Electromagnetic Theory As an Aid to Understanding Electromagnetic Field Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Electromagnetic Theory As an Aid to Understanding Electromagnetic Field Analysis SPECIAL Electromagnetic Theory as an Aid to Understanding Electromagnetic Field Analysis Tomohiro KEISHI Electromagnetic field analysis is an indispensable tool in the design and development of electrical devices and appliances. Software development has now made it possible to analyze electromagnetic fields with ease; however, in order to model problems and evaluate analysis results, it is still important to have a good understanding of electromagnetic theory. It is difficult for beginners to understand electromagnetics, but gaining such knowledge should help them to understand the workings of electrical devices and appliances. Keywords: electromagnetics, electromagnetic field analysis, electric field analysis, magnetic field analysis 1. Introduction ical energy (motors), or convert voltage to facilitate electric energy transmission (transformers). These are roughly di- Advances in numerical analysis techniques and the ad- vided into two types: transformers and rotary machines. vent of high-speed, high-capacity analytical hardware, such Figure 1 shows a typical example of a transformer. as the personal computer, have made it possible to perform Conductor 1 is wound around a magnetic material and electromagnetic field analysis using the finite element connected to a power source with voltage V1 so that an elec- method and other numerical analysis techniques, thus mak- tric current I1 flows through the transformer’s coil, gener- ing investigation of even the most complex electromagnetic ating magnetic flux ø. To concentrate the magnetic field phenomena possible. As such, electromagnetic field analysis that passes through it, Conductor 2 is wound around a has become an indispensable tool in the design and devel- magnetic material. If power-supply voltage V1 is an alter- opment of electrical devices and appliances(1). nating voltage, the voltage changes sinusoidally over time. As electromagnetic field analysis software has become Therefore, the magnetic flux also changes. This then gen- 3 increasingly powerful in recent years, analysis can now be erates electromotive force * V2 in Conductor 2, and electric performed very simply by just inputting the shape and set- current I2 flows if Conductor 2 is connected to a load (see ting conditions. When performing analysis, however, it is Appendix 1 for details). necessary to construct an electromagnetic field analysis model and evaluate analysis results appropriately. In order to do this, an understanding of electromagnetic phenom- ena based on electromagnetic theory is useful. In an ideal situation, such electromagnetic field analysis should be per- ① ④ Power I1 I2 formed by those well versed in electromagnetics, but in an Source ③ increasing number of cases such analysis is performed by V1 V2 Load those without any expertise. Furthermore, it would take a great deal of time and effort for novices in electromagnet- ② ø ics to learn from the beginning the fundamental principles Conductor 1 Conductor 2 of their discipline. This paper is intended to explain how knowledge of electromagnetics can lead to an understand- Magnetic material ing of the mechanisms of devices and appliances, so that those persons who are studying electromagnetics may de- (1) Apply time-varying (alternating) electric current to Conductor 1 (2) Varying magnetic flux is generated and passes through the velop an interest in this subject. At the end of this paper magnetic material and Conductor 2. (Conductor 2 and the are brief descriptions of the bare essentials of what students magnetic flux are “interlinked.") of electromagnetics should know, and which the author (3) Electromotive force is generated in Conductor 2. hopes may serve as a reference. (4) Electric current flows if Conductor 2 is connected to a load. Fig. 1. Example of a Transformer 2. Electromagnetic Phenomena of Electrical Devices and Appliances Conductors are used to carry electric current, while magnetic materials are used to encourage the magnetic By definition, electrical devices and appliances are de- flux to pass through. When the conductor path is altered, vices that, through the use of electric currents *1 and mag- the electric current flows along it. Likewise, changing the netic fluxes *2, generate electric energy out of mechanical magnetic material path can make the magnetic flux to flow energy (generators), convert electric energy into mechan- along it. SEI TECHNICAL REVIEW · NUMBER 72 · APRIL 2011 · 17 (1) The current sensor shown in Fig. 2 is also a type of Conductor transformer. The sensor’s wire harness conductor corre- Magnetic material sponds to Conductor 1 of Fig. 1, but this sensor does not include Conductor 2, and a part of the magnetic material (magnetic core) is left open to create a gap. N ø S S S N N Permanent magnet Rotations Flowing current I N S S Wire harness conductor N Magnetic material (copper) N N S S Magnetic core S (PC Permalloy) N Gap (Hall element at the center) Fig. 4. Interior permanent magnet motor Fig. 2. Current sensor magnets are also embedded