5 Cpg Island Methylation of the FHIT Gene Is Correlated with Loss Of

Total Page:16

File Type:pdf, Size:1020Kb

5 Cpg Island Methylation of the FHIT Gene Is Correlated with Loss Of [CANCER RESEARCH 61, 3581–3585, May 1, 2001] Advances in Brief 5؅ CpG Island Methylation of the FHIT Gene Is Correlated with Loss of Gene Expression in Lung and Breast Cancer1 Sabine Zo¨chbauer-Mu¨ller, Kwun M. Fong, Anirban Maitra, Stephen Lam, Joseph Geradts, Raheela Ashfaq, Arvind K. Virmani, Sarah Milchgrub, Adi F. Gazdar, and John D. Minna2 Hamon Center for Therapeutic Oncology Research [S. Z-M., A. M., A. K. V., A. F. G., J. D. M.] and Departments of Pathology [A. M., R. A., S. M., A. F. G.], Internal Medicine [J. D. M.], and Pharmacology [J. D. M.], The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane 4032, Australia [K. M. F.]; British Columbia Cancer Agency, Vancouver V5Z 355, Canada [S. L.]; and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom [J. G.] Abstract Aberrant methylation (referred to as methylation) of normally un- methylated CpG islands, located in the 5Ј promoter region of genes, Allele loss and loss of expression of fragile histidine triad (FHIT), a has been associated with transcriptional inactivation of several genes putative tumor suppressor gene located in chromosome region 3p14.2, are in human cancer and can serve as an alternative to mutational inac- frequent in several types of cancers. Tumor-acquired methylation of ␤ promoter region CpG islands is one method for silencing tumor suppres- tivation (12, 13). Several genes, including p16, RAR , TIMP-3, -sor genes. We investigated 5؅ CpG island methylation of the FHIT gene in DAPK, H-cadherin, and RASSF1A frequently undergo such methyl 107 primary non-small cell lung cancer (NSCLC) samples and corre- ation in lung and breast cancers (12, 14–23). In esophageal squamous sponding nonmalignant lung tissues, 39 primary breast carcinomas, as cell carcinomas, methylation of the FHIT gene was found in three of well as in 49 lung and 22 breast cancer cell lines by a methylation-specific four structurally unaltered but transcriptionally repressed tumor cell PCR assay. In addition, we analyzed brushes from the bronchial epithe- lines as well as in 5 of 35 primary tumors (24). lium of 35 heavy smokers without cancer. FHIT methylation was detected Because of the potential role of FHIT in the pathogenesis of lung in 37% of primary NSCLCs, 31% of primary breast cancers, and 65% of and breast cancers, we investigated the methylation status of FHIT in lung and 86% of breast cancer cell lines. The frequency of methylation in these tumors and correlated our findings with gene expression at the small cell and NSCLC cell lines were identical. Methylation was found in RNA and protein levels and with clinical features. 9% of the corresponding nonmalignant lung tissues and in 17% of bron- chial brushes from heavy cigarette smokers. FHIT methylation was sig- nificantly correlated with loss of FHIT mRNA expression by Northern Materials and Methods blot analysis in lung cancer cell lines and with loss of Fhit expression in NSCLC and breast tumors by immunostaining. We conclude that meth- Tumor and Tissue Samples and Tumor Cell Lines. Tissues were col- ylation of FHIT is a frequent event in NSCLC and breast cancers and is lected after obtaining appropriate Institutional Review Board permission and ϭ an important mechanism for loss of expression of this gene. Methylation informed consent from the subjects. Primary NSCLC tumors (n 107) and ϭ of FHIT commences during lung cancer pathogenesis and may represent corresponding nonmalignant lung tissues (n 104) were obtained from a marker for risk assessment. patients who had received surgical resections with curative intent at The Prince Charles Hospital. Areas of viable tumor tissue were macrodissected and stored Introduction at Ϫ70°C. This cohort of patients had been investigated previously for various genetic abnormalities (2, 8, 18, 23, 25, 26). There were 76 males and 31 The FHIT3 gene, located in chromosome region 3p14.2, undergoes females, ages 28–81 years (mean, 61 years) at diagnosis. Sixty-one patients frequent allele loss (LOH) and occasional homozygous deletions in had stage I disease, 21 patients had stage II disease, 24 patients had