all mature female foam-nesting frogs that we examined were enlarged and compressed into globular structures. this organ-like portion of the oviduct has been called a “foam gland” and these structures almost certainly produce the secretion that is beaten by rhythmic limb movements into foam that forms the nest. however, the label “foam gland” is a misnomer because the structures are simply enlarged and tightly folded regions of the pars convoluta of the oviduct, rather than a separate structure; we suggest the name pars convoluta dilata (pcd) for this feature. -
Leftright Dewlap Asymmetry and Phylogeography of Anolis Lineatus on Aruba and Curaao
bs_bs_banner Biological Journal of the Linnean Society, 2013, ••, ••–••. With 7 figures Left–right dewlap asymmetry and phylogeography of Anolis lineatus on Aruba and Curaçao GABRIEL E. A. GARTNER1,2*, TONY GAMBLE3,4, ALEXANDER L. JAFFE1,2, ALEXIS HARRISON1,2 and JONATHAN B. LOSOS1,2 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA 2Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA 3Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA 4Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA Received 27 March 2013; revised 30 April 2013; accepted for publication 1 May 2013 Anolis lizards exhibit a remarkable degree of diversity in the shape, colour, pattern and size of their dewlaps. Asymmetry, where one side of the dewlap differs in pattern or colour from the other, has only been reported in one species, Anolis lineatus, and then on only one of the two islands from which it occurs. Given the importance of the dewlap in intra- and interspecific signalling, we expanded on previous work by (1) investigating whether the reported asymmetry actually occurs and, if so, whether it occurs on animals from both Aruba and Curaçao; (2) examining whether populations differ in other aspects of their morphology or ecology; and (3) resolving the evolutionary relationships and the history of the two populations. We confirmed the presence of the asymmetrical dewlap on Curaçao and found that the asymmetry extends to populations on Aruba as well. Animals on Curaçao were smaller overall than populations from Aruba with relatively shorter metatarsals, radii, and tibias but relatively deeper heads, longer jaws, and wider and more numerous toepads on fore and hind feet. -
Community Structure of Parasites of the Tree Frog Scinax Fuscovarius (Anura, Hylidae) from Campo Belo Do Sul, Santa Catarina, Brazil
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043 ORIGINAL ARTICLE /ARTÍCULO ORIGINAL COMMUNITY STRUCTURE OF PARASITES OF THE TREE FROG SCINAX FUSCOVARIUS (ANURA, HYLIDAE) FROM CAMPO BELO DO SUL, SANTA CATARINA, BRAZIL ESTRUCTURA DE LA COMUNIDAD PARASITARIA DE LA RANA ARBORICOLA SCINAX FUSCOVARIUS (ANURA, HYLIDAE) DE CAMPO BELO DO SUL, SANTA CATARINA, BRASIL Viviane Gularte Tavares dos Santos1,2; Márcio Borges-Martins1,3 & Suzana B. Amato1,2 1 Departamento de Zoologia, Programa de Pós-graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brasil. 2 Laboratório de Helmintologia; Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brasil. 3 Laboratório de Herpetologia. Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brasil. E-mail: [email protected]; [email protected]; [email protected] Neotropical Helminthology, 2016, 10(1), ene-jun: 41-50. ABSTRACT Sixty specimens of Scinax fuscovarius (Lutz, 1925) were collected between May 2009 and October 2011 at Campo Belo do Sul, State of Santa Catarina, Brazil, and necropsied in search of helminth parasites. Only four helminth species were found: Pseudoacanthocephalus sp. Petrochenko, 1958, Cosmocerca brasiliense Travassos, 1925, C. parva Travassos, 1925 and Physaloptera sp. Rudolphi, 1819 (larvae). The genus of the female cosmocercids could not be determined. Only 30% of the anurans were parasitized. Scinax fuscovarius presented low prevalence, infection intensity, and parasite richness. Sex and size of S. fuscovarius individuals did not influence the prevalence, abundance, and species richness of helminth parasites. -
Copeoglossum Aurae (Greater Windward Skink) Family: Scincidae (Skinks) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles)
UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Copeoglossum aurae (Greater Windward Skink) Family: Scincidae (Skinks) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Greater windward skink, Copeoglossum aurae. [http://www.trinidad-tobagoherps.org/Mabuyanigropunctata.htm, downloaded 16 October 2016] TRAITS. Copeoglossum aurae is a newly discovered skink in Trinidad and Tobago (Hedges and Conn, 2012). It has a dark lateral solid stripe that extends from under its oval shaped ear past its hind legs onto the tail (Fig. 1). C. aurae male and female specimens can reach a maximum of 98.5mm and 109mm snout-vent length, respectively, and tails can reach up to 65mm. They are heavily scaled lizards with scales being smaller on the limbs in comparison to other body parts. Their tails, like some other reptiles, can be broken off and regenerated. The dorsal colour of most specimens are greyish-green with small to medium deep brown spots evenly spread on the body, limbs and tail. The dorsal colours are different shades of brown, grey and green, and green-white lateral stripes are found from the ear to the hind limbs (Hedges and Conn, 2012). DISTRIBUTION. Copeoglossum aurae species is distributed in some islands of the Caribbean including southern Windward Islands like St. Vincent and the Grenadines, Grenada, Trinidad and Tobago, and it was postulated that some may have migrated to parts of South America (Venezuela) (Murphy et al., 2013). HABITAT AND ECOLOGY. C. aurae exhibit both arboreal and non-arboreal characteristics, since they are found either on trees or on the ground (Murphy et al., 2013). -
Linking Environmental Drivers with Amphibian Species Diversity in Ponds from Subtropical Grasslands
Anais da Academia Brasileira de Ciências (2015) 87(3): 1751-1762 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140471 www.scielo.br/aabc Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands DARLENE S. GONÇALVES1, LUCAS B. CRIVELLARI2 and CARLOS EDUARDO CONTE3*,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brasil 3Universidade Federal do Paraná. Departamento de Zoologia, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação. Rua Purus, 33, 82520-750 Curitiba, PR, Brasil Manuscript received on September 17, 2014; accepted for publication on March 2, 2015 ABSTRACT Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity. -
Pdf/Acbi/V35n99/V35n99a5.Pdf New World Dipsadidae (Serpentes: Colubroidea): a Reappraisal
11 3 1624 the journal of biodiversity data April 2015 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 11(3): 1624, April 2015 doi: http://dx.doi.org/10.15560/11.3.1624 ISSN 1809-127X © 2015 Check List and Authors New easternmost and southernmost records of Pseudoboa coronata Schneider, 1801 (Serpentes: Dipsadidae: Pseudoboini), with a distribution map Henrique Caldeira Costa1*, Giselle Agostini Cotta2 and Ross D. MacCulloch3 1 Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Zoologia, Laboratório de Herpetologia. Avenida Antônio Carlos 6627, Pampulha, 31270-901. Belo Horizonte, MG, Brazil 2 Fundação Ezequiel Dias, Unidade de Coleções Científicas e Popularização da Ciência, CEP 30510-010, Gameleira, Belo Horizonte, MG, Brazil 3 Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada * Corresponding author. E-mail: [email protected] Abstract: The snake species Pseudoboa coronata has and Bolivia (Gaiarsa et al. 2013). In Brazil it is recorded wide distribution from central Brazil to coastal Venezu- from Cerrado areas in the states of Goiás and Tocantins, ela and the Guianas, eastern Bolivia, Colombia, Ecuador, and from Amazon Forest in Acre, Amazonas, Maranhão, and Peru. In this note, the known distribution range of Mato Grosso, Pará, Rondônia, and Roraima (e.g., Silva Jr. P. coronata is extended eastward to the border between et al. 2005; Zaher et al. 2008; Bernarde et al. 2013). Despite the states of Bahia and Pernambuco, and southward to its wide distribution range, P. coronata is considered to Cachoeira Alta, state of Goiás, both in Brazil. Consider- be rare, at least in some Amazonian areas (Cunha and ing the limited biogeographic information for most taxa, Nascimento 1993).