in the inner magnetic materi- Figure 3 is a representational model of a generator, als on the inside. The three-phase current applied to the an example of a rotary machine. Permanent magnets lo- outside conductors generates rotating magnetic fluxes in cated above and below generate magnetic flux ø. A con- the magnetic materials and permanent magnets on the in- ductor is wound around a magnetic material, and they side, which then produce turning force (torque) in the rotate together. Consequently, the magnetic flux passing magnetic materials and permanent magnets on the inside through the conductor changes, thereby generating elec- (see Appendix 3 for details about motors). tromotive force V in the conductor. If the conductor is connected to a load, electric current I is applied (see Ap- pendix 2 for details). Figure 4 shows a cross section of an interior perma- 3. Basic Theories of Electromagnetics nent magnet synchronous motor, which is an example of a rotary machine. Embedded inside the outer magnetic 3-1 Electric current *1 materials, conductors are organized into groups, to which As shown in Fig. 5, electric current I[A] flows if direct three-phase alternating current is then applied. Permanent voltage V[V] is applied at both ends of the conductor. The resistance R [Ω] of this conductor is given by Equation (1), if the conductor has the same cross-section profile length- wise and its cross section area, length, and resistivity are S[m2],ℓ[m], and ρ[Ωm], respectively. Permanent N magnet ② ④ ① V I ø Rotation ③ V Load Magnetic Permanent material I magnet S Conductor S Electric ℓ potential (1) Permanent magnets generate magnetic flux . (2) The magnetic material in which the conductor is embedded rotates. V (In reality, more than one conductor is used, but only one is shown in the figure above.) (3) As the conductor rotates, the magnetic flux passes through (interacts with) the conductor. As the magnetic flux changes, electromotive force is generated in the conductor. 0 Distance (4) Electric current flows when the conductor is connected to a load. ℓ Fig. 3. Rotary machine Fig. 5. Electric field by the current flowing through a conductor 18 · Electromagnetic Theory as an Aid to Understanding Electromagnetic Field Analysis V ℓ ................................................................... E= ............................................................... R=ρ (1) r2 (6) S rln r1 The relationship called Ohm’s law, given by Equa- The capacitance of the insulator can be calculated by tion (2), exists among voltage V, electric current I, and using Equation (7) (see Appendix 4). resistance R. 2πε = ...............................................................(7) C r2 ln V=IR ......................................................................(2) r1 An electric field exists in the conductor, and an elec- tric current flows through the conductor. *4 Conductor 3-2 Electric field 0 [V] r2 In Fig. 5, due to the battery’s voltage V, the electric po- V [V] tential at the left end of the conductor is V and that at the r [mm] right end is 0. Since voltage V is applied over the conduc- r1 E Insulator Permittivity ε tor’s entire lengthℓ, electric field [V/m] can be calcu- Insulator lated using Equation (3). V Fig. 7. Electric field of a concentric cylindrical electrode E= ......................................................................(3) ℓ As shown in Fig. 6, the electric field generated when voltage V is applied to an insulator placed between parallel 3-3 Magnetic field *5 plate electrodes can also be obtained through Equation (3). A magnetic field is produced around a conductor Electric charge Q[C] that is accumulated in the elec- through which electric current I passes (Fig. 8). When a trodes is given by Equation (4). right-handed screw is rotated, a magnetic field is generated in the direction of the rotation, if an electric current is ap- Q=CV .....................................................................(4) plied in the direction of the screw traveling forward (the right-hand rule). The strength of magnetic field H[A/m] Here capacitance C[F] can be expressed by Equation (5). at a radial distance r from the center of the conductor can be obtained by Equation (8) (see Appendix 5). S S .................................................... C=ε =εrε (5) ℓ 0 ℓ I H= ...................................................................(8) 2πr Where ε is the insulator’s permittivity [F/m], ε r is rel- ative permittivity, and ε 0 is permittivity in a vacuum Magnetic flux density B[T] in the atmosphere is (8.854×10-12 F/m). given by Equation (9), if permeability in a vacuum is -7 µ0=4π×10 [H/m]. µ I B=µ H= 0 ..........................................................(9) 0 2πr V Electrode H Right-handed S Insulator r screw I ⇒ Electrode Direction of I Electric potential ℓ S Direction of H V Fig. 8. Magnetic field created by electric current running through a conductor 0 Distance ℓ As shown in Fig. 9, a magnetic field is produced around a permanent magnet. Fig. 6. Electric field of an insulator between parallel plate electrodes Electric field E generated when voltage V is applied to NS an insulator placed between concentric cylindrical elec- trodes as shown in Fig.