stage IIIA various cancer types, including lung and breast cancer (1–5). FHIT disease, and 1 patient had stage IIIB disease. Histological subtypes included 45 transcripts of abnormal size, including deletions of exons and inser- adenocarcinomas, 43 squamous cell carcinomas, 11 adenosquamous carcino- tions, are found in a high percentage of lung and breast cancers, mas, 4 large cell carcinomas, 3 atypical carcinoids, and 1 typical carcinoid. whereas point mutations are rare (1, 2, 4, 5). Loss of Fhit protein Ninety-eight patients were ever smokers (consisting of current and former smokers) with mean exposure of 31 pack-years, and 9 were never smokers. expression also is frequent in these cancer types (6–10). Although Survival data of 5 or more years were available for most patients. Primary these findings suggest that FHIT is a TSG, which plays an important breast tumors (n ϭ 39) were obtained from women undergoing breast cancer role in the pathogenesis of lung and breast cancer, there remains resections at The University of Texas Southwestern Medical Center. The age considerable controversy as to the role of the gene in tumorigenesis of the patients ranged between 31 and 84 years (mean, 57 years) at diagnosis. (reviewed in Ref. 11). Three patients had stage I, 16 stage IIA, 3 stage IIB, 8 stage IIIA, 3 stage IIIB, and 6 stage IV disease. Histological subtypes included 33 ductal carcinomas ϭ Received 2/19/01; accepted 3/13/01. and 6 lobular carcinomas. Smokers (n 35) with at least 30 pack-years of The costs of publication of this article were defrayed in part by the payment of page smoking history and with morphometric evidence of sputum dysplasia were charges. This article must therefore be hereby marked advertisement in accordance with examined under fluorescence bronchoscopy at the British Cancer Agency (27). 18 U.S.C. Section 1734 solely to indicate this fact. Bronchial brushes were obtained from a predetermined site (apical segment of 1 Supported by Grants J1658-MED and J1860-MED from the Austrian Science Foun- dation, Lung Cancer Specialized Program of Research Excellence Grant P50 CA70907, right upper lobe). Bronchial biopsies were taken from multiple areas that and grants from The G. Harold and Leila Y. Mathers Charitable Foundation, The Susan demonstrated fluorescence abnormalities. Pathological examination revealed G. Komen Foundation and the Cancer Research Foundation of North Texas. dysplasia in at least 1 biopsy in 33 of 35 cases (mild dysplasia in 26 cases and 2 To whom requests for reprints should be addressed, at Hamon Center for Therapeutic moderate dysplasia in 7 cases). Twenty-five NSCLCs, 22 SCLCs, and 2 Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-8593. Phone: (214) 648-4900; Fax: (214) 648-4940; mesothelioma cell lines (referred to as lung cancer cell lines) and 22 breast E-mail: [email protected]. cancer cell lines generated by us have been described previously (28–30). 3 The abbreviations used are: FHIT, fragile histidine triad; TSG, tumor suppressor Corresponding B lymphoblastoid cell lines were available for 52 lines. gene; NSCLC, non-small lung cancer; SCLC, small cell lung cancer; MSP, methylation- MSP. DNA was prepared from tissue samples and cell lines by standard specific PCR; LOH, loss of heterozygosity; RT-PCR, reverse transcription-PCR; p16, p16INK4a; RAR, retinoic acid receptor; TIMP, tissue inhibitor of metalloproteinase; methods, and bisulfite modification of genomic DNA was performed as DAPK, death-associated protein kinase. reported by Herman et al. (31). Briefly, 1 ␮g of genomic DNA was denatured 3581 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2001 American Association for Cancer Research. FHIT METHYLATION with NaOH (final concentration, 0.2 M) and 10 mM hydroquinone (Sigma Frequency of FHIT Methylation. Using the primers we designed, Chemical Co., St. Louis, MO), and 3 M sodium bisulfite (Sigma Chemical Co.) we determined the frequency of FHIT methylation in primary NSCLC were added and incubated at 50°C for 16 h. Afterward, modified DNA was samples and corresponding nonmalignant lung tissues, primary breast purified using Wizard DNA purification resin (Promega Corp., Madison, WI), carcinomas, and lung and breast cancer cell lines by MSP (Fig. 1), and followed by ethanol