Recommended publications
  • Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux Core Characteristics Master of Science Thesis
    Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics Master of Science Thesis JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ c JOHAN KINDMARK FREDRIK ROSEN,´ 2013. Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology SE–412 96 G¨oteborg Sweden Telephone +46 (0)31–772 1000 Chalmers Bibliotek, Reproservice G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology Abstract The aim of this thesis was to investigate the performanceof alternative powder materials and compare these with conventional iron and ferrite cores when used as inductors. Permeability measurements were per- formed where both DC-bias and frequency were swept, the inductors were put into a small buck converter where the overall efficiency was measured. The BH-curve characteristics and core loss of the materials were also investigated. The materials showed good performance compared to the iron and ferrite cores. High flux had the best DC-bias characteristics while Sendust had the best performance when it came to higher fre- quencies and MPP had the lowest core losses.
    [Show full text]
  • Magnetics Design for Switching Power Supplies Lloydh
    Magnetics Design for Switching Power Supplies LloydH. Dixon Section 1 Introduction Experienced SwitchMode Power Supply design- ers know that SMPS success or failure depends heav- ily on the proper design and implementation of the magnetic components. Parasitic elements inherent in high frequency transformers or inductors cause a va- riety of circuit problems including: high losses, high voltage spikes necessitating snubbers or clamps, poor cross regulation between multiple outputs, noise cou- pling to input or output, restricted duty cycle range, Figure 1-1 Transformer Equivalent Circuit etc. Figure I represents a simplified equivalent circuit of a two-output forward converter power transformer, optimized design, (3) Collaborate effectively with showing leakage inductances, core characteristics experts in magnetics design, and possibly (4) Become including mutual inductance, dc hysteresis and satu- a "magnetics expert" in his own right. ration, core eddy current loss resistance, and winding Obstacles to learning magnetics design distributed capacitance, all of which affect SMPS In addition to the lack of instruction in practical performance. magnetics mentioned above, there are several other With rare exception, schools of engineering pro- problems that make it difficult for the SMPS designer vide very little instruction in practical magnetics rele- to feel "at home" in the magnetics realm: vant to switching power supply applications. As a .Archaic concepts and practices. Our great- result, magnetic component design is usually dele- grandparents probably had a better understanding gated to a self-taught expert in this "black art". There of practical magnetics than we do today. Unfor- are many aspects in the design of practical, manu- tunately, in an era when computation was diffi- facturable, low cost magnetic devices that unques- cult, our ancestors developed concepts intended tionably benefit from years of experience in this field.
    [Show full text]
  • Electromagnets and Their Applications
    International Journal of Industrial Electronics and Electrical Engineering, ISSN(p): 2347-6982, ISSN(e): 2349-204X Volume-5, Issue-8, Aug.-2017, http://iraj.in ELECTROMAGNETS AND THEIR APPLICATIONS SHAHINKARIMAGHAIE Bachelor of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran E-mail: [email protected] Abstract- Electric current flowing through a wire wound around an iron nail creates a magnetic field, which caused an iron nail to become a temporary magnet. The nail can then be used to pick up paper clips. When the electric current is cut off, the nail loses its magnetic property and the paper clips fall off. The students will make an elecromagnet that will attract a paper clip. They will then increase the strength of an electromagnet(improve on their initial design) so that it will attract an increased number of paper clips. The participants will also compare the properties of magnets and electromagnets. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field. Electromagnets are widely used as components of other electrical devices, such as motors. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel. We will investigate engineering and industrial applications of the case study. Keywords- Electromagnet, Application, Engineering. I. INTRODUCTION William Sturgeon. If you have ever played with a really powerful magnet, you have probably noticed Electromagnet, device in which magnetism is one problem. You have to be pretty strong to separate produced by an electric current. Any electric current the magnets again! Today, we have many uses for produces a magnetic field, but the field near an powerful magnets, but they wouldn’t be any good to ordinary straight conductor is rarely strong enough to us if we were not able to make them release the be of practical use.
    [Show full text]
  • Electrodynamics of Topological Insulators
    Electrodynamics of Topological Insulators Author: Michael Sammon Advisor: Professor Harsh Mathur Department of Physics Case Western Reserve University Cleveland, OH 44106-7079 May 2, 2014 0.1 Abstract Topological insulators are new metamaterials that have an insulating interior, but a conductive surface. The specific nature of this conducting surface causes a mixing of the electric and magnetic fields around these materials. This project, investigates this effect to deepen our understanding of the electrodynamics of topological insulators. The first part of the project focuses on the fields that arise when a current carrying wire is brought near a topological insulator slab and a cylindrical topological insulator. In both problems, the method of images was able to be used. The result were image electric and magnetic currents. These magnetic currents provide the manifestation of an effect predicted by Edward Witten for Axion particles. Though the physics is extremely different, the overall result is the same in which fields that seem to be generated by magnetic currents exist. The second part of the project begins an analysis of a topological insulator in constant electric and magnetic fields. It was found that both fields generate electric and magnetic dipole like responses from the topological insulator, however the electric field response within the material that arise from the applied fields align in opposite directions. Further investigation into the effect this has, as well as the overall force that the topological insulator experiences in these fields will be investigated this summer. 1 List of Figures 0.4.1 Dyon1 fields of a point charge near a Topological Insulator .
    [Show full text]
  • Effective Permeability of Multi Air Gap Ferrite Core 3-Phase
    energies Article Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters Piotr Dworakowski 1,* , Andrzej Wilk 2 , Michal Michna 2 , Bruno Lefebvre 1, Fabien Sixdenier 3 and Michel Mermet-Guyennet 1 1 Power Electronics & Converters, SuperGrid Institute, 69100 Villeurbanne, France; [email protected] (B.L.); [email protected] (M.M.-G.) 2 Faculty of Electrical and Control Engineering, Gda´nskUniversity of Technology, 80-233 Gdansk, Poland; [email protected] (A.W.); [email protected] (M.M.) 3 Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, ECLyon, CNRS, Ampère, 69100 Villeurbanne, France; [email protected] * Correspondence: [email protected] Received: 4 February 2020; Accepted: 11 March 2020; Published: 14 March 2020 Abstract: The magnetizing inductance of the medium frequency transformer (MFT) impacts the performance of the isolated dc-dc power converters. The ferrite material is considered for high power transformers but it requires an assembly of type “I” cores resulting in a multi air gap structure of the magnetic core. The authors claim that the multiple air gaps are randomly distributed and that the average air gap length is unpredictable at the industrial design stage. As a consequence, the required effective magnetic permeability and the magnetizing inductance are difficult to achieve within reasonable error margins. This article presents the measurements of the equivalent B(H) and the equivalent magnetic permeability of two three-phase MFT prototypes. The measured equivalent B(H) is used in an FEM simulation and compared against a no load test of a 100 kW isolated dc-dc converter showing a good fit within a 10% error.