precipitation. Treatment of genomic DNA with sodium the results are summarized in Table 1. FHIT methylation was also bisulfite converts unmethylated but not methylated cytosines to uracil, which found in 6 of 35 bronchial brushes from heavy smokers without lung are then converted to thymidine during the subsequent PCR step, producing sequence differences between methylated and unmethylated DNA. Primer cancer. Three of the positive cases were from subjects with mild sequences for the methylated FHIT reaction were 5Ј-TTG GGG CGC GGG dysplasia, and three were from subjects with moderate dysplasia. The TTT GGG TTT TTA CGC-3Ј (forward) and 5Ј-CGT AAA CGA CGC CGA unmethylated form of FHIT was found in 100% of the primary tumors CCC CAC TA-3Ј (reverse), and primer sequences for the unmethylated FHIT that had been grossly dissected and thus had at least some contami- reaction were 5Ј-TTG GGG TGT GGG TTT GGG TTT TTA TG-3Ј (forward) nation with normal cells and also in all nonmalignant specimens. In and 5Ј-CAT AAA CAA CAC CAA CCC CAC TA-3Ј (reverse). Primer contrast to the tumor samples, the cancer cell lines represent pure sequences were determined on the basis of the sequence data of the 5Ј CpG populations of tumor cells, and we determined their FHIT allele island of the gene as described in “Results.” The PCR mixture contained 10ϫ status.
Recommended publications
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Evaluation of the FHIT Gene in Colorectal Cancers1
    [CANCER RESEARCH 56, 2936-2939. July I. 1996] Advances in Brief Evaluation of the FHIT Gene in Colorectal Cancers1 Sam Thiagalingam, Nikolai A. Lisitsyn, Masaaki Hamaguchi, Michael H. Wigler, James K. V. Willson, Sanford D. Markowitz, Frederick S. Leach, Kenneth W. Kinzler, and Bert Vogelstein2 The Johns Hopkins Oncology Center. Baltimore, Maryland 21231 [S. T.. F. S. L., K. W. K., B. V.]; Department of Genetics. University of Pennsylvania, Philadelphia, Pennsylvania 9094 ¡N.A. LI: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 ¡M.H., M. H. W.]; Department of Medicine and Ireland Cancer Center, University Hospitals of Cleveland and Case Western Resene University. Cleveland. Ohio 44106 ¡J.K. V. W., and S. D. M.¡; and Howard Hughes Medical Institute [B. V.¡,The Johns Hopkins Oncology Center, Baltimore, Maryland 21231 Abstract suppressor genes (13), the RDA results strongly supported the exist ence of a tumor suppressor gene in this area (14). A variety of studies suggests that tumor suppressor loci on chromosome Finally, Ohta et al. (15) have recently used a positional cloning 3p are important in various forms of human neoplasia. Recently, a chro approach to identify a novel gene that spanned the t(3;8) breakpoint. mosome 3pl4.2 gene called FHIT was discovered and proposed as a They named this gene FHIT (fragile histidine triad gene), reflecting its candidate tumor suppressor gene in coloréela!and other cancers. We evaluated the FHIT gene in a panel of colorectal cancer cell lines and homology to the Schizosaccharomyces pombe gene encoding Ap4A xenografts, which allowed a comprehensive mutational analysis.
    [Show full text]
  • Initial Sequencing and Comparative Analysis of the Mouse Genome
    articles Initial sequencing and comparative analysis of the mouse genome Mouse Genome Sequencing Consortium* *A list of authors and their af®liations appears at the end of the paper ........................................................................................................................................................................................................................... The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identi®cation of intraspecies polymorphism. With the complete sequence of the human genome nearly in hand1,2, covering about 90% of the euchromatic human genome, with about the next challenge is to extract the extraordinary trove of infor- 35% in ®nished form1. Since then, progress towards a complete mation encoded within its roughly 3 billion nucleotides. This human sequence has proceeded swiftly, with approximately 98% of information includes the blueprints for all RNAs and proteins, the genome now available in draft form and about 95% in ®nished the regulatory elements that ensure proper expression of all genes, form.