    [Show full text]
  • Magnetics in Switched-Mode Power Supplies Agenda
    Magnetics in Switched-Mode Power Supplies Agenda • Block Diagram of a Typical AC-DC Power Supply • Key Magnetic Elements in a Power Supply • Review of Magnetic Concepts • Magnetic Materials • Inductors and Transformers 2 Block Diagram of an AC-DC Power Supply Input AC Rectifier PFC Input Filter Power Trans- Output DC Outputs Stage former Circuits (to loads) 3 Functional Block Diagram Input Filter Rectifier PFC L + Bus G PFC Control + Bus N Return Power StageXfmr Output Circuits + 12 V, 3 A - + Bus + 5 V, 10 A - PWM Control + 3.3 V, 5 A + Bus Return - Mag Amp Reset 4 Transformer Xfmr CR2 L3a + C5 12 V, 3 A CR3 - CR4 L3b + Bus + C6 5 V, 10 A CR5 Q2 - + Bus Return • In forward converters, as in most topologies, the transformer simply transmits energy from primary to secondary, with no intent of energy storage. • Core area must support the flux, and window area must accommodate the current. => Area product. 4 3 ⎛ PO ⎞ 4 AP = Aw Ae = ⎜ ⎟ cm ⎝ K ⋅ΔB ⋅ f ⎠ 5 Output Circuits • Popular configuration for these CR2 L3a voltages---two secondaries, with + From 12 V 12 V, 3 A a lower voltage output derived secondary CR3 C5 - from the 5 V output using a mag CR4 L3b + amp postregulator. From 5 V 5 V, 10 A secondary CR5 C6 - CR6 L4 SR1 + 3.3 V, 5 A CR8 CR7 C7 - Mag Amp Reset • Feedback to primary PWM is usually from the 5 V output, leaving the +12 V output quasi-regulated. 6 Transformer (cont’d) • Note the polarity dots. Xfmr CR2 L3a – Outputs conduct while Q2 is on.
    [Show full text]
  • Modulation of Crystal and Electronic Structures in Topological Insulators by Rare-Earth Doping
    Modulation of crystal and electronic structures in topological insulators by rare-earth doping Zengji Yue*, Weiyao Zhao, David Cortie, Zhi Li, Guangsai Yang and Xiaolin Wang* 1. Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia 2. ARC Centre for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, NSW 2500, Australia Email: [email protected]; [email protected]; Abstract We study magnetotransport in a rare-earth-doped topological insulator, Sm0.1Sb1.9Te3 single crystals, under magnetic fields up to 14 T. It is found that that the crystals exhibit Shubnikov– de Haas (SdH) oscillations in their magneto-transport behaviour at low temperatures and high magnetic fields. The SdH oscillations result from the mixed contributions of bulk and surface states. We also investigate the SdH oscillations in different orientations of the magnetic field, which reveals a three-dimensional Fermi surface topology. By fitting the oscillatory resistance with the Lifshitz-Kosevich theory, we draw a Landau-level fan diagram that displays the expected nontrivial phase. In addition, the density functional theory calculations shows that Sm doping changes the crystal structure and electronic structure compared with pure Sb2Te3. This work demonstrates that rare earth doping is an effective way to manipulate the Fermi surface of topological insulators. Our results hold potential for the realization of exotic topological effects
    [Show full text]
  • Study on Characteristics of Electromagnetic Coil Used in MEMS Safety and Arming Device
    micromachines Article Study on Characteristics of Electromagnetic Coil Used in MEMS Safety and Arming Device Yi Sun 1,2,*, Wenzhong Lou 1,2, Hengzhen Feng 1,2 and Yuecen Zhao 1,2 1 National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of technology, Beijing 100081, China; [email protected] (W.L.); [email protected] (H.F.); [email protected] (Y.Z.) 2 Beijing Institute of Technology, Chongqing Innovation Center, Chongqing 401120, China * Correspondence: [email protected]; Tel.: +86-158-3378-5736 Received: 27 June 2020; Accepted: 27 July 2020; Published: 31 July 2020 Abstract: Traditional silicon-based micro-electro-mechanical system (MEMS) safety and arming devices, such as electro-thermal and electrostatically driven MEMS safety and arming devices, experience problems of high insecurity and require high voltage drive. For the current electromagnetic drive mode, the electromagnetic drive device is too large to be integrated. In order to address this problem, we present a new micro electromagnetically driven MEMS safety and arming device, in which the electromagnetic coil is small in size, with a large electromagnetic force. We firstly designed and calculated the geometric structure of the electromagnetic coil, and analyzed the model using COMSOL multiphysics field simulation software. The resulting error between the theoretical calculation and the simulation of the mechanical and electrical properties of the electromagnetic coil was less than 2% under the same size. We then carried out a parametric simulation of the electromagnetic coil, and combined it with the actual processing capacity to obtain the optimized structure of the electromagnetic coil.
    [Show full text]
  • MT Series High-Power Floor-Standing Programmable DC Power Supply • Expandable Into the Multi-Megawatts
    MT Series High-Power Floor-Standing Programmable DC Power Supply • Expandable into the Multi-Megawatts Overview Magna-Power Electronics MT Series uses the same reliable current-fed power processing technology and controls as the rest of the MagnaDC programmable power supply product line, but with larger high-power modules: individual 100 kW, 150 kW and 250 kW power supplies. The high-frequency IGBT-based MT Series units are among the largest standard switched-mode power supplies on the market, minimizing the number of switching components when comparing to smaller module sizes. Scaling in the multi-megawatts is accomplished using the UID47 device, which provides master-slave control: one power supply takes command over the remaining units, for true system operation. As an added 100 kW and 150 kW Models 250 kW Models safety measure, all MT Series units include an input AC breaker rated for full power. 250 kW modules come standard with an embedded 12-pulse harmonic neutralizer, Models ensuring low total harmonic distortion (THD). 2 2 2 Even higher quality AC waveforms are available 100 kW 150 kW 250 kW 500 kW 750 kW 1000 kW with an external additional 500 kW 24-pulse 1 or 1000 kW 48-pulse harmonic neutralizers, Max Voltage Max Current Ripple Efficiency designed and manufactured exclusively by (Vdc) (Adc) (mVrms) Magna-Power for its MT Series products. 16 6000 N/A N/A N/A N/A N/A 35 90 20 5000 N/A N/A N/A N/A N/A 40 90 25 N/A 6000 N/A N/A N/A N/A 40 90 32 3000 4500 N/A N/A N/A N/A 40 90 40 2500 3750 6000 12000 18000 24000 40 91 50 2000 3000 5000 10000 15000 20000 50 91 MT Series Model Ordering Guide 60 1660 2500 4160 8320 12480 16640 60 91 80 1250 1850 3000 6000 9000 12000 60 91 There are 72 different models in the MT Series spanning power levels: 100 kW, 150 kW, 250 kW.