    [Show full text]
  • Anti-FHIT Antibody (ARG58030)
    Product datasheet [email protected] ARG58030 Package: 50 μg anti-FHIT antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes FHIT Tested Reactivity Hu Tested Application FACS, ICC/IF, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name FHIT Species Human Immunogen Recombinant protein corresponding to aa. 1-147 of Human FHIT. Conjugation Un-conjugated Alternate Names FRA3B; AP3Aase; Bis(5'-adenosyl)-triphosphatase; EC 3.6.1.29; AP3A hydrolase; AP3Aase; Diadenosine 5',5'''-P1,P3-triphosphate hydrolase; Dinucleosidetriphosphatase; Fragile histidine triad protein Application Instructions Application table Application Dilution FACS 1 - 3 µg/10^6 cells ICC/IF 1 - 5 µg/ml IHC-P 1 - 5 µg/ml WB 0.5 - 1 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Observed Size ~ 17 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS, 0.025% Sodium azide and 2.5% BSA. Preservative 0.025% Sodium azide Stabilizer 2.5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated www.arigobio.com 1/3 freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol FHIT Gene Full Name fragile histidine triad Background This gene, a member of the histidine triad gene family, encodes a diadenosine 5',5'''-P1,P3-triphosphate hydrolase involved in purine metabolism.
    [Show full text]
  • Anti-FHIT Antibody (ARG58006)
    Product datasheet [email protected] ARG58006 Package: 50 μg anti-FHIT antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes FHIT Tested Reactivity Hu Predict Reactivity Ms Tested Application ICC/IF, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name FHIT Antigen Species Human Immunogen Synthetic peptide corresponding to 18 aa (C-terminus) of Human FHIT. Conjugation Un-conjugated Alternate Names FRA3B; AP3Aase; Bis(5'-adenosyl)-triphosphatase; EC 3.6.1.29; AP3A hydrolase; AP3Aase; Diadenosine 5',5'''-P1,P3-triphosphate hydrolase; Dinucleosidetriphosphatase; Fragile histidine triad protein Application Instructions Application table Application Dilution ICC/IF 5 µg/ml WB 1 - 2 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control WB: HeLa cell lysate. Calculated Mw 17 kDa Observed Size 15 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS and 0.02% Sodium azide. Preservative 0.02% Sodium azide Concentration 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated www.arigobio.com 1/2 freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol FHIT Gene Full Name fragile histidine triad Background This gene, a member of the histidine triad gene family, encodes a diadenosine 5',5'''-P1,P3-triphosphate hydrolase involved in purine metabolism.
    [Show full text]
  • FHIT Gene Alterations in Head and Neck Squamous Cell Carcinomas (Fragile Site/Ap3a Hydrolase/Chromosome 3Pl4.2) LAURA VIRGILIO*, MICHELE Shustert, SUSANNE M
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9770-9775, September 1996 Medical Sciences This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 30, 1996. FHIT gene alterations in head and neck squamous cell carcinomas (fragile site/Ap3A hydrolase/chromosome 3pl4.2) LAURA VIRGILIO*, MICHELE SHUSTERt, SUSANNE M. GOLLINt, MARIA LuISA VERONESE*, MASATAKA OHTA*, KAY HUEBNER*, AND CARLO M. CROCE* *Kimmel Cancer Institute and Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107; and tDepartment of Human Genetics, University of Pittsburgh Graduate School of Public Health and the University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261 Contributed by Carlo M. Croce, July 18, 1996 ABSTRACT To determine whether the FHIT gene at 3p25. All three regions present a loss of heterozygosity in 3pl4.2 is altered in head and neck squamous cell carcinomas 45-50% of the cases both at the precancerous and cancerous (HNSCC), we examined 26 HNSCC cell lines for deletions stages, with the exception of 3p2l.3, that shows a lower within the FHIT locus by Southern analysis, for allelic losses incidence (30%) in dysplastic lesions (18). Furthermore, pa- of specific exons FHIT by fluorescence in situ hybridization tients with dysplastic lesions with LOH either of 9p or 3p are (FISH) and for integrity ofFHIT transcripts. Three cell lines at higher risk of developing tumors. exhibited homozygous deletions within the FHIT gene, 55% Recently, we have cloned the FHIT gene, at 3pl4.2, which (15/25) showed the presence ofaberrant transcripts, and 65% encompasses the FRA3B fragile site, is disrupted by the t(3;8) (13/20) showed the presence of multiple cell populations with chromosomal translocation observed in a family with renal cell losses of different portions of FHIT alleles by FISH of FHIT carcinoma, and spans a region commonly deleted in cancer cell genomic clones to interphase nuclei.
    [Show full text]
  • UBE2I (Ubc9) [GST-Tagged] E2 - SUMO Conjugating Enzyme
    UBE2I (Ubc9) [GST-tagged] E2 - SUMO Conjugating Enzyme Alternate Names: P18, SUMO-1 protein ligase, UBC9, Ubiquitin conjugating enzyme UbcE2A, Ubiquitin like protein SUMO-1 conjugating enzyme Cat. No. 62-0065-020 Quantity: 20 µg Lot. No. 1426 Storage: -70˚C FOR RESEARCH USE ONLY NOT FOR USE IN HUMANS CERTIFICATE OF ANALYSIS Page 1 of 2 Background Physical Characteristics The enzymes of the SUMOylation pathway Species: human Protein Sequence: play a pivotal role in a number of cellu- MSPILGYWKIKGLVQPTRLLLEYLEEKYEEH lar processes including nuclear transport, Source: E. coli expression LYERDEGDKWRNKKFELGLEFPNLPYYIDGD signal transduction, stress responses and VKLTQSMAIIRYIADKHNMLGGCPKER cell cycle progression. Covalent modifica- Quantity: 20 µg AEISMLEGAVLDIRYGVSRIAYSKDFETLKVD tion of proteins by small ubiquitin-related FLSKLPEMLKMFEDRLCHKTYLNGDHVTHP modifiers (SUMOs) may modulate their Concentration: 1 mg/ml DFMLYDALDVVLYMDPMCLDAFPKLVCFK stability and subcellular compartmen- KRIEAIPQIDKYLKSSKYIAWPLQGWQAT talisation. Three classes of enzymes are Formulation: 50 mM HEPES pH 7.5, FGGGDHPPKSDLEVLFQGPLGSMSGIALSR involved in the process of SUMOylation; 150 mM sodium chloride, 2 mM LAQERKAWRKDHPFGFVAVPTKNPDGTMN an activating enzyme (E1), conjugating dithiothreitol, 10% glycerol LMNWECAIPGKKGTPWEGGLFKLRMLFKD enzyme (E2) and protein ligases (E3s). DYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEED UBE2I is a member of the E2 conjugating Molecular Weight: ~45 kDa KDWRPAITIKQILLGIQELLNEPNIQDPAQAEA enzyme family and cloning of the human YTIYCQNRVEYEKRVRAQAKKFAPS gene was first described by Wang et al. Purity: >98% by InstantBlue™ SDS-PAGE Tag (bold text): N-terminal glutathione-S-transferase (GST) (1996). The human UBE2I cDNA contains Protease cleavage site: PreScission™ (LEVLFQtGP) 7 exons sharing 56% and 100% identity Stability/Storage: 12 months at -70˚C; UBE2I (regular text): Start bold italics (amino acid resi- with the yeast and mouse homologues aliquot as required dues 1-158) Accession number: NP_003336 (Nacerddine et al., 2005; Shi et al., 2000; Wang et al., 1996).