    [Show full text]
  • Basics of Ferrite and Noise Countermeasures TDK Corporation Magnetics Business Group Shinichiro Ito
    TDK EMC Technology Basic Section Basics of Ferrite and Noise Countermeasures TDK Corporation Magnetics Business Group Shinichiro Ito What is Ferrite? 1 Figure 2 shows what is called the B-H curve (magnetic Ferrite was invented by Dr. Kato and Dr. Takei in 1930 and history curve) of magnetic material, showing the flux density B is an oxide magnetic material whose main ingredient is iron that flows in a magnetic material when a magnetic field H is (Figure 1) Ferrite is classified into soft ferrite (magnetic core applied. It is easy to understand if the magnetic material is material) and hard ferrite (magnet material). TDK was imagined as an electrical conductive material, the magnetic field established for producing soft ferrite in 1935. as an electric field, and the flux density as an electric current. When a voltage is applied to the common electrical conductive Figure 1 The First Ferrite Core in the World material, a current flows in proportion to the voltage; then, if the voltage is decreased, the current decreases in proportion to the voltage (Ohm’s Law). In the case of the magnetic material, the flux density non-linearly increases against the magnetic field. If the magnetic field is decreased after being increased, the flux density decreases while drawing a different curve from that obtained when the magnetic field is increasing. Therefore, the curve is called a history curve (hysteresis curve). In the case of hard ferrite, when the magnetic field first increases the flux density does not change so much, however, when the magnetic field becomes extremely strong, a sudden flux density flows to create a magnet.
    [Show full text]
  • Quantum Hall Effect on Top and Bottom Surface States of Topological
    Quantum Hall Effect on Top and Bottom Surface States of Topological Insulator (Bi1−xSbx)2Te 3 Films R. Yoshimi1*, A. Tsukazaki2,3, Y. Kozuka1, J. Falson1, K. S. Takahashi4, J. G. Checkelsky1, N. Nagaosa1,4, M. Kawasaki1,4 and Y. Tokura1,4 1 Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan 2 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 3 PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075, Japan 4 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan. * Corresponding author: [email protected] 1 The three-dimensional (3D) topological insulator (TI) is a novel state of matter as characterized by two-dimensional (2D) metallic Dirac states on its surface1-4. Bi-based chalcogenides such as Bi2Se3, Bi2Te 3, Sb2Te 3 and their combined/mixed compounds like Bi2Se2Te and (Bi1−xSbx)2Te 3 are typical members of 3D-TIs which have been intensively studied in forms of bulk single crystals and thin films to verify the topological nature of the surface states5-12. Here, we report the realization of the Quantum Hall effect (QHE) on the surface Dirac states in (Bi1−xSbx)2Te 3 films (x = 0.84 and 0.88). With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ν = ± 1 are resolved with 2 quantized Hall resistance of Ryx = ± h/e and zero longitudinal resistance, owing to chiral edge modes at top/bottom surface Dirac states.
    [Show full text]
  • Magnetic Cores for Switching Power Supplies INTRODUCTION the Advantages of Switching Power Supplies (SPS) Are Well Documented
    ® Division of Spang & Company Magnetic Cores For Switching Power Supplies INTRODUCTION The advantages of switching power supplies (SPS) are well documented. Various circuits used in these units have also been sufficiently noted in literature. Magnetic cores play an important role in SPS circuitry. They are made from a variety of raw materials, a range of manufacturing processes, and are available in a variety of geometries and sizes as shown in Figure 1. Each material has its own unique properties. Therefore, the requirements for each applica- tion of a core in the power supply must be examined in light of the properties of available magnetic materials so that a proper core choice can be made. This article describes the various magnetic materials used for cores in switching power supplies, their method of manufacture, and useful magnetic characteristics as related to major sections of the power supply. Cores can be classified into three basic Figure 1: A Multitude of Magnetic Cores. types: (1) tape wound cores, (2) powder cores, and (3) ferrites. Additional core details on material descriptions and characteristics, plus sizes and spe- cific design information, are available in the following MAGNETICS sources: Ferrite Cores . Catalog FC-601 Molypermalloy and High Flux Powder Cores . Catalog MPP-400 KOOL MU Powder Cores . ............. Catalog KMC-2.0 High Flux Powder Cores . Catalog HF-PC-01 Tape Wound Cores . Catalog TWC-500 Cut Cores . .......... Catalog MCC- 100 Inductor Design Software for Powder Cores Common Mode Inductor Design Software INDEX Tape Wound Cores . 1 Powder Cores . 3 Ferrite Cores . 5 TAPE WOUND CORES Figure 2 shows a cutaway view of a typical tape wound core.
    [Show full text]