    [Show full text]
  • FHIT Monoclonal Antibody (M08), Clone 1C5
    FHIT monoclonal antibody (M08), clone 1C5 Catalog # : H00002272-M08 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant FHIT. Western Blot (Recombinant protein) Description: Sandwich ELISA (Recombinant Immunogen: FHIT (AAH32336, 31 a.a. ~ 130 a.a) partial recombinant protein with protein) GST tag. MW of the GST tag alone is 26 KDa. Sequence: VVPGHVLVCPLRPVERFHDLRPDEVADLFQTTQRVGTVVEKHFHGTSL TFSMQDGPEAGQTVKHVHVHVLPRKAGDFHRNDSIYEELQKHDKEDFPA SWR Host: Mouse enlarge Reactivity: Human ELISA Isotype: IgG3 Kappa Quality Control Antibody Reactive Against Recombinant Protein. Testing: Western Blot detection against Immunogen (36.63 KDa) . Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Recombinant protein) Protocol Download Sandwich ELISA (Recombinant protein) Page 1 of 3 2016/5/20 Detection limit for recombinant GST tagged FHIT is approximately 1ng/ml as a capture antibody. Protocol Download ELISA Gene Information Entrez GeneID: 2272 GeneBank BC032336 Accession#: Protein AAH32336 Accession#: Gene Name: FHIT Gene Alias: AP3Aase,FRA3B Gene fragile histidine triad gene Description: Omim ID: 601153 Gene Ontology: Hyperlink Gene Summary: This gene, a member of the histidine triad gene family, encodes a diadenosine 5',5'''-P1,P3-triphosphate hydrolase involved in purine metabolism. The gene encompasses the common fragile site FRA3B on
    [Show full text]
  • Genome-Wide Analysis of Genetic Alterations in Barrett's
    Laboratory Investigation (2009) 89, 385–397 & 2009 USCAP, Inc All rights reserved 0023-6837/09 $32.00 Genome-wide analysis of genetic alterations in Barrett’s adenocarcinoma using single nucleotide polymorphism arrays Thorsten Wiech1,5, Elisabeth Nikolopoulos1,5, Roland Weis1, Rupert Langer2, Kilian Bartholome´3, Jens Timmer3, Axel K Walch4, Heinz Ho¨fler2 and Martin Werner1 We performed genome-wide analysis of copy-number changes and loss of heterozygosity (LOH) in Barrett’s esophageal adenocarcinoma by single nucleotide polymorphism (SNP) microarrays to identify associated genomic alterations. DNA from 27 esophageal adenocarcinomas and 14 matching normal tissues was subjected to SNP microarrays. The data were analyzed using dChipSNP software. Copy-number changes occurring in at least 25% of the cases and LOH occurring in at least 19% were regarded as relevant changes. As a validation, fluorescence in situ hybridization (FISH) of 8q24.21 (CMYC) and 8p23.1 (SOX7) was performed. Previously described genomic alterations in esophageal adenocarcinomas could be confirmed by SNP microarrays, such as amplification on 8q (CMYC, confirmed by FISH) and 20q13 or deletion/LOH on 3p (FHIT) and 9p (CDKN2A). Moreover, frequent gains were detected on 2p23.3, 7q11.22, 13q31.1, 14q32.31, 17q23.2 and 20q13.2 harboring several novel candidate genes. The highest copy numbers were seen on 8p23.1, the location of SOX7, which could be demonstrated to be involved in amplification by FISH. A nuclear overexpression of the transcription factor SOX7 could be detected by immunohistochemistry in two amplified tumors. Copy-number losses were seen on 18q21.32 and 20p11.21, harboring interesting candidate genes, such as CDH20 and CST4.
    [Show full text]
  • Chromosome 3P and Breast Cancer
    B.J Hum Jochimsen Genet et(2002) al.: Stetteria 47:453–459 hydrogenophila © Jpn Soc Hum Genet and Springer-Verlag4600/453 2002 MINIREVIEW Qifeng Yang · Goro Yoshimura · Ichiro Mori Takeo Sakurai · Kennichi Kakudo Chromosome 3p and breast cancer Received: April 30, 2002 / Accepted: May 27, 2002 Abstract Solid tumors in humans are now believed to are now believed to develop through a multistep process develop through a multistep process that activates that activates oncogenes and inactivates tumor suppressor oncogenes and inactivates tumor suppressor genes. Loss of genes (Lopez-Otin and Diamandis 1998). Inactivation of a heterozygosity at chromosomes 3p25, 3p22–24, 3p21.3, tumor suppressor gene (TSG) often involves mutation of 3p21.2–21.3, 3p14.2, 3p14.3, and 3p12 has been reported in one allele and loss or replacement of a chromosomal seg- breast cancers. Retinoid acid receptor 2 (3p24), thyroid ment containing another allele. Loss of heterozygosity hormone receptor 1 (3p24.3), Ras association domain fam- (LOH) has been found on chromosomes 1p, 1q, 3p, 6q, 7p, ily 1A (3p21.3), and the fragile histidine triad gene (3p14.2) 11q, 13q, 16q, 17p, 17q, 18p, 18q, and 22q in breast cancer have been considered as tumor suppressor genes (TSGs) for (Smith et al. 1993; Callahan et al. 1992; Sato et al. 1990; breast cancers. Epigenetic change may play an important Hirano et al. 2001a); the commonly deleted regions include role for the inactivation of these TSGs. Screens for pro- 3p, 6q, 7p, 11q, 16q, and 17p (Smith et al. 1993; Hirano et al. moter hypermethylation may be able to identify other TSGs 2001a).
    [Show full text]
  • High-Density Array Comparative Genomic Hybridization Detects Novel Copy Number Alterations in Gastric Adenocarcinoma
    ANTICANCER RESEARCH 34: 6405-6416 (2014) High-density Array Comparative Genomic Hybridization Detects Novel Copy Number Alterations in Gastric Adenocarcinoma ALINE DAMASCENO SEABRA1,2*, TAÍSSA MAÍRA THOMAZ ARAÚJO1,2*, FERNANDO AUGUSTO RODRIGUES MELLO JUNIOR1,2, DIEGO DI FELIPE ÁVILA ALCÂNTARA1,2, AMANDA PAIVA DE BARROS1,2, PAULO PIMENTEL DE ASSUMPÇÃO2, RAQUEL CARVALHO MONTENEGRO1,2, ADRIANA COSTA GUIMARÃES1,2, SAMIA DEMACHKI2, ROMMEL MARIO RODRÍGUEZ BURBANO1,2 and ANDRÉ SALIM KHAYAT1,2 1Human Cytogenetics Laboratory and 2Oncology Research Center, Federal University of Pará, Belém Pará, Brazil Abstract. Aim: To investigate frequent quantitative alterations gastric cancer is the second most frequent cancer in men and of intestinal-type gastric adenocarcinoma. Materials and the third in women (4). The state of Pará has a high Methods: We analyzed genome-wide DNA copy numbers of 22 incidence of gastric adenocarcinoma and this disease is a samples and using CytoScan® HD Array. Results: We identified public health problem, since mortality rates are above the 22 gene alterations that to the best of our knowledge have not Brazilian average (5). been described for gastric cancer, including of v-erb-b2 avian This tumor can be classified into two histological types, erythroblastic leukemia viral oncogene homolog 4 (ERBB4), intestinal and diffuse, according to Laurén (4, 6, 7). The SRY (sex determining region Y)-box 6 (SOX6), regulator of intestinal type predominates in high-risk areas, such as telomere elongation helicase 1 (RTEL1) and UDP- Brazil, and arises from precursor lesions, whereas the diffuse Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5 type has a similar distribution in high- and low-risk areas and (B4GALT5).
    [Show full text]
  • Molecular Cloning of the Canine Fragile Histidine Triad (FHIT) Gene and Fhit Protein Expression in Canine Peripheral Blood Mononuclear Cells
    NOTE Clinical Pathology Molecular Cloning of the Canine Fragile Histidine Triad (FHIT) Gene and Fhit Protein Expression in Canine Peripheral Blood Mononuclear Cells Hiroko HIRAOKA1), Koji MINAMI1), Naoki KANEKO1), Takako SHIMOKAWA MIYAMA1), Takuya MIZUNO1) and Masaru OKUDA1)* 1)Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan (Received 11 November 2008/Accepted 27 November 2008) ABSTRACT. A fragile histidine triad (FHIT) gene has been studied as a tumor-associated gene in humans. The aberrant FHIT gene and its protein expression have been reported in many types of human cancers. The present study explored the canine FHIT gene structure and its protein expression in the peripheral blood mononuclear cells of healthy dogs by RT-PCR, RACE and immunoblot analysis. The obtained canine FHIT gene contained nine small exons and was located on canine chromosome 20. Furthermore, we identified an alter- native splicing form of the FHIT transcript. The deduced amino acid sequence was well conserved between species, and anti-human Fhit antibody could be used to detect the canine Fhit protein. These findings will be useful for future research. KEY WORDS: antibody, canine, clinical oncology, gene map, molecular identification. J. Vet. Med. Sci. 71(5): 645–649, 2009 The common fragile sites (CFS) are genomic unstable including myelocytic leukemia, lymphocytic leukemia and regions that tend to form gaps and breaks on metaphase non-Hodgkin’s lymphoma [7, 16, 21]. It has also been chromosomes when cells are exposed to replication imped- revealed that FHIT –/– and +/– mice develop spontaneous or ance, such as by aphidicolin, 5-azacytidine and bromo- N-nitrosomethylbenzylamine (NMBA)-induced tumors [4, deoxyuridine [6, 19].
    [Show full text]